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The Use of BMAD in Simulating Transverse and Longitudinal Dynamics in RHIC

Henry Lovelace III
C-AD

Brookhaven National Laboratory

Abstract

In accelerator  physics, models of a given machine are used to predict the behaviors of the beam, 
magnets, and radiofrequency cavities. The use of the computational model has become wide spread 
to ease the development period of the accelerator lattice. There are various programs that are used to
create lattices and run simulations of both transverse and longitudinal beam dynamics. The 
programs include Methodical Accelerator Design(MAD) MAD8, MADX, Zgoubi, Polymorphic 
Tracking Code (PTC), and many others. In this discussion the BMAD (Baby Methodical 
Accelerator Design) is presented as an additional tool in creating and simulating accelerator lattices 
for the study of beam dynamics in the Relativistic Heavy Ion Collider (RHIC). 

Introduction

A sequence of elements and there attributes that a particle traverses is known as a lattice. In closed 
geometry lattices, such as storage rings and synchrotrons, the FODO (focusing, drift, defocusing, 
drift) lattice system is commonly used. Variations may occur in the lattice, however, the derivation 
of the closed orbit and other transverse beam dynamics still hold true. The local reference orbit 
describes the coordinate system that is used for BMAD particle tracking. 

Hill's equation, which was first used to describe the three body problem of orbits of the Moon 
around the Earth, are now used to describe the motion of a particle in an accelerator. Hill's equation 
is a second order ordinary differential equation,



x ' '+K x(s)x=0
where 

x '≡dx /ds

K x(s)≡B ' /(Bρ)+ ρ−2

B'≡∂B y /∂ x

where B is the magnetic field strength, and  ρ the radius of the circular lattice. The solution of Hill's 
equation in phase amplitude format is

x (s)= A √β (s)cos(φ(s)+δ )

x (s)=√εβ (s)cos(φ(s)−φ0)

where ε is the emittance, β is the amplitude of the oscillation, φ is the phase and  φ0 phase offset. 
Taking the derivative of the solution we have,

x ' (s)=
−A

√β (s)
[α (s)cos(φ(s)+δ)+sin(φ(s)+δ)]

α(s)≡−β ' (s)/2

Rewriting Hill's equation in terms of A we have the Courant-Snyder invariant, 
 

ε=A 2=γ (s) x2+2α (s)xx '+βx '2

we have α,β, and γ which, including ε, are the ellipse parameters. Note that BMAD does not use 
Hill's equation for tracking. BMAD uses the six dimensional phase space coordinates (x,px,y,py,z,pz)
with transfer maps. The PTC /FPP engine within BMAD allows the calculation of both Taylor maps
(Truncated Power Series Algebra) and Lie algebra operations. FPP is a package that is used to 
produce and analize the Taylor approximation of the map. BMAD has the ability to track particles 
using symplectic and non-symplectic maps. An example of how to calculate the Courant-Snyder 
invariant from the transfer map follows.

Let M be a the one turn map of somewhere in the lattice. 

M=[a b
c d ]  ad−bc=1

There is a symplectic matrix S that satisfies this condition, 

M=SRS−1



R=[ cos (ν) sin (ν)

−sin(ν) cos(ν)]

S−1=[S22 −S12

S21 −S11
]

M can now be written as 

M=cos(μ )I+sin (μ )[−S11S21−S12 S22 S11
2 +S12

2

−S21
2 −S22

2 S11 S21+S12 S22
]

M=[cos (μ)+αsin(μ) β sin (μ )

−γsin(μ ) cos (μ)−αsin(μ)]
This is the de Moivre formula for the one degree of freedom sympletic model. The angle of the 
rotation is known as the fractional tune when measured in revolutions. 

det M=γβ−α2=1

The Courant-Snyder invariant can now be written as

ε=(S21
2 +S22

2 ) x2+2(−S11 S21−S12 S22) xp+(S11
2 +S22

2 )p2

The operating point of a circular accelerator is defined as

ν=
1

2 π
∮ ds

β (s)

where s is the longitudinal coordinate position in the beam pipe. The chromaticity of the beam is 
defned as 

ξ=
∆ν

∆ p / p

where p is the longitudinal momentum of the particle. The revolution frequency of the particle is 
defined as the 

f rev=
1

T o

=
cβ
C



where T0 is the period of one revolution, C is the circumfernce of the accelerator, c is the speed of 
light, and β is the ratio of particle velocity and speed of light .  The RF-frequency is determined by 

f rf=hf rev

where h is the harmonic number. From the dipole bending, dipersion occurs which causes horizontal
orbit deviations. Dispersion can be defined as 

∆ x=D(x , s)(∆ p/ p0)

where x is the orbit position and D is the dispersion function. In BMAD, the dispersion calculation 
is taken a step further with the use of the define dispersion equations 

ηx(s)=
dx
dpz

η y(s)=
dy
dpz

ηz (s)=
dz
dpz

η ' x(s)≡
dηx

ds
=

dx '
dpz

η ' y(s)≡
dηy

ds
=

dy '
dp z

where η and η' describe the dispersion and dispersion derivative.  

