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Emittance Growth due to Multiple Passes

through the H-minus Stripping Foil in Booster

C.J. Gardner

March 2, 2017

Expressions for transverse emittance growth due to turn-by-turn passes
through the H-minus stripping foil in Booster are developed here from
simple principles of statistics and simple assumptions about the initial
distribution of particles incident on the foil. These are meant to
complement work already presented by Zeno [1, 2, 3] and Brown [4]. The
expressions show that while the average emittance 〈E〉 of the distribution
simply increases linearly with turn number, the emittance E based on the
mean square particle position does so with an additional oscillatory term
that depends on the machine tune. It is shown that this term can be
ignored as long as the turn number is sufficiently large and the tune is
sufficiently far from integer and half-integer values. Under these conditions
the relation between 〈E〉 and E is simply 〈E〉 = 2 E . This relation is shown
to hold for a Gaussian distribution that is matched to the machine lattice.

Two symmetry conditions which help characterize the particle distribution
are identified. These provide justification for calling E an emittance. It is
shown that if the conditions are satisfied by the initial distribution, they
will not be satisfied after a single traversal of the foil and one turn around
the machine. However, on subsequent turns the distribution can (and
does) return to satisfying the conditions. Moreover, for sufficiently large
turn number, the symmetry conditions are approximately satisfied.

As already noted in [4], the emittance growth per turn is proportional to
the lattice beta at the foil and the mean square angular kick received by
protons passing through the foil. We take the former to be 5 m. The latter
is obtained from simulations performed with the code TRIM [5]. Having
these numbers in hand, actual numbers for emittance growth are presented.

The reader may wish to start with Section 11 and refer to previous
sections as needed or desired.
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1 Notation and Definitions

We use the subscript ni to refer to the ith particle on the nth turn around
the machine.

Let Xni and X ′ni be the position and angle of the ith particle just
upstream of the foil on the nth turn around the machine.

Let Xd
ni and X ′ dni be the position and angle of the ith particle just

downstream of the foil on the nth turn around the machine.

Let α, β, γ be the Courant-Snyder parameters of the machine lattice at
the foil. These satisfy

βγ − α2 = 1. (1)

The Courant-Snyder invariant of the ith particle just upstream of the
foil on the nth turn around the machine is then

Eni = γX2
ni + 2αXniX

′
ni + βX ′ 2ni . (2)

The emittance of the particle is πEni, but for convenience we simply call
Eni the emittance.

Similarly, the Courant-Snyder invariant of the ith particle just
downstream of the foil on the nth turn around the machine is

Edni = γ
(
Xd
ni

)2
+ 2αXd

niX
′ d
ni + β

(
X ′ dni

)2
. (3)

Equations (2) and (3) can be transformed into equations for circles by
introducing coordinates

Yni = αXni + βX ′ni (4)

Y d
ni = αXd

ni + βX ′ dni . (5)

With the help of (1), one obtains

βEni = X2
ni + Y 2

ni (6)

βEdni =
(
Xd
ni

)2
+
(
Y d
ni

)2
. (7)

For any particle parameter Vni, we define its average over all the particles
on the nth turn around the machine to be

〈Vn〉 =
1
M

M∑
i=1

Vni (8)

where M is the number of particles.
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2 Recurrence Relation for Single Particle
Emittance

Upon passing through the foil on the nth turn around the machine, the ith
particle receives an angular kick φni. We assume that the particle position
is unchanged. Thus

Xd
ni = Xni (9)

and
X ′ dni = X ′ni + φni (10)

which gives
Y d
ni = Yni + βφni (11)(

Y d
ni

)2
= Y 2

ni + 2βYniφni + β2φ2
ni (12)

βEdni = X2
ni + Y 2

ni + 2βYniφni + β2φ2
ni (13)

and
Edni = Eni + 2Yniφni + βφ2

ni. (14)

On the next turn around the machine we have (just upstream of the foil)

Xmi = CXd
ni + SY d

ni (15)

Ymi = −SXd
ni + CY d

ni (16)

where
m = n+ 1, C = cos 2πQ, S = sin 2πQ (17)

and Q is the machine tune. Thus we have

X2
mi + Y 2

mi =
(
Xd
ni

)2
+
(
Y d
ni

)2
(18)

and therefore
Emi = Edni (19)

where
βEmi = X2

mi + Y 2
mi (20)

βEdni =
(
Xd
ni

)2
+
(
Y d
ni

)2
. (21)

