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Abstract  
 
This document provides a detailed description of procedures for very-high precision calibration and 
testing of superconducting RF cavities using digital Low-Level RF (LLRF) electronics based on Field 
Programmable Gate Arrays (FPGA). The use of a Self-Excited Loop with an innovative procedure for 
fast turn-on allows the measurement of the forward, reflected and transmitted power from a single port 
of the directional coupler in front of the cavity, thus eliminating certain measurement errors. Various 
procedures for measuring the quality factor as a function of cavity fields are described, including a 
single RF pulse technique. Errors are estimated for the measurements.  
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 Introduction 
 
Various authors have previously studied the theory and practice of cavity testing, notably an extensive 
treatment by Powers [1] and Padamsee [2]. The advent of the digital Low-Level RF (LLRF) electronics 
based on Field Programmable Gate Arrays (FPGA) provides various improvements over the rather 
complex systems used in the past as well as enabling new measurement techniques.    
 
This document is meant to serve as a general guide and specifications document for the operation of the 
FPGA Self Excited Loop (SEL) operations in testing SRF cavities at CERN (in this context the FPGA 
refers to the hardware and a particular firmware as developed at CERN). Still, a number of novel 
methods are presented here, such as the fast start-up, the fast scan and the loop-phase control, discussed 
further on, as well as extensive error estimates. 
 
The SEL has some advantages for SRF cavity testing. The main one is a rapid set-up of the testing 
process, it finds the resonant frequency of the cavity within a reasonably wide frequency band, but 
thanks to the FPGA firmware this band is not too wide to erroneously latch on to a higher frequency 
mode of the cavity.  
 
Another important advantage is that the SEL tracks well the frequency of the cavity under conditions 
that the frequency changes, either slowly (cryostat pressure changes) or fast, due to Lorentz detuning or 
even extremely fast, due to multipacting. Thus, the SEL enables a good fill of the cavity and keeps the 
best power coupling under the fast-reactive detuning of multipacting electrons, speeding up the 
conditioning of multipacting. 
 
Another advantage, which will be further discussed in this document, is that the SEL FPGA board 
measures both In-Phase and In-Quadrature (IQ) components of the RF waveform, and thus acts as a 
very precise vector voltmeter. This can be used to keep the correct value of the loop-phase and reduce 
some phase related errors.  
 
A disadvantage is the ability of the SEL to lock on an unintended frequency if it is close to the target 
mode, for example in the accelerating pass-band of a multi-cell cavity. Thus, one should check the 
frequency selected by the SEL. 
 
Another potential disadvantage is that the turn-on (sending full forward power) of the SEL can be slow 
since it takes time for the SEL to establish the oscillation and the loop-phase. This is when the SEL has 
to start from noise. However, as we have established in tests carried out at CERN’s SM18, applying a 
two-step process resolves this issue nicely. In this process the SEL is started at a low level, say at a 
fraction ε of the intended voltage (represented on the board by a DAC word) for a brief time (please see 
Section 5.4.3.1 for analysis of this ε). At this low level and short on-time the cavity stores a negligible 
amount of energy. Then, with the SEL oscillating at the right frequency and loop-phase, the forward 
power is switched on to the full-required level. The cavity is then practically empty of stored energy, 
and the reflected power port indicates the full forward power reflected off an empty cavity. This makes 
a precise measurement of the coupling coefficient β as well as the cavity absorbed power possible. 
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An advantage of the FPGA LLRF system is the accurate and highly linear measurement of the RF signal 
voltage using high precision Analog to Digital Converters (ADCs) to quantify the input signals. 
 
In this document we reintroduce a technique that seems to have fallen out of practice in recent times, 
that is obtaining the coupling constant β through measurements from just one port, the reflected power 
port, of the directional coupler placed in front of the cavity. 

 The SEL circuit 
 
A disclaimer: Some of the specific features of the circuit and firmware described here are representative 
of the SEL FPGA board used by the CERN SRF group at SM18, other FPGA boards probably have 
different features, however the general principles still hold.  
 
A schematic diagram of the main elements of the SEL is given in Figure 1. Two signal generators are 
connected to the SEL board. These are the Local Oscillator, (marked LO) and the Sampling Rate 
(marked SR). The LO has to be set to provide the down-conversion of the frequencies to the Intermediate 
Frequency (IF) of the SEL, which is about 20 MHz. The exact value of the IF can vary around 20 MHz. 
The choice of the LO frequency has to be a rational fraction of the cavity frequency, such as 19/20, 
29/30 and so on. Thus, the IF frequency is set to 1/20, 1/30 and so on of the cavity frequency, close to 
20 MHz. Then the SR oscillator has to be set to exactly 4 times the IF frequency. The maximum IF 
frequency is 30 MHz. 
 
The two signal generators should be synchronized, with a cable connecting the frequency reference 
(usually on the back panel of the devices) from one to the other. 
When the frequency of the LO and SR are changed, the FPGA board should be switched off and then 
back on, to certain registers which are set to remember this frequency at power-on. 
 
The FPGA uses ADCs and DACs with a typical number of voltage level, represented by a binary word 
of up to about 20,000. The voltage should be kept at or below 20,000 to allow sufficient headroom for 
digital operations on the board. However, it should be large compared to the ADC noise floor at 
ADC/DAC counts to obtain a good dynamic range. 
 
The FPGA deals with RF voltage waveforms, which is the correct way to handle RF circuits. The RF 
signals we transmit and process are forward and reflected voltage and current waves in transmission 
lines, each with a phase depending on the time and position of the measurement. Mixing of RF 
waveforms always takes place as a linear superposition of the voltages and currents, and not of the 
power levels that can be assigned to these waveforms. It has to be understood that when we talk about 
RF power for convenience, it is just a particular measure of the properties of the electromagnetic waves.  
 
Within the SEL board, the incoming RF signals (characterized by an amplitude and phase relative to 
some reference) are amplified, filtered and down-converted to the IF frequency using double-balanced 
mixers. The signals are then digitized by ADCs at the sampling rate of four times the IF frequency, thus 
one gets the zero, in-phase zero and in-quadrature values at each RF cycle. These digitized signals are 
processed by the FPGA and then up-converted back to the original RF frequency. The presentation of 
results can be made as I-Q (In-phase and in-Quadrature) components of the RF signal or converted to 
amplitude and phase. One has to be careful when transforming the voltages measured on the board to 
power, which is the favorite output format. 
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Thanks to the specific choice of LO and SR frequencies, the board possesses a “virtual frequency” which 
is the intended cavity frequency. If the RF signal that is digitized has a different frequency, it will be 
tracked as a vector rotating relative to this virtual frequency, at a rotation rate that is the difference 
between the virtual frequency and the measured RF frequency. The board measures this difference-
frequency, so that at any time the circuit can provide an instantaneous reading of the frequency of the 
SEL. 
 
There are other ports in the SEL board, which can be used for checking on the board settings, but these 
will not be discussed in this document. 
 
We would like to make clarifying remark concerning the interpretation of power and voltage. The cavity 
input line and transmitted power line as well as other are RF power transmission lines. Normally one 
considers power as a scalar. However, in the context of this work, the power in the transmission line is 
associated with an RF voltage, which has a phase and is thus a vector, as described above. The RF input 
lines are converted by ADCs into voltages, and the phase is captured as mentioned earlier by taking both 
in-phase and in quadrature components of the signal. While the FPGA is operated with digital words 
containing the in-phase (I) and in-quadrature (Q) components of each voltage data point, these can also 
output as amplitude and phase. 
 
Since the communication of the operator with the SEL is digital, through data lines, the board can and 
should be placed as close to the cavity as possible (whilst considering, for example, issues of damaging 
radiation from the cavity or temperature stability). This is to reduce noise and potential phase drifts due 
to temperature changes of the connecting cables. 
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Figure 1. A schematic diagram of the main elements of the SEL. Lines in bold-red (marked Af1 , Af2 
and At require precise calibration, Af1 includes the coupling factor of the directional coupler). LO and 
SR are signal generators providing the Local Oscillator frequency and the Sampling Rate, and they 

are connected with a common reference (dashed line). 
 

2.1 Calibration of peripherals. 
 
The digital numbers in the ADCs or DACs refer to voltage levels, not power. The input power P (in 
watts), corresponding to the ADC digital word W is given as P = W2/N, where N was measured at one 
time to be about N = 2.5424*1010, where the power in Watts P. 
 
This number should be checked periodically since we observed a non-negligible change in the N value 
over a period of one month. 
 
The linearity of the ADCs W2 vs. power is excellent over the measured range of over 20,000. The 
calibration factor N is used to convert the SEL board digital voltages to actual power at the SEL 
terminals. An ADC count of 20,000 is about 15.7 mW with the given N. Since the ADCs have 16 bits 
of digitization range, an ADC count of 20,000 is safely within the ADC range. 
 
The SEL terminals are connected to the two main cavity ports through RF cables with particular 
attenuation values.  The first port is the forward power terminal of the directional coupler connected 
between the RF amplifier (and its circulator) and the cavity. The other port is the pickup antenna 
measuring the transmitted power from the cavity. A calibration of the cables Af1, Af2 and At is critical 
for the precise calibration of the conversion coefficients QL and Qt (external Qs of the FPC and 
transmitted power coupler, respectively) for precise measurements of the cavity’s stored energy U and 
quality factor Q0.   
 
Please note that the Af1 attenuation presented in Figure 1 and used in this section must include the port 
coupling of the coupler, which is treated as a large equivalent attenuation due to the weak coupling of 
the port.  
 
It must be emphasized that the directional coupler has to be of the highest quality in terms of isolation 
(see section 5.4.2.3 for details). The location of the directional coupler should be as close to the cavity 
as possible, ideally on the top-plate of the cryostat. This is important to reduce the effect of the phase 
drift introduced by the RF cable between the directional coupler and the FPC. The length of this cable 
and that of the cable connected to the transmitted power pickup antenna, both of which are inside the 
cryostat, should be selected to have a low temperature coefficient.  
 
The RF cables between the cavity and the SEL should be kept short considering shielding constraints, 
in order to reduce the effect of the Lorentz detuning on the phase change across the cables. In addition, 
ideally, they should have as few as possible breaks (e.g. for additional directional couplers for other 
purposes than the circuit of Figure 1). In addition, these runs of cables for the forward power reading 
from the directional coupler and the transmitted power antenna should be of approximately the same 
length and should be routed together to experience the same temperature profile. In addition, any devices 
inserted in these lines, such as power splitters or directional couplers should be paired with similar 
devices in the other line, placed in the same location. However, as said earlier, it is best to avoid any 
avoidable insertions, and the cables should be made of as few sections as possible, to avoid multiple 
reflections.  
 