The energy of the particle beam is defined by the product of the species mass in GeV and the 
Lorentz factor. The momentum of the beam can be calculated using the relation,

p=
E tot∗√(1.0−(mc2

/ Etot )
2
)

c

where p is momentum, m is the mass of the particle, Etot is the total beam energy, and c is the speed 
of light. It is useful for heavy ions to describe both the energy and momentum per nucleon. In a 
bunch, the particles differ in momenta. The closed orbit differs due to the difference in momenta 
and can be expressed by a factor, 

α p=

ΔC
C
Δp
p0

 

α p=
1
C∫s

⟨
D
ρ

⟩ds≈
∑(all dipole )

Dθ i

C

where the D is the dipersion, ρ is the bending radius, and θi is the bending angle. Both the bending 
radius and angle are attributes of the dipole.  Transition gamma can then be defined as,

γ t≡
1

√α p



and the amount of slippage is,

η=
1

γ t
2
−

1

γ 2

.

A subroutine has been written to calculate this momentum compaction in a closed geometry lattice.

!------------------------------------------------------------------------
!+ 
! subroutine alpha_pcalc(lat, alpha_p)
!
! Routine to calculate the momentum compaction factor for a given lattice. Geometry
!           does not need to be closed. Radiation_integrals and twiss parameters 
!           must be calculated before this subroutine is called. This is an 
!           approximation. !
! Input:
!   lat     -- lat_struct!
! Output:
!   alpha_p -- real(rp)!-
subroutine alpha_pcalc(lat, alpha_p)

type (lat_struct), target :: lat
type (ele_pointer_struct), allocatable :: eles(:)
type (branch_struct), pointer :: branch
integer :: ix_branch, n_ele_track, n_loc1, j, n, ix
integer, allocatable :: ix_dipole(:)
real(rp) dispersion
real(rp), intent(out):: alpha_p 
logical err_flag

 if (lat%param%particle == electron$ .or. lat%param%particle == positron$) then 
  alpha_p = mode%synch_int(1) / lat%param%total_length
 else
 branch => lat%branch(ix_branch)       
 n_ele_track = branch%n_ele_track
  call lat_ele_locator ("sbend::*", lat, eles, n_loc1, err_flag)   
  allocate (ix_dipole(count(branch%ele%key == sbend$)))
  j = 0
  do n = 1, branch%n_ele_max
   if (branch%ele(n)%key /= sbend$) cycle
   j = j + 1
   ix_dipole(j) = n
  enddo  
  do n = 1, size(ix_dipole)
   ix = ix_dipole(n)
   dispersion = (branch%ele(ix)%value(angle$) * branch%ele(ix)%a%eta) + dispersion   
  enddo  
  alpha_p = dispersion / lat%param%total_length
 endif
end subroutine alpha_pcalc
!------------------------------------------------------------------------

Closed orbit calulations are done using absolute time tracking. This means that the particle on the 
first turn enters into the RF cavity with a phase equal to zero, on subsequent turns the phase will 
increase.  



BMAD also has the ability to calculate dynamic aperture of a given lattice. The dynamic aperture is 
the maximum phase-space amplitude within which particles do not get lost as a consequence of 
single particle dynamics effect[1]. For proton rings, the concern is only the at injection due to the 
bunch adiabatically damping during acceleration. For simulations, the number of turns is 2000.

BMAD Comparison

The lattices that were used for the simulations were parsed from lattices that were created in the 
MADX format using the Universal Accelerator Parser(UAP). The UAP has the ability to translate 
between Accelerator MarkUp Language (AML), BMAD, MAD8, and Extended Standard Input 
Format (XSIF). Radiofrequency cavities were added to the lattice to give a more realistic approach 
to the simulations. The species of the particle used in the two lattices that were parsed are proton 
and gold stripped of all electrons. The two lattices are injection with gamma equal to 25.379, and at 
store with gamma equal to 271.635 of the blue ring only for protons in Run 17. For gold, injection 
gamma is 10.520 and store gamma 107.3961. The particle mass is taken to be 0.938 GeV for 
protons and for gold, 183.43 GeV.  The lattice length is 3833.845 m. The number of magnet 
elements are exactly the same as the MADX lattice with the same s-coordinates. 