Using (14) we then have

Emi = Eni + 2Yniφni + βφ2
ni (22)

where m = n+ 1. This gives the turn-by-turn evolution of the single
particle emittance.
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3 Recurrence Relation for Average Emittance

Averaging (22) over all the particles according to (8), we have

〈En+1〉 = 〈En〉+ 2 〈Ynφn〉+ β
〈
φ2
n

〉
. (23)

Similarly averaging (9), (11), (15), and (16) we have〈
Xd
n

〉
= 〈Xn〉 (24)〈

Y d
n

〉
= 〈Yn〉+ β 〈φn〉 (25)

and
〈Xn+1〉 = C 〈Xn〉+ S 〈Yn〉+ Sβ 〈φn〉 (26)

〈Yn+1〉 = −S 〈Xn〉+ C 〈Yn〉+ Cβ 〈φn〉 . (27)

We shall assume that the angular kick φni averaged over all particles is
zero. Thus

〈φn〉 = 0 (28)

for all n. This gives 〈
Y d
n

〉
= 〈Yn〉 (29)

and
〈Xn+1〉 = C 〈Xn〉+ S 〈Yn〉 (30)

〈Yn+1〉 = −S 〈Xn〉+ C 〈Yn〉 (31)

for all n. It follows that if

〈X0〉 = 0, 〈Y0〉 = 0 (32)

then
〈Xn〉 = 0, 〈Yn〉 = 0 (33)

for all n > 0. We shall assume that (32) and (33) are always
satisfied.

We assume further that Yni and φni are uncorrelated. It follows that [6]

〈Ynφn〉 = 0. (34)

Equation (23) then becomes

〈En+1〉 = 〈En〉+ β
〈
φ2
n

〉
. (35)

This gives the turn-by-turn evolution of the average emittance.
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4 Recurrence Relations for Quadratic Terms

Using (9) and (11) in (15) and (16) we have

Xmi = (CXni + SYni) + Sβφni (36)

Ymi = (−SXni + CYni) + Cβφni (37)

which gives

X2
mi = C2X2

ni + S2Y 2
ni + 2CSXniYni

+ 2Sβ (CXni + SYni)φni + S2β2φ2
ni (38)

Y 2
mi = S2X2

ni + C2Y 2
ni − 2CSXniYni

+ 2Cβ (−SXni + CYni)φni + C2β2φ2
ni (39)

XmiYmi = CS
(
Y 2
ni −X2

ni

)
+
(
C2 − S2

)
XniYni + SCβ2φ2

ni

+ {C (CXni + SYni) + S (−SXni + CYni)}βφni (40)

XmiYmi = CS
(
Y 2
ni −X2

ni

)
+
(
C2 − S2

)
XniYni + SCβ2φ2

ni

+
{(
C2 − S2

)
Xni + 2CSYni

}
βφni (41)

where
m = n+ 1. (42)

As before we assume that

〈φn〉 = 0, 〈Xn〉 = 0, 〈Yn〉 = 0 (43)

for all n. We assume further that both Xni and Yni are uncorrelated with
φni. This implies [6]

〈Xnφn〉 = 0, 〈Ynφn〉 = 0. (44)

Averaging over the particles we then have〈
X2
n+1

〉
= C2

〈
X2
n

〉
+ S2

〈
Y 2
n

〉
+ 2CS 〈XnYn〉+ S2β2

〈
φ2
n

〉
(45)〈

Y 2
n+1

〉
= S2

〈
X2
n

〉
+ C2

〈
Y 2
n

〉
− 2CS 〈XnYn〉+ C2β2

〈
φ2
n

〉
(46)
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and

〈Xn+1Yn+1〉 = CS
〈
Y 2
n

〉
− CS

〈
X2
n

〉
+

(
C2 − S2

)
〈XnYn〉+ SCβ2

〈
φ2
n

〉
. (47)

These equations give the turn-by-turn evolution of the quadratic
terms.

Note that adding (45) and (46) gives〈
X2
n+1

〉
+
〈
Y 2
n+1

〉
=
〈
X2
n

〉
+
〈
Y 2
n

〉
+ β2

〈
φ2
n

〉
. (48)

Using
β 〈En+1〉 =

〈
X2
n+1

〉
+
〈
Y 2
n+1

〉
(49)

β 〈En〉 =
〈
X2
n

〉
+
〈
Y 2
n

〉
(50)

we then have
β 〈En+1〉 = β 〈En〉+ β2

〈
φ2
n

〉
(51)

which is the same as (35).