6 
 

The circulator shown in Figure 1 is an important element to be placed after the amplifier and before the 
directional coupler. The amplifier port usually has a poor match and produces a reflection of power 
incident upon it. Thus, without a circulator, a signal reflected from the cavity can be reflected back from 
the amplifier and combine with the forward power from the amplifier with a phase that depends on the 
delay of the cables, leading to an erroneous measurement of the forward power by the directional 
coupler. Thus, the match of the circulator, in particular for the coupled port, has to be very good (see 
section 5.4.2.4 for details). 
 
A simple test can be carried out to check the quality of both directional coupler and isolator. Using a 
constant power from the amplifier, the loop-phase can be stepped by a significant amount (say 30 
degrees) symmetrically to either side of the optimal loop-phase, observing the forward power reading 
from the directional coupler. If this reading is different for the two loop-phase settings, then there is a 
non-negligible error due either to the isolation of the directional coupler or the reflection from the cavity-
side port of the circulator. 
 
Another port that is critical for the measurement is the reflected power port of the directional coupler. 
In the measurement scheme described in this document, an absolutely precise measurement of the 
attenuation of this cable is not important. An a-priori knowledge of the strength of the coupling 
(overcoupled or undercoupled) is also not necessary, since the method given here determines 
unambiguously the degree of coupling β. This is quite unlike the conventional method, which establishes 
the power going into the cavity by a subtraction of the carefully calibrated signals of the forward and 
reflected power from the directional coupler, a practice that more than doubles the measurement error 
ceteris paribus.   
 
A criterion for choosing the directional coupler coupling strength is to keep the RF signals at which 
measurements take place well above the digital noise in the FPGA board. This is important for both the 
transmitted power and the reflected power measurement, and to some extent also the forward power 
measurement. Thus the attenuation of the cables, including the coupling coefficients of the directional 
coupler should be chosen carefully to avoid small digital numbers from the ADCs at the low stored 
energy range of the measurement, in particular the calibration.  
 
At the same time, one should avoid digital words that are too large, say over 20,000, to allow for 
computational headroom in the FPGA. It is always better to add fixed precision attenuators if the signal 
level becomes too high; the use of RF amplifiers in the measured cavity signals is to be avoided due to 
phase drifts, noise and non-linear terms.  
 
Now we address the calibration of the absolute power related to the Pf and Pt read by the forward and 
transmitted ADC ports, respectively. Let us accept that the cable attenuations Af1, Af2 and At are given 
in dB. Thus, the absolute forward power as seen by the cavity Pf (bold face marking that this is the real 
power on the FPC port) is given in watts by: 
 

𝑷𝑷𝒇𝒇 =
𝑊𝑊𝑓𝑓

2

𝑁𝑁
100.1�𝐴𝐴𝑓𝑓1−𝐴𝐴𝑓𝑓2� 

 
Where Wf is the digital number read by the forward power ADC. Since the SEL board maintains both 
amplitude and phase or the I-Q values of each voltage, here we are considering Wf to be the amplitude 
(not the in-phase or in-quadrature values). 
 
The cavity sees a power smaller by At2 than that measured at the forward port of the directional coupler, 
thus Af2 has to be subtracted from Af1.  
Similarly, the real transmitted power at the pickup antenna is given by 
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𝑷𝑷𝒕𝒕 =
𝑊𝑊𝑡𝑡

2

𝑁𝑁
100.1𝐴𝐴𝑡𝑡 

 
Where Wt is the digital number read by the transmitted power ADC. 

 SEL operating sequences 
 

3.1 Introduction to operations 
 
The preparation to operations must start with the calibration of the peripherals as described in Section 
2.1 above. The measured attenuations (marked in Figure 1) are entered into the software database for 
use in calculations. 
 
In this document when we discuss a pulsed operation, it must be understood that we require a short 
pedestal pulse at a very low power level to precede the actual pulse turn-on. This is done in order to 
allow the SEL circuit to lock on the cavity at the right phase and allow a sharp leading edge of the actual 
pulse. The quantification of “short” and “very low power” are given in Section 5.4.3.1.  
 
Next we must assure that the SEL is operating at exactly the resonant frequency of the cavity, or 
equivalently, that the phase difference between the incident RF power and the transmitted RF power at 
the cavity is exactly zero. Since the length of cables and the phase shift introduced by amplifiers can 
drift with time and temperature change, it is critical to verify this condition for each measurement by 
doing a phase-scan. The phase-scan should avoid hitting a multipacting barrier or using ADC words 
which are too small for precision. We will designate this parameter as Ψ0. It will be used as a reference 
to correct phase drifts.    
 
The procedure for a phase-scan is to step the loop-phase of the SEL board at a constant forward power 
and maximize the transmitted power. There is no need to start the scan with a fine phase step since the 
peak is quite wide. Once the approximate location of the peak in the transmitted power is found, a 
narrow phase-range can be scanned with increased resolution to establish the exact setting of the loop-
phase. 
 
The seven quantities that we expect to get from the FPGA board for the cavity calibration and test 
sequences are as follows: 

1. The decay time τ of the stored energy of the cavity when no power is applied. This is essentially 
a measurement of the loaded Q (QL) of the cavity, or equivalently a measurement of the width of 
the resonance curve. The SEL board actually measures voltages, thus it is important to remember 
that the voltage decay time is twice as long as the power decay time. 
2. The forward power Pf as seen by the cavity. This is obtained from the measured forward power 
port of the directional coupler, with cable calibration factors as described in the previous section. 
This quantity is presented as both in-phase voltage and in-quadrature voltage (I-Q), thus it is a vector 
(I,Q) or an amplitude and a phase. 
3. The transmitted power from the cavity Pt, with cable calibration factors as described in the 
previous section. This is a voltage vector. 
4-6. The power levels (the SEL actually measures voltages) of the reflected power port, Pa, Pb and 
Pc, as depicted in Figure 2 and described in Appendix 1. These are also I-Q voltage vectors on the 
board. 
7. The frequency of the closed SEL loop. This last quantity is used in CW scans. 
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The following remarks are important. The measurement of the decay time is not trivial when the intrinsic 
Q of the cavity is a function of the stored energy, which is naturally what we aim to measure. On one 
hand, from the mathematical point of view, one tends to measure the decay over a good fraction of the 
expected decay time for a good accuracy, but then the decay curve deviates from an exponential function 
due to the change in Q. Thus, one should fit the exponential decay over the shortest time that still 
provides a precise value for the decay time. Each value of τ must be matched to the relevant value of 
the stored energy (or transmitted power). 
 
Given that the SEL board provides measurements of the decay of the stored energy at constant (very 
small) intervals ∆t, we obtain τ(t) from the transmitted power decay curve as 
 

𝜏𝜏(𝑡𝑡) =
−𝑃𝑃𝑡𝑡(𝑡𝑡)

𝑑𝑑𝑃𝑃𝑡𝑡(𝑡𝑡)
𝑑𝑑𝑑𝑑�

 

 
However, since the digital noise in the FPGA is constant, for a small ∆t the derivative of Pt would be 
catastrophically noisy, thus a polynomial fit of 𝑃𝑃𝑡𝑡(𝑡𝑡) must be done before this function is evaluated. 
Please note that the decay time is a function of the stored energy since the cavity losses are a function 
of the stored energy. The use of the time variable to fit the decay time is just a matter of convenience.   
 
We define a new variable, Ψ, to be the phase difference 𝜓𝜓𝑓𝑓 − 𝜓𝜓𝑡𝑡 measured by the FPGA between Pf 
and Pt relative to Ψ0: 
 

𝜓𝜓 ≡ 𝜓𝜓𝑓𝑓 − 𝜓𝜓𝑡𝑡 − 𝜓𝜓0 
Following the phase-scan, the value of this ψ should be recorded for frequent phase drift checks. When 
the SEL oscillates exactly at the cavity resonant frequency, Ψ should be 0, unless the RF transmission 
lines from the cavity to the SEL board changed their relative length. Since there are no amplifiers in 
these lines and the cables are of the same length, the same temperature coefficients and the same 
environment relative to temperature, we expect this to be a stable indicator. The only drift that is not 
corrected by this technique is that of the cable between the directional coupler and the FPC and between 
the transmitted power antenna and the top of the cryostat. If the directional coupler is placed on top of 
the cryostat, these are relatively short cables and should also be chosen to have a low temperature 
coefficient. 
 
Note that only ratios of Pa, Pb and Pc are used in the procedures described in this document, thus a precise 
cable calibration of the reflected power port of the directional coupler is not necessary.  
 

3.2 The cavity’s couplers calibration sequence 
 
The objective of a cavity calibration sequence is the measurement of the external coupling of the two 
ports, the external quality factor Qe of the Fundamental Power Coupler, and external quality factor Qt 
of the pickup antenna.  
 
Ultimately, the objective of measuring a cavity is to determine it stored energy U and intrinsic quality 
factor Q0 at various values of U. Given that the connection from the exterior of the cavity to its interior 
is conducted through coupling ports, then it is clear why it is necessary to determine the properties of 
these ports.  
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The power level for the calibration should be chosen carefully (see further down). The τ fit error 
(measuring its deviation from a perfect exponential decay) at and just under the start of the decay of 
stored energy (just as the forward power is turned off) is a good indicator for the quality of the fit. The 
loop-phase must be optimized before a calibration. 
 
Decay time measurements are inherently very precise. The procedure is to follow the decay of the 
transmitted power from the moment the forward power has been switched off over about one exponential 
decay and calculate a best fit of the measured points to an exponential decay. The best-fit procedure 
provides an error, which is typically about 10-5, that is much more precise than anything else in the 
measurement.  
 
The best-fit quality may become bad if the decay measurement is extended over a stored energy range 
in which there is a significant change in the quality factor of the cavity. Such a change can occur due to 
a large Q-slope, onset of multipacting or field emission. Thus, one should follow the measurement of 
τ(t) and best fit procedure outlined above. 
 
We use the following common definitions: 
 

𝛽𝛽 ≡
𝑄𝑄0
𝑄𝑄𝑒𝑒

 

 
where Q0 is the quality factor of the bare cavity and Qe is the external Q of the FPC and 
 

𝛽𝛽𝑡𝑡 ≡
𝑄𝑄0
𝑄𝑄𝑡𝑡

 

 
where Qt is the external quality factor of the transmitted power antenna. 
 
As a reminder, in the following we use as inputs six of the values measured by the FPGA board as 
described above in Section 3.1: τ, Pf, Pt, Pa, Pb and Pc. The seventh quantity, the frequency of the SEL, 
is not used in the calibration. The bold face serves as a reminder that those quantities have been corrected 
for cable and device attenuation, and they are also vectors (amplitude and phase). We aim to extract Qe 
and Qt, the products of the calibration. 
 