The single particle and first turn tracking were implemented for both lattices. In using the parser, 
the strengths of all the quadrupole and dipole magnets within the MADX code are kept the same 
with the exception of the sextupole magnet strengths which were changed to provide for the lattice a
chromaticity that is approximately 2 at both injection and store. The calculated natural chromaticity 
of the blue proton ring is -80.581 horizontal, and -15.953 vertical at injection and at store -70.697 
and -63.413.For gold, the natural chromaticity is -84.563 horizontal, and  -8.273 vertical at injection
and at store -101.662 horizontal and -80.435 vertical. The natural chromaticity was found by setting
all of the sextupole magnet strengths to zero.

The betatron tunes at injection are 28.697, horizontal and 29.687, vertical. The amplitude of the beta
function is taken at each element. 



The tunes calculated at store are 28.689, horizontal and 29.684, vertical.  The value for the tunes in 
both planes and for both lattices are in close agreement with the lattices that were used for parsing 
without retuning.  With both tune calculations, at injection and at store, the error is less than 1%.  
The percent error in the measurement of the horizontal beta amplitudes at the two IR 6 o'clock and 
8 o'clock at store energy are both less than 1%, 1.62 * 10-3 and 2.36 * 10-3, respectively. 

The BMAD calculated revolution frequency at injection is 78135.559 Hz and at store 78195.757 
Hz. The actual injection and store revolution frequency measurements are 78135.474 Hz and 
78195.756 Hz. The reason for the discrepencies between revolution frequency at injection is that the
circumference is lengthened due to the helical dipoles for proton by 4.16 mm at injection. 



The lattices were improved with the inclusion of two RF gaps at injection and three at storage 
energy. These gaps represent the storage, acceleration, and Landau cavities used in ramping process.
The three frequencies used in this process are 9.376 MHz and 28.129 MHz at injection, and 197.053
MHz is used for the storage gap. The corresponding harmonics are 120, 360, and 2520, respectively.

The effect of the RF on the close orbit is that in regions of zero dispersion the orbit excursion is at a 
minimum. The negative orbit excursion at store energy is due to negative momentum deviation. 
With increasing the energy at store or decreasing dipole magnet strength the orbit excursion can be 
made positive.



The phase space can also be studied using BMAD code. Multi-turn tracking calulation of the 6 
dimensional phase space can be made where an initial vector can be given and a number of turns 
specified. Phase ellipse focusing and defocusing can be demonstrated.  In the first plot, a single 
particle is plotted for 1000 turns through the focusing quadrupole BO7_QF4, for the second plot the
particle is plotted trhough the defocusing quadrupole BO10_QD1. Both plots are at injection 
energy.



For the gold lattice, the tunes at injection are 28.2441 horizontally and 29.2249 vertically are 
different from the MADX lattice tunes 28.2990 horizontally and 29.1634 vertically. This 
discrepency is due to diffences in the quadrupole strengths. With adjustments to the quadrupole 
strength the tunes can be made to match. 

At store the tunes are 28.2420 horizontally and 29.21889 vertically. The MADX tunes are 28.2340 
horizontally and 29.2280 vertically. There is a -3.419% error between the fraction part of the 
horizontal tune and a 3.995% error in fraction part of the vertical. As shown in both plots the beta 
amplitude calculated for gold at both injection and store closely match the results generated from 
MADX. The percent error in the measurement of the horizontal beta amplitudes at the two IR 6 
o'clock and 8 o'clock at store energy are both less than 2%, 1.777% and 1.632%, respectively.  The 
increase in percent error, in comparison to the protons, is due to the tune difference. The transition 
gamma for the RHIC design lattice is 22.89, for the calculated transition is 22.911 at injection 
energy which has an error less than a .1%.   



The BMAD calculated revolution frequency at injection is 77842.234 Hz and at store 78192.897 
Hz. The actual injection and store revolution frequency measurements are 77842.232 Hz and 
78192.897 Hz.  

The gold lattices were improved with the inclusion of one RF gaps at injection and two at storage 
energy. These gaps represent the storage and acceleration cavities used in ramping process. The two
frequencies used in this process are 28.129 MHz at injection, and 197.053 MHz at store. The 



corresponding harmonics are 360, and 2520, respectively.