5 Symmetric Particle Distribution

If 〈
X2
n

〉
=
〈
Y 2
n

〉
(52)

and
〈XnYn〉 = 0 (53)

then we say that the particle distribution is symmetric on the nth turn
around the machine.

Using these equations in (45), (46), and (47) we have, on the next turn,〈
X2
n+1

〉
=
〈
X2
n

〉
+ S2β2

〈
φ2
n

〉
(54)

〈
Y 2
n+1

〉
=
〈
Y 2
n

〉
+ C2β2

〈
φ2
n

〉
(55)

and
〈Xn+1Yn+1〉 = SCβ2

〈
φ2
n

〉
(56)
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where
C = cos 2πQ, S = sin 2πQ. (57)

Here we see that if
〈
φ2
n

〉
is zero then the distribution remains symmetric.

However, if
〈
φ2
n

〉
is nonzero then there is no value of Q that gives both〈

X2
n+1

〉
=
〈
Y 2
n+1

〉
(58)

and
〈Xn+1Yn+1〉 = 0. (59)

The particle distribution is no longer symmetric. In Section 7 it will be
shown that the distribution can return to being symmetric after a certain
number of turns.

We obtain the symmetry conditions (52) and (53) in terms of the
original coordinates by returning to equation (4). We have

Yni = αXni + βX ′ni (60)

XniYni = αX2
ni + βXniX

′
ni (61)

and
Y 2
ni = α2X2

ni + 2αβXniX
′
ni + β2X ′ 2ni . (62)

Averaging over the particles then gives

β
〈
XnX

′
n

〉
= 〈XnYn〉 − α

〈
X2
n

〉
(63)

and
β2
〈
X ′ 2n

〉
=
〈
Y 2
n

〉
− α2

〈
X2
n

〉
− 2αβ

〈
XnX

′
n

〉
. (64)

Using (63) in (64) gives

β2
〈
X ′ 2n

〉
=
〈
Y 2
n

〉
− α2

〈
X2
n

〉
− 2α 〈XnYn〉+ 2α2

〈
X2
n

〉
(65)

β2
〈
X ′ 2n

〉
=
〈
Y 2
n

〉
+ α2

〈
X2
n

〉
− 2α 〈XnYn〉 . (66)

If the distribution is symmetric on the nth turn around the machine we
have 〈

X2
n

〉
=
〈
Y 2
n

〉
, 〈XnYn〉 = 0. (67)

Equation (63) then becomes〈
XnX

′
n

〉
= −α

β

〈
X2
n

〉
(68)
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and, with the help of (1), equation (66) becomes

β
〈
X ′ 2n

〉
= γ

〈
X2
n

〉
. (69)

These are the symmetry conditions in terms of
〈
X2
n

〉
,
〈
X ′ 2n

〉
, and

〈XnX
′
n〉.

Defining

En =
1
β

〈
X2
n

〉
(70)

we have 〈
X2
n

〉
= Enβ (71)

and equations (68) and (69) become〈
XnX

′
n

〉
= −Enα (72)

and 〈
X ′ 2n

〉
= Enγ. (73)

A Gaussian distribution that is matched to the machine lattice is an
example of a symmetric distribution and in Appendix I is shown to have
these properties.

6 Quadratic Terms in Complex Form

Returning to (36) and (37) we have

Xmi = (CXni + SYni) + Sβφni (74)

Ymi = (−SXni + CYni) + Cβφni (75)

where
C = cos 2πQ, S = sin 2πQ (76)

and
m = n+ 1. (77)

Equations (74) and (75) can be combined and written in complex form as

Xmi + iYmi = (C − iS) (Xni + iYni) + (C − iS) iβφni. (78)
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This can be written as

Zmi = (C − iS) (Zni + iβφni) (79)

where
Zmi = Xmi + iYmi (80)

Zni = Xni + iYni. (81)

Defining
ψ = 2πQ (82)

we then have
Zmi = e−iψ (Zni + iβφni) (83)

Z∗mi = eiψ (Z∗ni − iβφni) (84)

and
ZmiZ

∗
mi = (Zni + iβφni) (Z∗ni − iβφni) (85)

ZmiZ
∗
mi = ZniZ

∗
ni + iβφni (Z∗ni − Zni) + β2φ2

ni (86)

where
iβφni (Z∗ni − Zni) = 2βφniYni. (87)

Thus, using (44) we have〈
Zn+1Z

∗
n+1

〉
= 〈ZnZ∗n〉+ β2

〈
φ2
n

〉
. (88)

We also have
Z2
mi = e−2iψ (Zni + iβφni) (Zni + iβφni) (89)