In the following we are not assuming that the transmitted antenna coupler can be neglected in the 
extraction of the FPC coupling from the measurements. 
 
Before a calibration, a phase-scan must be done and Ψ (defined above in Section 3.1) is verified to be 
zero. 
 
Therefore, the calibration procedure is as follows: 
 

1. Send a pulse (preceded by a pedestal) of sufficient length, at least 10 decay times). 
2. Measure Pf, Pt, Pa, Pb and Pc. Verify that Ψ=0. 
3. Obtain τ from a best fit of the decay e-t/τ of the transmitted power. As described above, τ is a 

function of the stored energy in the cavity and thus we choose the value of τ at the stored energy 
representing the calibration point. Publish τ and the error. Set alarm to discard this result if the 
error exceeds a set level.  The decay time is a measure of the loaded Q of the cavity, QL: 

𝑄𝑄𝐿𝐿 = 𝜔𝜔𝜔𝜔 
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4. Calculate β as  

𝛽𝛽 =
𝑃𝑃𝑐𝑐

𝑃𝑃𝑎𝑎(1− 𝜖𝜖) − 𝑃𝑃𝑏𝑏
 

where  
𝜖𝜖 ≡ �𝑷𝑷𝒕𝒕 𝑷𝑷𝒇𝒇� � 

 
 

5. Calculate βt as  

β𝑡𝑡 =  𝛽𝛽𝛽𝛽
𝑃𝑃𝑎𝑎
𝑃𝑃𝑐𝑐

  

 
(See Section 5.2 as well as Figure 2 for the definition of these variables and derivations of 
expressions). Often the term Pt/Pf can be neglected when Qt is orders of magnitude larger than 
Qe, but we do not neglect it in this work.  

 
Also obtain statistical errors on Pa, Pb and Pc for error calculations.   

 
6. Obtain Qe, the external Q for the FPC, from  

 

𝑄𝑄𝑒𝑒 =
1 + 𝛽𝛽 + 𝛽𝛽𝑡𝑡

𝛽𝛽
𝜔𝜔𝜔𝜔 

 
Save this Qe value for use in scans, this is one of the two main calibration results, used in scans to 
calculate Q0. This Qe is a geometrical quantity fixed for this probe, which changes only of this 
coupler is replaced or perturbed. 
 
7. Obtain Qt from  

 
 

𝑄𝑄𝑡𝑡 =
1 + 𝛽𝛽 + 𝛽𝛽𝑡𝑡

𝛽𝛽𝑡𝑡
𝜔𝜔𝜔𝜔 

 
8. Obtain α defined as  

𝛼𝛼 = �
𝑷𝑷𝒇𝒇

𝑃𝑃𝑎𝑎
� � 
 

This constant will be used in a CW scan sequence. 
 

Note that to get the external quality factor of the pickup antenna, which is a geometrical quantity for 
this coupler, is the second of the two objectives of the calibration process. Qt is often replaced by a 
different constant, K = Qt/ω. K is used to obtain the stored energy in scans through U = KPt, and hence 
to get the voltage or gradient of the cavity for Q0 vs. voltage / gradient plots.    

 
Apart from the calibration, we also get the stored energy U and Q0 from 
 

 𝑄𝑄0 = (1 + 𝛽𝛽 + 𝛽𝛽𝑡𝑡)𝑄𝑄𝐿𝐿  ;  𝑈𝑈 = 𝐾𝐾𝑷𝑷𝒕𝒕 
 

These values and the errors in τ, Qe and Qt should be published as part of the calibration to record the 
conditions at the point of the calibration. However, plots of U and Q0 are obtained in scans, which use 
the results of the calibration. The stored energy is related to the voltage or gradient of the cavity through 
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U = κV2, where the coefficient κ is obtained by an electromagnetic solver program (e.g. Superfish, 
Microwave Studio etc.). 
 
We also get P0 (power absorbed by cavity) from  
 

𝑃𝑃0 = 𝑷𝑷𝒇𝒇
𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏
𝑃𝑃𝑎𝑎

− 𝑷𝑷𝒕𝒕 = 𝑷𝑷𝒇𝒇 − 𝛼𝛼𝑃𝑃𝑏𝑏 − 𝑷𝑷𝒕𝒕 

 
Repeating the above-mentioned notes of caution: For a good cavity calibration, the loop phase must be 
set correctly by maximizing the Pt and / or minimizing Pr as a function of loop phase before the 
calibration is done, and the measurement of τ must be made in a clean exponential decay of the stored 
energy otherwise the results will be in error. 
 
Note also that the method used here (item 1) of determining β does not require an a-priori knowledge if 
the port is undercoupled or overcoupled, and it does not require a precise calibration of the reflected 
power circuit, since in all cases we use just ratios of two quantities measured at this port. Therefore, this 
technique is quite precise and less prone to calibration errors. This concludes the calibration sequence.  
 
Variable Coupler: As an aside, we would like to mention the advantages gained if a variable coupler 
is available for the test of the cavity. With a variable FPC, the calibration sequence is greatly simplified 
as well as the errors are reduced: 
 

1. Send a pulse (preceded by a pedestal) of sufficient length, at least 10 decay times). 
2. Measure Pf, Pt, Pa, Pb and Pc. Verify that Ψ=0. 
3. Adjust the coupler to null the reflected power Pb, thus Pc=Pa and 

𝛽𝛽 =
1

1 − 𝜖𝜖
 

where we defined 𝜖𝜖=Pt/Pf to stress that usually it is a small quantity. 
4. Obtain τ from a best fit of the decay e-t/τ of the transmitted power (described earlier) at the stored 

energy corresponding to the filled cavity at the given forward power.  
 

𝑄𝑄𝐿𝐿 = 𝜔𝜔𝜔𝜔 
 

5. Obtain βt from  

𝛽𝛽𝑡𝑡 =  
𝜖𝜖

1 − 𝜖𝜖
 

 
 

6. Obtain Qe, the external Q for the FPC, from  
 

𝑄𝑄𝑒𝑒 = 2𝜔𝜔𝜔𝜔 
 

7. Obtain Qt from  
 

𝑄𝑄𝑡𝑡 =
2𝜔𝜔𝜔𝜔
𝜖𝜖
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3.3 The pulsed scan sequence 
 
Once the calibration is done, one may proceed to measure the Q vs. stored energy (meaning either the 
voltage or field) curve of the cavity. This process is referred to as a scan; the quality factor is measured 
as the stored energy (i.e. field or voltage) of the cavity is scanned over a given range. This process may 
be carried out in a pulsed scan, as described in this section, or in a CW scan, as described in the following 
Section 3.4. The main advantage of a pulsed scan is the ability to reduce the average power in the cavity, 
due to the less than unity duty factor. The main disadvantage is that the cavity has to be filled and then 
emptied of stored energy, which is somewhat time consuming.  
 
During a pulsed scan, at any one of a set of forward power levels, the following steps are taken: 
 

1. Send a pulse (preceded by a pedestal) of sufficient length, at least 10 decay times). 
2. Measure Pf, Pt, Pa, Pb and Pc. Verify that Ψ=0. 
3. Obtain measured values of τ and Pt (τ is obtained from the fitting as above, set alarm if error of 

fit exceeds limit) 
Note that τ is a function of voltage, so one should obtain the fitted value of τ over a short time 
interval near the voltage of the steady state. 

 
4. Calculate U = KPt where Pt is measured, and K is in the results of the calibration, then derive 

the voltage (or gradient) from 𝑉𝑉 = �𝑈𝑈
𝜅𝜅
    

 
5. Calculate 

 

𝑄𝑄0 =
1

1
𝜔𝜔𝜔𝜔 −

1
𝑄𝑄𝑒𝑒

− 1
𝑄𝑄𝑡𝑡

 

 
where Qe and Qt are results of the calibration and τ is measured. 
 

6. Check that Ψ=0, else change the loop-phase to null Ψ. 
 

 
The main product of the scan is a plot Q0 vs. V 
 
It is also interesting to get the power absorbed by the cavity, 
 

𝑃𝑃0 = 𝑷𝑷𝒇𝒇
𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏
𝑃𝑃𝑎𝑎

− 𝑷𝑷𝒕𝒕 = 𝑷𝑷𝒇𝒇 − 𝛼𝛼𝑃𝑃𝑏𝑏 − 𝑷𝑷𝒕𝒕 

3.4 The CW scan sequence 
 
The main advantage of this scan method is its ability to optimize the loop-phase continuously throughout 
the measurement, contributing to precision of the measurement and immunity to slow phase drifts of 
the system. Another advantage is that is can be done faster, since one avoids the pulse off periods as 
well as the need to refill the full energy content of the cavity.  
 
The scan is carried out over a range of forward power values. The power is stepped to a new value 
without turning off the SEL, and then that value is maintained for the duration required to establish the 
transmitted power and the loaded Q. At each point of the scan (defined by the forward power), we 
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perform a square-wave modulation of the loop phase φ, such that φ = ±φ0. Note that the unit for the 
phase is radians, not degrees. The alternation of the phase must be done once in 9τ or longer, to allow 
the cavity loop to settle and get a precise measurement. 
Measure the following:  

1. Pt, which provides U through K obtained in the calibration. 
2. QL, which provides Q0 as described in the pulsed scan sequence, Section 3.3. 

 
To measure QL, measure the frequency deviation δf corresponding to the loop phase modulation φ. Then, 
using the expressions from Appendix 2, the frequency will be modulated with an amplitude of δf = 
fφ0/2QL. Thus, we derive  
 

𝑄𝑄𝐿𝐿 =
𝑓𝑓𝜑𝜑0
2𝛿𝛿𝑓𝑓

 

 
The data from the SEL is δf, and since f is known and φ0 is set by us, we know QL. 
 
So the sequence is as follows: Arrive at a new power level. Wait sufficiently for the stored energy and 
frequency to settle. Record the stored energy and frequency. Now start modulating the phase. Step the 
loop-phase to – φ0. Wait for f to settle. Record f, switch phase to φ0. Repeat if necessary to take advantage 
of averaging.  
 
Calculate QL as described above; now check the phase setting as described below. 
 
To check the exact zero phase of the loop, normally we measure Ψ.  
 
However, the asymmetry of the amplitude of the transmitted voltage under phase modulation 𝜑𝜑 is also 
a measure of Ψ. We get the offset Ψ also through: 
 

𝜓𝜓 = −
1

2𝜑𝜑
𝑉𝑉𝑡𝑡+ − 𝑉𝑉𝑡𝑡−

𝑉𝑉𝑡𝑡+ + 𝑉𝑉𝑡𝑡−
 

 
 
Here 𝑉𝑉𝑡𝑡+ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑡𝑡− correspond to the amplitude of the transmitted voltage corresponding to a step ±𝜑𝜑0. 
 