The phase space can also be studied using BMAD code. Multi-turn tracking calulation of the 6 
dimensional phase space can be made where an initial vector can be given and a number of turns 



specified. Phase ellipse focusing and defocusing can be demonstrated.  In the first plot, a single 
particle is plotted for 1000 turns through the focusing quadrupole YO1_QF20, for the second plot 
the particle is plotted through the defocusing quadrupole YO1_QD11. Both plots are at injection 
energy.

In RHIC, the first 1024 turns are tracked to give an approximation of the number of amplitude of 
the oscillations taken in a turn by turn method. A maximum amplitude plot can be created with a 
given initial amplitude. An energy difference is given for each plot. The initial amplitude given to 
the proton is .5 mm in both planes. The points are generated when the particle becomes lost within 
the 2000 turns that are tracked with the RF off. 



Conclusion

A comparison between BMAD and MADX simulations is useful. The power of BMAD in creating, 
modeling, and particle tracking through a lattice configuration was demonstrated. The close 
approximation in the results for lattice modeling show that BMAD may be implented as a stand 
alone program in future lattice designs.The percent error in the measurement of the horizontal beta 
amplitudes at the two IR, 6 o'clock and 8 o'clock, at store energy for protons are  1.62 * 10-3 % and 
2.36 * 10-3 %, respectively. For gold, the percent error of the horizontal beta amplitudes at the two 
IR are less than 2%, 1.777% and 1.632%. The increased percent error for the beta amplitudes IR is 
due to the -3.419% error horizontally. If the tunes were matched completely as in the proton lattice, 
then the percent error would be less than 1%. The single particle tracking through specific elements 
in a lattice allows for the study of the development of the beam envelope over a given amount of 
turns. Amplitude plots can be created using BMAD for protons with particle survival being the 
point generator. 
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BMAD
Lattice Parameter Protons injection Protons store Gold injection Gold store

γ 25.37862 271.6349 10.52046 107.3960

νh 28.69700 28.68878 28.24416 28.24203

νv 29.68700 29.684020 29.22492 29.21889

ξh 2.08977 2.01335 2.0146 2.0057

ξv 2.084395 2.00643 2.0259 2.0074

ξh
nat -80.581 -70.697 -84.563 -101.662

ξv
nat -15.953 -63.413 -8.273 -80.435

βh
max 142.4171 894.9579 147.0132 1895.4639

βv
max 142.1800 916.5739 150.5372 1874.1010

ηh
max 1.8991 1.7505 1.8194 1.8237

ηv
max 0 0 0 0

Rev. frequency 78135.5588* 78195.7569 77842.2325 78192.8973

*circumference lengthening not accounted for in calculation

MADX
Lattice Parameter Protons injection Protons store Gold injection Gold store

γ 25.37862 271.6349 10.52046 107.3960

νh 28.69700108 28.68878855 28.29902955 28.2339528

νv 29.68700054 29.68402021 29.16344748 29.22804679

ξh 2.246452883 2.248794477 -7.885572288 2.285092098

ξv 2.083578948 2.09939207 -6.015872636 2.11034623

βh
max 142.4170621 894.9569606 162.6747942 1928.242576

βv
max 142.1800042 916.5740045 153.4966541 1900.295911

ηh
max 1.900555941 1.750497005 1.829091458 1.795521833

ηv
max 0 0 0 0

Rev. frequency* 78135.474 78195.757 77842.232 78192.897

* Logview Application



Appendix
Derivation Courant-Snyder invariant using phasor notation

F (z 1, z2)     one degree of freedom

⟨F ⟩=
(F ∘m+F∘m∘m+ ...+F∘mN )

N
 where N→∞

m≡one turn map
m=a∘r ∘a−1

r (z1

z2
)=[cosμ (J ) sin μ(J)

sinμ(J ) cosμ(J )]( z1

z2
)  where 2 J=z1

2+ z2
2

⟨F ⟩=
(F ∘a∘ r0∘a−1+F ∘a∘ r ∘a−1+F∘a∘r 2∘a−1+...+F ∘{a∘ r ∘a−1})N

N
where N→∞

⟨F ⟩=
(F ∘a∘r0+F ∘a∘r+F∘a∘r 2+...+F ∘a∘rN)

N
∘a−1 where N→∞

⟨ F̄ ⟩=
(F̄ ∘a∘ r0+ F̄ ∘a∘ r+ F̄∘a∘r 2+...+F̄ ∘a∘ rN)