Z2
mi = e−2iψ

(
Z2
ni + 2iβφniZni − β2φ2

ni

)
(90)

where
φniZni = φniXni + iφniYni. (91)

Using (44) again we have〈
Z2
n+1

〉
= Z

〈
Z2
n

〉
−Zβ2

〈
φ2
n

〉
(92)

where
Z = e−2iψ, ψ = 2πQ. (93)

Equations (88) and (92) give the turn-by-turn evolution of the
quadratic terms in complex form.
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7 Summation of Recursive Quadratic Terms

We assume that mean square angular kick
〈
φ2
n

〉
is the same on all turns

around the machine. Thus we can write〈
φ2
n

〉
=
〈
φ2
〉

(94)

for all n. According to equation (92) we then have〈
Z2

1

〉
= Z

〈
Z2

0

〉
−Zβ2

〈
φ2
〉

(95)

〈
Z2

2

〉
= Z2

〈
Z2

0

〉
−
(
Z + Z2

)
β2
〈
φ2
〉

(96)〈
Z3

2

〉
= Z3

〈
Z2

0

〉
−
(
Z + Z2 + Z3

)
β2
〈
φ2
〉

(97)〈
Z4

2

〉
= Z4

〈
Z2

0

〉
−
(
Z + Z2 + Z3 + Z4

)
β2
〈
φ2
〉

(98)

and so on up to〈
Z2
n

〉
= Zn

〈
Z2

0

〉
−
(
Z + Z2 + Z3 + · · ·+ Zn

)
β2
〈
φ2
〉
. (99)

Here one can use the identity

(1−Z)
(
Z + Z2 + Z3 + · · ·+ Zn

)
= Z − Zn+1 (100)

which gives, provided Z 6= 1,〈
Z2
n

〉
= Zn

〈
Z2

0

〉
− Z (1−Zn)

1−Z
β2
〈
φ2
〉

(101)

where
Z = e−2iψ, Zn = e−2inψ, ψ = 2πQ. (102)

Similarly, according to (88) we have

〈Z1Z
∗
1 〉 − 〈Z0Z

∗
0 〉 = β2

〈
φ2
〉

(103)

〈Z2Z
∗
2 〉 − 〈Z1Z

∗
1 〉 = β2

〈
φ2
〉

(104)

〈Z3Z
∗
3 〉 − 〈Z2Z

∗
2 〉 = β2

〈
φ2
〉

(105)

〈Z4Z
∗
4 〉 − 〈Z3Z

∗
3 〉 = β2

〈
φ2
〉

(106)
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and so on up to
〈ZnZ∗n〉 −

〈
Zn−1Z

∗
n−1

〉
= β2

〈
φ2
〉
. (107)

Summing these equations gives

〈ZnZ∗n〉 = 〈Z0Z
∗
0 〉+ nβ2

〈
φ2
〉
. (108)

Returning to real and imaginary components we have

Zni = Xni + iYni (109)

Z2
ni = X2

ni − Y 2
ni + 2iXniYni (110)

ZniZ
∗
ni = X2

ni + Y 2
ni (111)

and therefore 〈
Z2
n

〉
=
〈
X2
n − Y 2

n + 2iXnYn
〉

(112)〈
Z2

0

〉
=
〈
X2

0 − Y 2
0 + 2iX0Y0

〉
(113)

〈ZnZ∗n〉 =
〈
X2
n + Y 2

n

〉
(114)

〈Z0Z
∗
0 〉 =

〈
X2

0 + Y 2
0

〉
. (115)

Thus we have〈
X2
n − Y 2

n + 2iXnYn
〉

= Zn
〈
X2

0 − Y 2
0 + 2iX0Y0

〉
−Fn β2

〈
φ2
〉

(116)

〈
X2
n + Y 2

n

〉
=
〈
X2

0 + Y 2
0

〉
+ nβ2

〈
φ2
〉

(117)

β 〈En〉 =
〈
X2
n

〉
+
〈
Y 2
n

〉
(118)

β 〈E0〉 =
〈
X2

0

〉
+
〈
Y 2

0

〉
(119)

and
〈En〉 = 〈E0〉+ nβ

〈
φ2
〉

(120)

where
Fn =

Z (1−Zn)
1−Z

(121)

and
Z = e−2iψ, Zn = e−2inψ, ψ = 2πQ. (122)
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These equations give the values of〈
X2
n