To reduce the noise, the modulation is carried out M times (for both positive and negative values of Φ), 
and the results are averaged out to reduce the noise. 
 
The intrinsic quality factor Q0 and the stored energy are then obtained through 

𝑄𝑄0 =
1

1
𝑄𝑄𝐿𝐿

− 1
𝑄𝑄𝑒𝑒

− 1
𝑄𝑄𝑡𝑡

 

 and  
 

𝑈𝑈 = 𝐾𝐾𝑷𝑷𝒕𝒕 
 
Usually the desired quantity to plot is the voltage (or gradient) of the cavity, given by V = (U/κ)0.5. 
 
The power absorbed by the cavity is simply P0=UQ0/ω 
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3.5 Quick loop-phase correction 
 
Once the coarse phase-scan of the cavity has been established and the loop-phase has been set to its 
optimum value (maximize U as a function of loop-phase), the phase deviations are expected to be small, 
and we keep track of drifts by monitoring Ψ. However, we can check on how good Ψ is using the 
following method for quick loop-phase correction, to undo phase drifts in Ψ. The procedure described 
above in Section 3.4 for correcting the phase can be applied, even in a pulsed-scan or just for verification: 

𝜓𝜓 = −
1

2𝜑𝜑
𝑉𝑉𝑡𝑡+ − 𝑉𝑉𝑡𝑡−

𝑉𝑉𝑡𝑡+ + 𝑉𝑉𝑡𝑡−
 

 

 Fast alternate scan sequences 
 
At various points we stressed the need to wait a sufficient time for the cavity’s stored energy to stabilize 
(in amplitude and frequency, either full or empty). In Section 5.4.3.1 we analyzed the errors introduced 
into the various measured quantities the finite fill (or empty) times. To reduce these errors, it is necessary 
to wait long periods of time in the pulse-on or pulse-off situations. This is certainly the case for a 
calibration sequence. A scan takes many measurement points.  However, with very good quality factors 
these waiting times can be on the order of many seconds for each point in the scan. Here we propose a 
method that can reduce these waiting times by making proper corrections. We will do so by noting that 
the fill errors (Section 5.4.3.1) are predictable, and thus correctable. 

4.1 Fast pulsed scan sequence 
 
We proceed through a set of forward power levels, exactly as described in Section 3.3 above. The pulse 
“on” time and “off” time can be of the order of a decay time τ, thus the cavity will not fill to the saturation 
value corresponding to the applied forward power, thus the value of Pt is taken just at the end of the 
power-on period, and the stored energy at that point is still given by  
 

𝑈𝑈 = 𝐾𝐾𝑷𝑷𝒕𝒕 
 
The decay time is measured as described in Section 3.3, and thus yields the Q0 in the same way. 
 
Therefore, the pulsed scan can be done relatively fast, with each stored energy point taking time about 
the order of 2τ. There is no need to wait for draining all the energy of the cavity and the forward power 
can be set to a high value to speed up the charging curve. The procedure then stops the forward power 
just as the transmitted power reaches the desired value. 
 

4.1.1 Single-pulse Q vs. V scan. 
 
An even faster scan can be made in a single pulse.  
 
Fast scan measurement methods can yield Q vs. V curves that show hysteresis if there are significant 
surface heating effects at particular defects. Since the heating (or cooling) of such a “bad spot” may be 
slower than the scan speed, the Q vs. V may depend on the speed of the scan. This effect would be more 
pronounced at higher voltages. 
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Since the voltage build-up and decay curves contain information about the decay rate continuously at 
any point, the decay rate can be extracted as a function of stored energy, obtaining the full Q vs. V curve 
in a single pulse. The resolution in V depends on the data quality, determining how short a segment is 
sufficient to extract the local decay time with sufficient precision. 
 
Scan on voltage build-up using the transmitted power 
 
We have seen that on resonance, the on-resonance stored energy varies along the power pulse like 
 

𝑈𝑈 =
4𝛽𝛽𝑷𝑷𝒇𝒇𝜏𝜏
1 + 𝛽𝛽 �1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ �

2 =
4𝑷𝑷𝒇𝒇𝜔𝜔
𝑄𝑄𝑒𝑒

𝜏𝜏2�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ �
2 

 
or the voltage follows 

𝑉𝑉 = �
𝑷𝑷𝒇𝒇𝜔𝜔
𝑄𝑄𝑒𝑒

𝜏𝜏�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ � 

 
Therefore, one can fit the function �1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ � to small segments of the transmitted voltage vs. time 
curve during cavity voltage buildup and obtain the local value of τ. Since τ provides the value of QL, 
and QL leads to Q0, then this procedure leads to a Q0 vs. V curve in a single pulse during the voltage 
build-up phase. 
 
Scan on voltage build-up using the reflected power 
 
The reflected voltage follows the functional dependence of the reflection coefficient, given in Section 
5.1 Eq. 5.7b: 
 

Γ ≡
𝑉𝑉𝑟𝑟
𝑉𝑉𝑓𝑓

=
𝐼𝐼𝑟𝑟
𝐼𝐼𝑓𝑓

= 1 −
2𝛽𝛽

1 + 𝛽𝛽
1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄

1 + 𝑗𝑗𝑗𝑗
 

 
Which can be rewritten as: 

Γ = 1 −
2𝜔𝜔𝜔𝜔
𝑄𝑄𝑒𝑒

�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ � 

 
 
Thus, we can also fit the time constant 𝜏𝜏 by measuring Γ (or the reflected voltage) on resonance as a 
function of time during the buildup of voltage in the resonator. 
 
Note that τ is a function of voltage, so one should obtain the fitted value of τ over a short time interval. 
 
Scan on voltage decay 
 
The time constant of the cavity as a function of cavity voltage can also be measured during the free 
decay by fitting 𝜏𝜏 to the curve of the amplitude of the transmitted power as a function of time. 
 

𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑡𝑡0𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄  
 
Note that τ is a function of voltage, so one should obtain the fitted value of τ over a short time interval. 
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4.2 Fast CW scan sequence 
 
Reflected power based fast CW scan 
 
A fast CW scan can be made if the reflected power can be precisely calibrated relative to the forward 
power. Then the power absorbed by the cavity can be established by subtracting the calibrated reflected 
power and transmitted power from the forward power. Since the stored energy is known from the 
measurement of the transmitted power, then Q0 can be established through 
 

𝑄𝑄0 =
𝑈𝑈𝑈𝑈
𝑃𝑃0

 

  
Here we use the constant α established in the calibration sequence: 
 

𝑃𝑃0 = 𝑷𝑷𝒇𝒇 − 𝛼𝛼𝑃𝑃𝑏𝑏 − 𝑷𝑷𝒕𝒕 
 

The stored energy is obtained as usual through 
 

𝑈𝑈 = 𝐾𝐾𝑷𝑷𝒕𝒕 
 
 
Frequency based fast scan 
 
There is a faster alternate sequence for the frequency-based CW scan. In this sequence, we assume that 
the frequency measured by the SEL FPGA is accurate enough to avoid averaging. The calculation of 
the stored energy from Pt is unchanged. However, when we step the loop-phase by φ, the stored energy 
at the given frequency starts decaying with the decay time τ, and the new frequency, corresponding to 
the new value of the phase shift starts building up with the same time constant. The energy of the two 
modes will be equal after an interval Δt=τln2=0.693τ, thus the frequency shift will assume half of the 
final value, as described in Section 5.2:  
 
Track the frequency output ω(t) from the SEL as a function of time t from the application of the phase 
jump φ. At some point t1 in time the following equation will be satisfied by the measured frequency: 
 

𝜑𝜑𝜑𝜑𝜑𝜑2
4(𝜔𝜔(𝑡𝑡1)−𝜔𝜔0) = 𝑡𝑡1 

 
At this point we have established a self-consistent value for τ and thus for QL: 
 

𝜏𝜏 =
𝑡𝑡1
𝑙𝑙𝑙𝑙2

 
 

𝑄𝑄𝐿𝐿 = 𝜔𝜔𝜔𝜔 =
𝜔𝜔𝑡𝑡1
𝑙𝑙𝑙𝑙2

 
  



17 
 

 Appendix 
 

5.1 The derivation of the basic equations 
 
It is useful to derive the basic equations of a resonator that are used in this document. 
 
Consider an equivalent circuit of a cavity coupled to a transmission line with impedance Z0. The 
resistance R, inductance L and capacitance C are connected in series to the terminals of the transmission 
line through a matching transformer with a turn ration of n:1. At the resonator side of the transformer 
the currents are n times lower, and the transmission line impedance appears as n2 times higher. Thus at 
the circuit the transmission line contributes a series resistance 𝑍𝑍 = 𝑛𝑛2𝑍𝑍0 to the resonator’s intrinsic 
resistance R 
 
First let us solve the time dependent evolution of the current I through the series circuit, driven by a 
current V. For the basic RF time dependence, we use a sinusoidal time dependence of the current and 
voltages of the form 
 

𝑢𝑢(𝑡𝑡) = 𝑢𝑢0𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 
 
The total voltage across the resonator is the sum of the voltages across the components: 
 
Eq. 5.1    𝑉𝑉 = 𝐼𝐼𝐼𝐼 + 𝐿𝐿𝐼𝐼̇+ 1

𝐶𝐶 ∫ 𝐼𝐼𝐼𝐼𝐼𝐼 
 
In the limit of Z=0, the resistance R represents the intrinsic resistive loss in the resonator. 
 
Differentiation with respect to time is represented by a dot.  
 
Now let us add to the circuit the transmission line that couples current into the resonator.  
 
There are two waves in the transmission line, a forward wave traveling towards the resonator and a 
reflected wave. We will designate the forward and reflected currents and voltages by a subscript f and 
r, whereas the resonator current and voltage have no subscript. 
 
Thus, we have the following equations, for the current and voltage at the junction of the transmission 
line and the resonator: 
 
Eq. 5.2    𝐼𝐼𝑓𝑓 − 𝐼𝐼𝑟𝑟 = 𝐼𝐼 
 
Eq. 5.3    𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑟𝑟 = 𝑉𝑉 = 𝑍𝑍�𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑟𝑟� 
 
We got 3 equations with three unknowns – I, V and Ir. 𝐼𝐼𝑓𝑓 is a given constant, related to the forward 
power. 
 