N
∘a−1 where N→∞

F̄=F∘a
F̄∘ r k∘c={F̄ ∘c}∘ {c−1∘ rk ∘c}=F r∘Λ

Λ ≡ diagonalized rotation
The resonance basis is 

(r1

r2
)=c( z1

z2
)=(

1
2

1
2

−i
2

−i
2

)( z1

z2
)

c−1(z1

z2
)=(1 i

1 −i)( z1

z2
)

Fr=∑ F mn
r r1

m r2
n

Fr∘Λ
Example:

(z 1

z 2
)=(

√β 0

−α
√β

1
√β

)(x
p)=a( x

p)

a−1( x
p)=(

1
√β

0

α
√β

√β)( x
p)

F̄∘r k∘c={F̄ ∘c}∘{c−1∘rk ∘c}=F r∘Λ

Fr=F̄ ∘c √β∘c=β
(r1

2+r2
2+2r1 r2)

4
For the average,

⟨Fr ⟩=β
(2r 1 r2)

4
=

β

2
(r1r2)

⟨ F̄ ⟩=
β

2
(r1 r2)∘c−1=

β

2
(z1

2+ z2
2)=βJ

where r1=z 1+ z2 i and r1=z 1+ z2 i

⟨F ⟩=β J ∘a−1=
β

2
(z1

2+ z2
2)∘a−1



⟨F ⟩=
β

2
(
1
β
+ α2

β
x2+2α xp+β p2)

⟨F ⟩=
β

2
(γ x2+2α xp+β p2)

Let, 

M=(a b
c d ) where ad−bc=1

M=SRS−1

R=( cosμ sin μ
−sinμ cosμ) S=( S1 S12

S21 S22
) S−1=( S22 −S12

−S21 S11
)

det S=S11S22−S12 S21=1

M=(S11 S12

S21 S22
)( cosμ sinμ
−sinμ cosμ)( S22 −S12

−S21 S11
)

M=(S11 S22cosμ−S11 S21sin μ−S12 S22 sinμ−S12 S21 cosμ −S11 S12 cosμ+S11
2 sinμ+S12

2 sinμ+S12 S11cosμ

S21 S22 cosμ−S21
2 sinμ−S22

2 sin μ−S21 S22cosμ −S12 S21 cosμ+S21 S11sinμ+S22 S12sin μ+S11 S22cosμ)
M=(S11 S22−S12 S21)cosμ Ī +sinμ(−S11 S21−S12 S22 S11

2 +S12
2

−S21
2 −S22

2 S21 S11+S22 S12
)

M=cosμ Ī+sinμ (−S11 S21−S12 S22 S11
2 +S12

2

−S21
2 −S22

2 S21 S11+S22 S12
)

M=cosμ Ī+sinμ ( α β
−γ −α)

r2=z 1
2+ z2

2

ϵ(x , p)=r2( z(x , p))=(s1
−1 z( x , p))2+(s2

−1 z( x , p))2

ϵ=(S22 x−S12 p)2+(−S21 x+S11 p)2

ϵ=(S22
2 +S21

2 ) x2+(S12+S11
2 )p2+2(−S22

2 S12−S21 S11) xp
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Typical Print out of BMAD program

 Beam Particles are: Au79                
 Particle mass (GeV):    183.43333704400001     
 Particle charge:           79 
 Particle momentum:    1921066659.9370658     
 Lattice length:    3833.8451693137899       Revolution Frequency:    77842.232479744911     
 Unstable factor:    0.0000000000000000     
 Lattice is stable:  T 
 Energy loss per turn:    3.2683323063642604E-013 MeV 
 Tune A:    28.244158457777463     
 Tune B:    29.224921868926973     
 Chromaticity A and B:   2.0145921230787835      ,   2.0259229001796117     
 Emittance:   8.4999999999999994E-008 ,   8.3000000000000002E-008 
 SigmaE/E :   0.58222714288160404     
 Sigma_Z :    10.792642016351699     
 Momentum compaction factor :    1.9049909967975222E-003 
 Gamma factor:    10.520466997421192      Transition gamma factor:    22.911500695093000      Slip factor:   
-7.1300465844504213E-003 
 Kinetic energy:    1746.3710315542403      MeV  Beta(v/c):   0.99547223086269565      Brho:    81.113780030030810 
dbeta:    4.5277691373043494E-003 

!Note!
Emittances, SigmaE/E, and Sigma_Z are given as parameters to the program not calculated. 