Let us introduce a few definitions: 
 

𝜔𝜔0 ≡ � 1
𝐿𝐿𝐿𝐿

 ;  𝜏𝜏 ≡ 𝐿𝐿
𝑅𝑅+𝑍𝑍

;   𝑄𝑄0 ≡
𝐿𝐿𝐿𝐿0
𝑅𝑅

;   𝑄𝑄𝑒𝑒 ≡
𝐿𝐿𝐿𝐿0
𝑍𝑍

;   𝛽𝛽 ≡ 𝑍𝑍
𝑅𝑅

= 𝑍𝑍0
𝑅𝑅𝑛𝑛2

;   𝑄𝑄𝐿𝐿 ≡
𝑄𝑄0

(1+𝛽𝛽) = 𝜔𝜔0𝜏𝜏 
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We can eliminate the voltage from the differential equation Eq. 5.1 by using the transmission line 
equations Eq. 5.2 and Eq. 5.3 
 

𝑉𝑉 = 𝑍𝑍�2𝐼𝐼𝑓𝑓 − 𝐼𝐼� 
 
Substituting V into Eq. 5.1, we get 
 

2𝑍𝑍𝐼𝐼𝑓𝑓 = 𝐼𝐼(𝑅𝑅 + 𝑍𝑍) + 𝐿𝐿𝐼𝐼̇+
1
𝐶𝐶
�𝐼𝐼𝐼𝐼𝐼𝐼 

 
We differentiate both sides of this equation and divide by L to get (with the above definitions) 
 
 

−𝑗𝑗2𝑍𝑍𝐼𝐼𝑓𝑓
𝜔𝜔
𝐿𝐿

= 𝐼𝐼̈+ 𝐼𝐼̇
𝑅𝑅 + 𝑍𝑍
𝐿𝐿

+
𝐼𝐼
𝐿𝐿𝐿𝐿

 
 
Using the definitions, we have 
 

−𝑗𝑗2𝑍𝑍𝐼𝐼𝑓𝑓
𝜔𝜔
𝐿𝐿

= 𝐼𝐼̈+
𝐼𝐼𝜔̇𝜔
𝑄𝑄𝐿𝐿

+ 𝜔𝜔0
2𝐼𝐼 

 
Following the differentiation of the current on the right hand side: 
 

−𝑗𝑗2𝑍𝑍𝐼𝐼𝑓𝑓
𝜔𝜔
𝐿𝐿

= 𝐼𝐼 �−𝜔𝜔2 −
𝑗𝑗𝜔𝜔2

𝑄𝑄𝐿𝐿
+𝜔𝜔0

2� 

 
Let us define:   ∆≡ 1 − 𝜔𝜔2

𝜔𝜔0
2 ≈ 2𝜔𝜔0−𝜔𝜔

𝜔𝜔0
;      𝛿𝛿 ≡ 𝑄𝑄𝐿𝐿∆ 

 
Now we got the solution of the inhomogeneous equation (Eq. 5.1):  
 
Eq. 5.4     𝐼𝐼 = 2𝛽𝛽

1+𝛽𝛽
𝐼𝐼𝑓𝑓

1+𝑗𝑗𝑗𝑗
 

 
 
 
 
 
Eq. 5.4, with the implicit time dependence of 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗, is the steady state solution for a given forward 
current. 
 
For the complete solution of the set of equations Eq. 5.1, Eq. 5.2 Eq. 5.3 we should add a solution of the 
homogeneous equation 
 

𝐼𝐼̈+
𝐼𝐼𝜔̇𝜔0

𝑄𝑄𝐿𝐿
+ 𝜔𝜔0

2𝐼𝐼 = 0 

 

It can readily be seen that this equation is satisfied at a frequency 𝜔𝜔 = �𝜔𝜔02 −
1

(2𝜏𝜏)2 by 

 
𝐼𝐼 = 𝐼𝐼ℎ𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗−𝑡𝑡 2𝜏𝜏⁄  
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where 𝐼𝐼ℎ is a constant, set by the initial conditions. (A constant current of zero also satisfies it.) This 
solution describes an unforced time evolution of the resonator voltage, which decays at an exponential 
rate of 2𝜏𝜏. This corresponds to a stored energy decay time of 𝜏𝜏.  
 
Now we combine the homogeneous and inhomogeneous solutions to match the turn-on, steady state and 
decay of the voltage on the resonator. We choose the following two solutions to represent first the 
buildup of the voltage from zero to a steady state and second to represent the decay of the voltage from 
the driven steady state following the turning off the drive: 
 
Eq. 5.5a    𝐼𝐼 = 𝐼𝐼𝑖𝑖�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ � 
 
Eq. 5.5b    𝐼𝐼 = 𝐼𝐼𝑖𝑖𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄  
 
Here Ii is taken from Eq. 5.4. By using the same function Ii for both solutions, we insure a match between 
the steady state solution of the inhomogeneous equation and the initial value for the power turn-off 
phase of the homogeneous equation.  
 
We have interest in two cases: First, the transient when the resonator starts from zero voltage and the 
buildup of voltage towards the steady state, and in particular the reflected power at the instant of turn-
on and at the steady state in terms of the forward power. The second case of interest is the decay of the 
voltage when the driving forward current is turned off, and in particular the reflected power at the instant 
of the turn-off. 
 
For the buildup of the resonator current to steady state we use Eq. 5.5a: 
 

Eq. 5.6    𝐼𝐼 = 2𝛽𝛽𝐼𝐼𝑓𝑓
1+𝛽𝛽

1−𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄

1+𝑗𝑗𝑗𝑗
 

 
It must be remembered that these currents are measured on the resonator side of the transformer. At the 
power source side the currents are reduced by a factor of n. 
 
The decay of the stored energy of the resonator (the solution of the homogeneous equation) is 
straightforward; we square the time dependence of the current of the homogeneous solution: 
 

𝑈𝑈 = 𝑈𝑈0𝑒𝑒−𝑡𝑡 𝜏𝜏⁄  
 
 
Next we would like to get the reflected current when the forward current is turned on. We substitute Eq. 
5.6 into Eq. 5.2, and get 
 

𝐼𝐼𝑓𝑓 − 𝐼𝐼𝑟𝑟 =
2𝛽𝛽𝐼𝐼𝑓𝑓
1 + 𝛽𝛽

1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄

1 + 𝑗𝑗𝛿𝛿
 

 
Collecting terms we obtain the solution for the reflected current 
 

Eq. 5.7    𝐼𝐼𝑟𝑟 = 𝐼𝐼𝑓𝑓 �1 −
2𝛽𝛽
1+𝛽𝛽

1−𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄

1+𝑗𝑗𝑗𝑗
� 
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Equation Eq. 5.7 has some important specific limits. At t=0 (forward pulse just turned on), the full 
forward current is reflected (regardless of the frequency). At steady-state, 𝑡𝑡 = ∞, and on resonance, 𝛿𝛿 =
0, we get 
 
Eq. 5.7a   𝐼𝐼𝑟𝑟 = 𝐼𝐼𝑓𝑓

1−𝛽𝛽
1+𝛽𝛽

 
 
The reflection coefficient is another important consequence of Eq. 5.7. It is defined as the ratio of the 
reflected voltage to the forward voltage.  
 
 

Eq. 5.7b   Γ ≡ 𝑉𝑉𝑟𝑟
𝑉𝑉𝑓𝑓

= 𝐼𝐼𝑟𝑟
𝐼𝐼𝑓𝑓

= 1 − 2𝛽𝛽
1+𝛽𝛽

1−𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄

1+𝑗𝑗𝑗𝑗
 

 
 
The reflected power on resonance ( 𝛿𝛿 = 0) is given in terms of the forward power: 
 

Eq. 5.7c   𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑓𝑓 �1 − 2𝛽𝛽
1+𝛽𝛽

�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ ��
2

  

 
The steady-state (𝑡𝑡 = ∞) reflected power is given by: 
 

Eq. 5.7d   𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑓𝑓 �
1−𝛽𝛽
1+𝛽𝛽

�
2
 

 
 
 
The resonator voltage can be expressed in terms of the forward current: 
 

Eq. 5.8    𝑉𝑉 = 2𝑍𝑍𝑍𝑍𝑓𝑓 �1 −
𝛽𝛽

1+𝛽𝛽
1−𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄

1+𝑗𝑗𝑗𝑗
� 

 
We can get the resonator’s stored energy from the current in the inductor: 
 
Eq. 5.9    𝑈𝑈 = 𝐿𝐿𝐿𝐿𝐼𝐼∗ = 4𝛽𝛽𝑃𝑃𝑓𝑓𝜏𝜏

1+𝛽𝛽
1

1+𝛿𝛿2
�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ �

2
 

 
It is zero at t=0, and at the steady state (t=∞) we get 
 
Eq. 5.9a   𝑈𝑈 = 4𝛽𝛽𝑃𝑃𝑓𝑓𝜏𝜏

1+𝛽𝛽
1

1+𝛿𝛿2
 

 
The power turn-off is also interesting; we would like to know the value of the reflected current (power) 
on resonance and at the instant the forward power is turned off, which is when the pulse reached steady-
state: 
 

𝐼𝐼 = 𝐼𝐼𝑓𝑓0
2𝛽𝛽

1 + 𝛽𝛽
 

 
Now we switch of the forward power, 𝐼𝐼𝑓𝑓=0, at this instant we get 𝐼𝐼𝑟𝑟 = 𝐼𝐼, the reverse current is just the 
resonator’s steady-state current. 
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Thus we obtain 
 
Eq. 5.10   𝐼𝐼𝑟𝑟 = 𝐼𝐼𝑓𝑓0

2𝛽𝛽
1+𝛽𝛽

 
 
The power sent by the resonator into the transmission line, on resonance and just as the forward power 
was turned off is then: 
 
Eq. 5.10a   𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑓𝑓0

4𝛽𝛽2

(𝛽𝛽+1)2 
 
 
 
 

5.2 The determination of β through the reflected power port  
 
The reflected power as a function of time, following a sudden switch-on of the forward power, is shown 
in Figure 2. Here we use the following expressions developed above in Section 5.1. In particular we 
want to measure the reflected power (obtained by squaring the reflected voltage) at the three sampling 
points, ‘a’, ‘b’ and ‘c’, where ‘a’ is just at the forward power turn-on (showing full reflection from the 
empty cavity), ‘b’ is just before the end of the forward power pulse (where saturation of the reflected 
power is achieved), and ‘c’ is just as the forward power was turned off (measuring the power transmitted 
back from the cavity through the FPC). 
 
Thus, at time t = 0, we obtain from Eq. 5.7c that 
 

𝑃𝑃𝑎𝑎 = 𝑃𝑃𝑓𝑓 
Then, Eq. 5.7d tells us that 

𝑃𝑃𝑏𝑏 = 𝑃𝑃𝑓𝑓 �
1 − 𝛽𝛽
1 + 𝛽𝛽

�
2

 

 
Finally, we learn from Eq. 5.2 that when the forward current is turned off, the reflected current equals 
the steady-state resonator current, which we take from Eq. 5.4. Then we square the currents to obtain 
the power, and thus we establish: 
 

𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑓𝑓
4𝛽𝛽2

(1 + 𝛽𝛽)2 

 
Therefore, it follows from the definitions by simple algebra that: 
 

𝛽𝛽 =
𝑃𝑃𝑐𝑐

𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏
 

 
This is correct as long as we can neglect the coupling of the transmitted power antenna. Recognizing 
that Pa-Pb represents the power sent to both the cavity losses and the transmitted power, we can write  
 

𝛽𝛽 ≡
𝑄𝑄0
𝑄𝑄𝑒𝑒

=
𝑷𝑷𝒆𝒆

𝑷𝑷𝒇𝒇 − 𝑷𝑷𝒓𝒓 − 𝑷𝑷𝒕𝒕
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where we continue with the convention that bold faced variables represent the correct absolute power 
levels. Since we want to do away with absolute power measurements with the exception of the forward 
and transmitted power, we substitute the emitted power from the FPC, Pe and the reflected power Pr by 
 

𝑷𝑷𝒆𝒆 = 𝑷𝑷𝒇𝒇
𝑃𝑃𝑐𝑐
𝑃𝑃𝑎𝑎

 

and  

𝑷𝑷𝒓𝒓 = 𝑷𝑷𝒇𝒇
𝑃𝑃𝑏𝑏
𝑃𝑃𝑎𝑎

 

 
and then we get for β the desired expression in terms of the measured variables that uses just ratios of 
quantities measured in the reflected power port and the two absolute power measurements, the forward 
and transmitted power, making this a robust measurement: 
 

𝛽𝛽 =
𝑃𝑃𝑐𝑐

𝑃𝑃𝑎𝑎(1− 𝜖𝜖) − 𝑃𝑃𝑏𝑏
 

 
where 

𝜖𝜖 ≡ �𝑷𝑷𝒕𝒕 𝑷𝑷𝒇𝒇� � 

 
and we can reduce βt in exactly the same manner to 
 

𝛽𝛽𝑡𝑡 ≡
𝑄𝑄0
𝑄𝑄𝑡𝑡

=
𝑷𝑷𝑡𝑡

𝑷𝑷𝒇𝒇 − 𝑷𝑷𝒓𝒓 − 𝑷𝑷𝒕𝒕
 

 
which yields the desired expression of βt in terms of the measured variables: 
 

𝛽𝛽𝑡𝑡 = 𝜖𝜖
𝑃𝑃𝑎𝑎

𝑃𝑃𝑎𝑎(1− 𝜖𝜖) − 𝑃𝑃𝑏𝑏
= 𝛽𝛽𝛽𝛽

𝑃𝑃𝑎𝑎
𝑃𝑃𝑐𝑐
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Figure 2. The reflected power as a function of time (in units of the decay time τ) for Pf = 10 and β = 3. 

The forward power is turned on at t/τ = 0 and off at t/τ = 12. The red squares designate the three 
sampling points, ‘a’, ‘b’ and ‘c’, (from left to right) where ‘a’ is just at the forward power turn-on 

(showing full reflection from the empty cavity), ‘b’ is just before the end of the forward power pulse 
(where saturation of the reflected power is achieved), and ‘c’ is just as the forward power was turned 

off (measuring the power transmitted back from the FPC). 
 

 

5.3 Methods used in the CW scan. 
 
In the CW scan, our objective is to obtain the loaded Q of the cavity without having access to the decay 
time. We also would like to monitor the correct setting of the loop-phase, to avoid errors introduced by 
a phase drift. We can do this by considering the detuning the loop phase shift by a small amount and 
observing the corresponding changes of the cavity’s frequency and amplitude. 
 
The observable we use is the transmitted voltage 𝑉𝑉𝑡𝑡 from the pickup antenna, which includes information 
about the cavity’s amplitude and phase. This voltage is just proportional to the resonator’s current, which 
we have from Eq. 5.6. We are interested just in the relative dependence on frequency, at steady state. 
Thus, we write 
 

𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑡𝑡0
1

1 + 𝑗𝑗𝑗𝑗
 

 



24 
 

At a small phase value of 𝛿𝛿 = 𝑄𝑄𝐿𝐿∆, the phase can be approximated as 𝜑𝜑 ≈ −𝑄𝑄𝐿𝐿∆, so the phase 
dependence on frequency near resonance is 
 

𝜑𝜑 ≈ −
2𝑄𝑄𝐿𝐿(𝜔𝜔0 − 𝜔𝜔)

𝜔𝜔0
 

 

The transmitted voltage amplitude varies as  
 

𝑉𝑉𝑡𝑡(𝛿𝛿) ≈ 𝑉𝑉𝑡𝑡0(1 − 𝛿𝛿2) ≈ 𝑉𝑉𝑡𝑡0(1− 𝜑𝜑2) 
 
Note that the modulation does not have to be small; we can use the exact expressions and get accurate 
results. However, we do not want a large modulation of the stored energy in order to minimize the 
change in Q as a function of the resonator’s voltage over the range of the measurement.  
 
The amount of frequency modulation per small phase change yields the loaded Q of the cavity 
 

𝑄𝑄𝐿𝐿 = −
𝜑𝜑
Δ
≈ −

𝜑𝜑𝜔𝜔0

2(𝜔𝜔0 − 𝜔𝜔1) 

 
where 𝜔𝜔1is the new frequency. Thus, we obtained a measurement of QL (or τ) without having to measure 
τ directly. 
 
This procedure assumes that enough time has been allowed for the SEL to achieve its new frequency 
following the step in the loop-phase. This can be quite time consuming for a superconducting cavity. 
Therefore, we observe that following a loop-phase change, the voltage of the cavity at the original 
frequency ω0 starts decaying according to the homogeneous solution as 
 

𝑉𝑉𝑡𝑡(𝜔𝜔0, 𝑡𝑡) = 𝑉𝑉𝑡𝑡0(𝜔𝜔0)𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄  
 
and the voltage at the new frequency starts building up as 
 

𝑉𝑉𝑡𝑡(𝜔𝜔1, 𝑡𝑡) = 𝑉𝑉𝑡𝑡0(𝜔𝜔1)�1− 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ � 
 
The amplitude of the transmitted voltages at both frequencies will be equal at a time t such that  
 

�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ � = 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄  
 
This time is  

𝑡𝑡 = 2𝜏𝜏𝜏𝜏𝜏𝜏2 ≈ 1.386𝜏𝜏 
 
At this time the observed frequency of the cavity will be  
 

𝜔𝜔 =
𝜔𝜔0 + 𝜔𝜔1

2
 

However, the purpose of this measurement is to establish τ. Thus, we have to solve this in a self-
consistent method. To do this, we track the frequency output ω(t) from the SEL as a function of time t 
from the application of the phase jump φ. At some point t1 in time the following equation will be 
satisfied by the measured frequency 𝜔𝜔1: 
 

𝜔𝜔1 − 𝜔𝜔0 = −
1.386𝜑𝜑

2𝑡𝑡1
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At this point we have established a self-consistent value for τ 
 

𝜏𝜏 =
𝑡𝑡1

2𝑙𝑙𝑙𝑙2
 

 
 
Next let us look at the correct setting of the loop-phase.  Let us assume that the loop-phase is not set 
right by a small amount θ. It follows that the amplitude of the cavity’s transmitted voltage will have an 
asymmetric shift when we apply steps ±φ in the loop phase:  
 

𝑉𝑉𝑡𝑡(𝜑𝜑) ≈ 𝑉𝑉𝑡𝑡0(1− 𝜑𝜑2) 
 
 

𝑉𝑉𝑡𝑡+ = 𝑉𝑉𝑡𝑡0[1− (𝜗𝜗 + 𝜑𝜑)2] 
 
in the positive phase swing direction, and  
 

𝑉𝑉𝑡𝑡− = 𝑉𝑉𝑡𝑡0[1− (𝜗𝜗 − 𝜑𝜑)2] 
 
 
in the negative phase swing direction.  
 
Therefore, we obtain the phase offset as 
 

𝜗𝜗 = −
1

2𝜑𝜑
𝑉𝑉𝑡𝑡+ − 𝑉𝑉𝑡𝑡−

𝑉𝑉𝑡𝑡+ + 𝑉𝑉𝑡𝑡−
 

 
ϑ may be then applied as a change to the loop-phase to restore the correct value. 

5.4 Error analysis 
 
It is important to estimate well the experimental error of the measured cavity parameters; in particular 
the stored energy U and the intrinsic quality factor Q0. These errors depend in turn on errors of 
intermediate variables, such as the coupling coefficient β. We denote errors in a variable by the sign 𝜕𝜕. 
 
The errors can be classified by calibration errors, where we are interested in the errors on Qe and Qt, 
(which are then used in scans) and scan errors where we are interested in the errors on U and Q0. The 
pulsed scan and the CW scan have slightly different errors in Q0. 
 
Furthermore, we can classify the errors as statistical or systematic. The sources of random statistical 
errors are derived from the digitization noise in the FPGA board DACs. There are many sources of 
systematic errors: Some are associated with equipment, such as cable attenuation errors; directional 
coupler isolation; and circulator coupled-port reflection. Others are associated with incorrect operation 
of the SEL, such as too short cavity filling or emptying times or incorrect loops phase. Systematic errors 
are directional. 
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5.4.1 Statistical errors 
 
Statistical errors are derived from digitization noise and can be minimized by a prudent choice of the 
ADC word size, by a careful selection of the attenuations in the path to the SEL board, including the 
coupling strength of the directional coupler. Since the SEL board takes measurements at a very high rate 
and includes averaging, it can also calculate the statistical error on any of the measured variables, that 
is in τ, Pa, Pb, Pc, Pf and Pt. 

5.4.1.1 Decay time τ error 
 
The decay time τ is measured by a best-fit procedure to a decay of the stored energy as described in the 
calibration section. Thus the error is given by the software procedure as a measured value of  𝜕𝜕τ/τ 

5.4.1.2 Coupling coefficient error 
 
The coupling coefficient is obtained from the expression 

𝛽𝛽 =
𝑃𝑃𝑐𝑐

𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏
 

 
where Pa, Pb and Pc are digitized from the reflected power port of the directional coupler at particular 
times marked by the points ‘a’, ’b’ and ‘c’ as defined in Figure 2 (Section 5.1). We neglect the 
transmitted power in this error analysis, since it is small and its error is negligible. 
 
Since all three variables Pa, Pb and Pc are measured in the same circuit of the reflected power port of the 
directional coupler, the statistical noise contributing to 𝜕𝜕β is the ADC noise, which is provided by the 
FPGA board as statistical errors:  
 

𝜕𝜕PNa; 𝜕𝜕PNb; 𝜕𝜕PNc 
 
Therefore, the statistical contribution to the error in β is given by  
 

𝜕𝜕𝜕𝜕𝑁𝑁
𝛽𝛽

=  −
𝜕𝜕𝑃𝑃𝑁𝑁𝑁𝑁
𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏

+
𝜕𝜕𝑃𝑃𝑁𝑁𝑁𝑁
𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏

+
𝜕𝜕𝜕𝜕𝑁𝑁𝑁𝑁
𝑃𝑃𝑐𝑐

 

 
Clearly the errors in Pa and Pb are magnified by coefficients that can be large for a coupling that is far 
from critical. This is why it is important to read them from the same port of the directional coupler, and 
it also points to the advantage of a variable coupler in error reduction. 
 

5.4.2 Systematic equipment errors 
 
In this section we treat errors stemming from cable calibration and from the directional coupler and 
circulator. 

5.4.2.1 Forward power Pf error 
 
The actual forward power impinging on the cavity’s FPC is given (see Section 2.1 above) by 
 

𝑷𝑷𝒇𝒇 =
𝑊𝑊𝑓𝑓

2

𝑁𝑁
100.1�𝐴𝐴𝑓𝑓1−𝐴𝐴𝑓𝑓2� 
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Let us address the cable attenuation errors as an aggregate; defining Af=Af1-Af2, and designating the 
total forward power cable attenuation error as 𝜕𝜕Af 
Thus we can write 
 

𝜕𝜕𝑷𝑷𝒇𝒇
𝑷𝑷𝒇𝒇

= 0.23𝜕𝜕𝐴𝐴𝑓𝑓 

 
The statistical error 𝜕𝜕Pf/Pf = 2 𝜕𝜕Wf/Wf has to be added to the systematic error calculated here. 
Where the first term is the ADC noise, which should be negligible with the proper choice of the 
magnitude of Wf, and the second term represents the error in the forward power cable calibration now 
taken in dB. 

5.4.2.2 Transmitted power Pt error 
 
The actual power transmitted from the field antenna, Pt, is obtained from 
 

𝑷𝑷𝒕𝒕 =
𝑊𝑊𝑡𝑡

2

𝑁𝑁
100.1𝐴𝐴𝑡𝑡 

 
Thus in similarity to the forward power error above, 
 

𝜕𝜕𝑷𝑷𝒕𝒕
𝑷𝑷𝒕𝒕

= 0.23𝜕𝜕𝐴𝐴𝑡𝑡 

 
Where 𝜕𝜕At is the transmitted power cable calibration error in dB. 
 

5.4.2.3 Directional coupler isolation errors 
 
The isolation Ir of the reflected power port of a directional coupler, not being infinite, introduces a 
fraction of the forward power passing through the directional coupler into the reflected power port.  Thus 
an error is introduced into the measurement of the reflected power. Since the phase of this signal depends 
on the exact length of cables between the directional coupler and the cavity, it is not possible to state 
the exact error but place an upper bound on it. Similarly, a good (large negative number) isolation If of 
the forward power port is necessary to prevent the reflected power from the cavity to introduce an error 
in the measurement of the forward power. 
 
Since the signal mixing in the ports of the directional coupler takes place by adding voltages, it is 
important that the isolation is calculated as a voltage. If the isolation is given in a certain value of dB of 
power, say a 40 dB power isolation (which may look good) it has to be converted to voltage. For this 
example, the isolation in voltage is now only 20 dBV. Thus, in the following we will use the isolation 
in dBV. 
 
Therefore, for all of the variables, Pa, Pb and Pc measured on the reflected power port of the directional 
coupler, we must add an error related to the isolation quality: 
 

𝜕𝜕𝑉𝑉𝐼𝐼𝐼𝐼
𝑉𝑉𝑎𝑎

= 100.1𝐼𝐼𝑟𝑟 

 
𝜕𝜕𝑃𝑃𝐼𝐼𝐼𝐼
𝑃𝑃𝑎𝑎

= 2 ∙ 100.1𝐼𝐼𝑟𝑟 
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where ‘x‘ stands for ‘a’, ‘b’ or ‘c’, and Ir is the isolation in dBV. 
 
This error can be serious unless a high-quality directional coupler is used. For example, in order to 
obtain a fractional error in power of 1%, the directivity of the directional coupler has to be about 46 dB 
[3]. 

5.4.2.4 Circulator coupled port match error 
 
The reflection of power Cf from the coupled port of the circulator (the port connected to the directional 
coupler) measured as a S22 voltage ratio in dBV sends a fraction of the reflected power from the cavity 
in the forward direction, introducing and error in the forward power measurement. Again, it is the 
voltage error that adds, and the phase depends on the length of cables, but we can state an upper limit 
on the error. 
 

𝝏𝝏𝑷𝑷𝑪𝑪𝑪𝑪
𝑷𝑷𝒇𝒇

= 2 ∙ 100.1𝐶𝐶𝑓𝑓 

 
Here as in the previous section Cf is in dBV. This error can be serious unless a high-quality circulator 
is used. A possible (but expensive) method to reduce this error is to add a high-quality power (low 
VSWR) attenuator directly after the circulator. If the attenuation is A, then the error signal passes the 
attenuator three times. Thus, the power amplifier has to have 100.2A higher power, but the voltage 
reflection coefficient has been improved by 3A. 

5.4.3 Systematic operational errors 
 
Systematic operation errors are of two types: Cavity fill errors and loop-phase errors. 
 

5.4.3.1 Fill errors 
 
There are two types of cavity fill errors to assess.  
 
The first fill error is caused by too-short power-on pulse. Let us denote to power on pulse time by tp. In 
this case we encounter errors in both Pb and Pc, but not in Pa. 
 
From Section 5.1 Eq. 5.7c we got (on resonance): 

   𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑓𝑓 �1 − 2𝛽𝛽
1+𝛽𝛽

�1 − 𝑒𝑒−𝑡𝑡 2𝜏𝜏⁄ ��
2

  

 
Our derivation of β uses Pb based on 𝑒𝑒−𝑡𝑡/2𝜏𝜏 = 0 in the expression for the reflected power after turn-on, 
yielding 
 
 

𝑃𝑃𝑏𝑏 = 𝑃𝑃𝑎𝑎 �
1 − 𝛽𝛽
1 + 𝛽𝛽�

2

 

 
 
However, for a finite pulse tp we get instead 
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𝑃𝑃𝑏𝑏 = 𝑃𝑃𝑎𝑎 �1 −
2𝛽𝛽

1 + 𝛽𝛽 �
1 − 𝑒𝑒−𝑡𝑡𝑝𝑝 2𝜏𝜏⁄ ��

2

 

 
which can be rewritten after some algebra as 
 

𝑃𝑃𝑏𝑏 = 𝑃𝑃𝑎𝑎 �
1− 𝛽𝛽
1 + 𝛽𝛽�

2

�1 +
4𝛽𝛽

(1 − 𝛽𝛽) 𝑒𝑒
−𝑡𝑡𝑝𝑝 2𝜏𝜏⁄ � 

 
Now, to get the difference from the expected value of Pb, we subtract: 
 

𝜕𝜕𝜕𝜕𝑏𝑏
𝑃𝑃𝑎𝑎

= �
1 − 𝛽𝛽
1 + 𝛽𝛽�

2

− �
1 − 𝛽𝛽
1 + 𝛽𝛽�

2

�1 +
4𝛽𝛽

(1 − 𝛽𝛽) 𝑒𝑒
−𝑡𝑡𝑝𝑝 2𝜏𝜏⁄ � 

 
 Thus the error is 
 

𝜕𝜕𝑃𝑃𝐹𝐹𝐹𝐹
𝑃𝑃𝑎𝑎

= −4
𝛽𝛽(1 − 𝛽𝛽)
(1 + 𝛽𝛽)2 𝑒𝑒

−𝑡𝑡𝑝𝑝/2𝜏𝜏 

 
The direction of this error depends on β, it increases the value of Pb for β<1, and decreases it for β>1. 
 
The error in Pc is simply evaluated as a cavity that has been filled to a lower value than planned, thus it 
decreases Pc  
 

𝜕𝜕𝑃𝑃𝐹𝐹𝐹𝐹
𝑃𝑃𝑎𝑎

= −
4𝛽𝛽2

(1 + 𝛽𝛽)2 𝑒𝑒
−𝑡𝑡𝑝𝑝/𝜏𝜏 

 
In order to make this error as small as 1% regardless of the value of β, the pulse length tp should be over 
9 decay times! However, for a well-matched FPC (β about 1) the error in Pb becomes small. 
 
The second fill error is to have a finite stored energy at the beginning of the forward-power-on pulse. 
This can be caused by either waiting a time too short between two pulses or by the pedestal encountered 
by the turn-on of the pulse. This will lead to an erroneous value of Pa. 
 
Let’s assign the energy already stored at the cavity the variable Ui. To obtain the reflected power at the 
moment we step up the forward power, we use 
 

𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑓𝑓 − 𝑃𝑃 = 𝑃𝑃𝑓𝑓 −
𝑈𝑈𝑖𝑖𝜔𝜔
𝑄𝑄0

 

 
Clearly when Ui=0, then all the power is reflected. Therefore, the error in Pa is 
 

𝜕𝜕𝑃𝑃𝐹𝐹𝐹𝐹 = −
𝑈𝑈𝑖𝑖𝜔𝜔
𝑄𝑄

 

 
To evaluate Ui, we consider two cases. One is that we waited too short a time for the cavity to empty 
from the previous pulse. The other is the pedestal used to get the SEL to oscillate at low power before 
stepping up the forward power. Let us first dismiss the first case: There is no reason why one should not 
wait a sufficient time after a powered cavity to send a calibration pulse. Just for completeness we observe 
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that if the cavity was powered to a level U at a time tw before the calibration pulse, this results in a value 
for Ui that is simply: 
 

𝑈𝑈𝑖𝑖 = 𝑈𝑈𝑒𝑒−𝑡𝑡𝑤𝑤 𝜏𝜏⁄  
 
Thus about 15 decay times of waiting should bring this error down to the 10-3 level. 
 
For the remaining case of a start pedestal, let us assume that we use a voltage that is ε times smaller than 
the intended calibration pulse forward voltage, and we apply this pedestal for a time ti.  Taking the 
conservative assumption that for all this time the cavity has been filling, we find that Ui, the stored 
energy filled during the pedestal, on resonance, is found by using Eq. 5.9  
   
 

𝑈𝑈𝑖𝑖 =
4𝜀𝜀2𝛽𝛽𝑃𝑃𝑓𝑓𝜏𝜏

1 + 𝛽𝛽 �1 − 𝑒𝑒−𝑡𝑡𝑖𝑖 2𝜏𝜏⁄ �
2 ≈

𝛽𝛽𝑃𝑃𝑓𝑓
𝜏𝜏(1 + 𝛽𝛽) 𝜀𝜀

2𝑡𝑡𝑖𝑖2 

 
therefore 
 

𝜕𝜕𝑃𝑃𝐹𝐹𝐹𝐹 = −
𝛽𝛽𝑃𝑃𝑓𝑓

𝜏𝜏2(1 + 𝛽𝛽)2 𝜀𝜀
2𝑡𝑡𝑖𝑖2 

 
 

𝜕𝜕𝑃𝑃𝐹𝐹𝐹𝐹
𝑃𝑃𝑎𝑎

= −
𝛽𝛽

(1 + 𝛽𝛽)2 𝜀𝜀
2 �
𝑡𝑡𝑖𝑖
𝜏𝜏
�
2
 

 
Now we have established the complete expression for the fill error in β, in the order of contributions 
from Pa, Pb and Pc: 
 

𝜕𝜕𝜕𝜕𝐹𝐹
𝛽𝛽

=  −
𝑃𝑃𝑎𝑎

𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏
�

𝛽𝛽
(1 + 𝛽𝛽)2 𝜀𝜀

2 �
𝑡𝑡𝑖𝑖
𝜏𝜏
�
2
� −

𝑃𝑃𝑏𝑏
𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏

�
4𝛽𝛽(1 − 𝛽𝛽)
(1 + 𝛽𝛽)2 𝑒𝑒−𝑡𝑡𝑝𝑝/2𝜏𝜏� −

4𝛽𝛽2

(1 + 𝛽𝛽)2 𝑒𝑒
−
𝑡𝑡𝑝𝑝
𝜏𝜏  

 
Note that all the errors in the signals from the reflected power port lead to a smaller apparent value of 
β. 

5.4.3.2 Loop phase error 
 
The reflection coefficient Γ of the cavity’s FPC port depends on the loop-phase through the change it 
induces in the frequency (see derivation in Section 5.1), so we use Eq. 5.7b at steady-state  

Γ = 1 −
2𝛽𝛽

1 + 𝛽𝛽
1

1 + 𝑗𝑗𝑗𝑗
 

 
And we set 𝛿𝛿 = −𝜗𝜗 
 

Γ = 1 −
2𝛽𝛽

1 + 𝛽𝛽
1

1 − 𝑗𝑗𝑗𝑗
 

 
 
This in turn leads to a new value of the reflected power: 
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𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑓𝑓ΓΓ∗ = 𝑃𝑃𝑓𝑓 ��
𝛽𝛽 − 1
𝛽𝛽 + 1

�
2

+
4𝛽𝛽2𝜗𝜗2

(𝛽𝛽 + 1)2� 

 
Clearly, where ϑ=0 we get the ratio of the reflected power to the forward power derived in Section 5.1. 
Therefore the error in Pr (or Pb) is just 
 

𝜕𝜕𝑃𝑃𝑏𝑏
𝑃𝑃𝑎𝑎

=
4𝛽𝛽2𝜗𝜗2

(𝛽𝛽 + 1)2 

 
It is quadratic in ϑ and furthermore, given that the loop-phase is continuously checked it is negligible. 
A similar argument follows for phase errors in Pa and Pc. 

5.4.4 Calibration error estimates 
 
The products of the calibration sequence are just the two external coupling coefficients, Qe and Qt. In 
the error analysis we neglect βt against β. Then we obtain from Section 3.2 the following equations 
(again, the transmitted power is neglected here): 
 

𝑄𝑄𝑒𝑒 =
1 + 𝛽𝛽
𝛽𝛽

𝜔𝜔𝜔𝜔 

 
and 

𝑄𝑄𝑡𝑡 =
1 + 𝛽𝛽
𝛽𝛽𝑡𝑡

𝜔𝜔𝜔𝜔 

 
as well as the following 

𝛽𝛽𝑡𝑡 = 𝛽𝛽
𝑷𝑷𝒕𝒕
𝑷𝑷𝒇𝒇

𝑃𝑃𝑎𝑎
𝑃𝑃𝑐𝑐

 

 
Thus we get the errors: 
 

𝜕𝜕𝜕𝜕𝐸𝐸
𝑄𝑄𝐸𝐸

=
1 + 𝛽𝛽
𝛽𝛽2

𝜕𝜕𝜕𝜕
𝛽𝛽

+
𝜕𝜕𝜕𝜕
𝜏𝜏

 

 
𝜕𝜕𝛽𝛽𝑡𝑡
𝛽𝛽𝑡𝑡

=
𝜕𝜕𝜕𝜕
𝛽𝛽

+
𝜕𝜕𝑷𝑷𝒕𝒕
𝑷𝑷𝒕𝒕

−
𝜕𝜕𝑷𝑷𝒇𝒇
𝑷𝑷𝒇𝒇

+
𝜕𝜕𝑃𝑃𝑎𝑎
𝑃𝑃𝑎𝑎

−
𝜕𝜕𝑃𝑃𝑐𝑐
𝑃𝑃𝑐𝑐

 

 
𝜕𝜕𝑄𝑄𝑡𝑡
𝑄𝑄𝑡𝑡

=
𝜕𝜕𝜕𝜕
𝛽𝛽
−
𝜕𝜕𝛽𝛽𝑡𝑡
𝛽𝛽𝑡𝑡

+
𝜕𝜕𝜕𝜕
𝜏𝜏

 

 
In order to avoid tediously long expressions, we will not substitute the values of the errors of the 
variables used here since these are all available above. 
 

5.4.5 Scan error estimates 
 
In a pulsed scan, we derive Q0 through the expression 
 

𝑄𝑄0 = 𝑄𝑄𝐿𝐿(1 + 𝛽𝛽) = 𝜔𝜔𝜔𝜔(1 + 𝛽𝛽) 
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ω is known quite precisely, thus assuming no correlation between errors in τ and β, 
 

𝜕𝜕𝑄𝑄0
𝑄𝑄0

=
𝜕𝜕𝜕𝜕
𝜏𝜏

+
𝜕𝜕𝜕𝜕

1 + 𝛽𝛽
 

 
We derive U through the expression 
 

𝑈𝑈 = 𝐾𝐾𝑷𝑷𝒕𝒕 =
𝑄𝑄𝑡𝑡
𝜔𝜔
𝑷𝑷𝒕𝒕 

 
 
Thus  
 

𝜕𝜕𝜕𝜕
𝑈𝑈

=
𝜕𝜕𝑄𝑄𝑡𝑡
𝑄𝑄𝑡𝑡

+
𝜕𝜕𝑷𝑷𝒕𝒕
𝑷𝑷𝒕𝒕

 

 
In a CW scan, the error in U is the same as for the pulsed scan above, but instead of using the decay τ, 
we use the phase modulation to determine QL. 
 
 
We determine QL from 

𝑄𝑄𝐿𝐿 =
𝑓𝑓𝑓𝑓
2𝛿𝛿𝑓𝑓

 

Since f and φ are exact values, the error is simply 
 

𝜕𝜕𝑄𝑄𝐿𝐿
𝑄𝑄𝐿𝐿

= −
𝜕𝜕𝛿𝛿𝑓𝑓
𝛿𝛿𝑓𝑓

 

 
and this is a purely statistical error to be evaluated by the board. 

5.5 GUI and data recording. 

5.5.1 Parameters to be set by user 
 

1. Target frequency f. Set the angular frequency ω = 2πf. 
2. Cavity forward power. 
3. Maximum allowable power (alarm if forward power exceeds maximum allowable power). 
4. For all scan modes, initial power, final power and number of steps. 
5. Pulsed scan: 

a. Pulse width, minimum 0.5 mSec. 
b. Period, minimum equal to pulse width. 
c. Number of pulses (including a continuous option) 

6. CW scan: 
a. Phase modulation value Φ 
b. Phase modulation angular frequency Ω 
c. Integration periods, related to integration time in units of 2π/Ω 

7. Calibration factors: 
a.  Factor converting ADC number to power at the terminal. 
b. Attenuation in dB of forward, reflected and transmitted powers. 
c. Gain in amplifier chain for sending power to the cavity, in dB. 

8. Cavity property κ relating stored energy to voltage (or gradient) squared. 
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9. [Set amplitude for feed-back; future only.] 
10. Parameter of interest is voltage or gradient. 
11. Maximum radiation level. 
12. Maximum cavity vacuum. 

 

5.5.2 User Controls 
 

1. Calibration, phase adjustment, conditioning, pulsed scan or CW scan mode selector. 
2. Power on/off 
3. Start sequence.  
4. [Amplitude lock on / off; future only] 
5. [Phase lock on / off; future only] 

 

5.5.3 Readout data on display 
 

1. Reproduce all the set and control parameters mentioned above in Sections 5.4.1 and 5.4.2. 
2. Frequency at pulse start (low stored energy), at pulse end and the derived Lorentz detuning 

factor. 
3. Frequency error noise, frequency error spectrum. 
4. Forward power Pf, at sample point (b) in units of watts. 
5. Reflected power Pa, Pb, Pc at sample point (a), (b), (c) and transmitted power Pt at (d). All units 

are watts (calibrations have to be used). 
6. Reflected and emitted power vs. time curves, indicating location of sample points. Units are 

watts. 
7. Decay time of emitted power, in seconds. 
8. Quality of fit for decay curve. 
9. Calculated Field (or voltage), MV or MV/m and its error 
10. Calculated Q0 and its error. Units of 109 
11. Calculated coupling factor β = (Q0/Qe)  
12. Calculated Qe, the external Q of the FPC, units of 109. 
13. Calculated Qt, the external Q of the pickup probe, units of 109. 
14. Calculated cavity dissipated power in watts. 
15. Calculated stored energy (Joules). 
16. Radiation level [environmental variable]. 
17. Vacuum in cavity [environmental variable]. 
18. Cavity temperature (multiple points) [environmental variables].  
19. Liquid helium levels, [environmental variables]. 
20. Cryostat pressure [environmental variable]. 
21. Error indicators: τ fit, over-power in forward, out of amplitude lock, out of phase lock, over 

limit for radiation, over limit for cavity vacuum. 
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