〉
,
〈
Y 2
n

〉
, 〈En〉 , 〈XnYn〉 (123)

directly (i.e. without recursive steps) in terms of〈
X2

0

〉
,
〈
Y 2

0

〉
, 〈E0〉 , 〈X0Y0〉 ,

〈
φ2
〉
, β2, Z. (124)

Note that for the special case in which

Zn = 1, Z 6= 1 (125)

we have
Fn = 0 (126)

and (116) becomes〈
X2
n

〉
−
〈
Y 2
n

〉
+ 2i 〈XnYn〉 =

〈
X2

0

〉
−
〈
Y 2

0

〉
+ 2i 〈X0Y0〉 (127)

which gives 〈
X2
n

〉
−
〈
Y 2
n

〉
=
〈
X2

0

〉
−
〈
Y 2

0

〉
(128)

and
〈XnYn〉 = 〈X0Y0〉 . (129)

Thus, if the initial particle distribution is symmetric we have〈
X2

0

〉
=
〈
Y 2

0

〉
, 〈X0Y0〉 = 0 (130)

and equations (128) and (129) give〈
X2
n

〉
=
〈
Y 2
n

〉
, 〈XnYn〉 = 0. (131)

The particle distribution therefore returns (on the nth turn) to being
a symmetric distribution satisfying (52) and (53). The average
emittance, however, continues to increase linearly with turn number
according to (120).
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8 Emittance from Mean Square Position

Writing (121) as

Fn = An + iBn =
Z (1−Zn)

1−Z
(132)

where An and Bn are real, and writing

Zn = Cn − iSn (133)

Cn = cos 2nψ, Sn = sin 2nψ, ψ = 2πQ (134)

we have
An + iBn =

Z (1−Z∗) (1−Zn)
(1−Z) (1−Z∗)

(135)

and
An + iBn =

− (1−Z) (1−Zn)
2 (1− C1)

(136)

which gives

An =
S1Sn

2 (1− C1)
− 1

2
(1− Cn) (137)

Bn = −Sn
2
− S1 (1− Cn)

2 (1− C1)
. (138)

These coefficients, the real and imaginary components of Fn, simply
oscillate as n increases; they do not grow without bound.

The real and imaginary components of (116) are then〈
X2
n − Y 2

n

〉
= Cn

〈
X2

0 − Y 2
0

〉
+ 2Sn 〈X0Y0〉 − An β2

〈
φ2
〉

(139)

2 〈XnYn〉 = 2Cn 〈X0Y0〉 − Sn
〈
X2

0 − Y 2
0

〉
− Bn β2

〈
φ2
〉
. (140)

Adding (139) and (117) gives

2
〈
X2
n

〉
= Cn

〈
X2

0 − Y 2
0

〉
+
〈
X2

0 + Y 2
0

〉
+ 2Sn 〈X0Y0〉+ (n−An)β2

〈
φ2
〉
. (141)

Similarly, subtracting (139) from (117) gives

2
〈
Y 2
n

〉
=

〈
X2

0 + Y 2
0

〉
− Cn

〈
X2

0 − Y 2
0

〉
+

− 2Sn 〈X0Y0〉+ (n+An)β2
〈
φ2
〉
. (142)
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Assuming that the particle distribution is initially symmetric, we have〈
X2

0

〉
=
〈
Y 2

0

〉
, 〈X0Y0〉 = 0 (143)

and equations (141), (142), and (140) become〈
X2
n

〉
=
〈
X2

0

〉
+

1
2

(n−An)β2
〈
φ2
〉

(144)

〈
Y 2
n

〉
=
〈
Y 2

0

〉
+

1
2

(n+An)β2
〈
φ2
〉

(145)

2 〈XnYn〉 = −Bn β2
〈
φ2
〉
. (146)

Here we see that 〈
X2
n

〉
=
〈
Y 2
n

〉
, 〈XnYn〉 = 0 (147)

if and only if
An = 0, Bn = 0. (148)

Moreover, since the coefficient An simply oscillates, the terms proportional
to An in (144) and (145) can be ignored if n is sufficiently large. We then
have the approximation 〈

X2
n

〉
≈
〈
Y 2
n

〉
. (149)

Compared to
〈
X2
n

〉
and

〈
Y 2
n

〉
, the skew term 〈XnYn〉 also can be ignored

for sufficiently large n. We then can write

〈XnYn〉 ≈ 0 (150)

and we see that (for sufficiently large n) the distribution is essentially
symmetric. Using

β 〈En〉 =
〈
X2
n

〉
+
〈
Y 2
n

〉
(151)

and the definition
En =

1
β

〈
X2
n

〉
(152)

we then have the approximation

〈En〉 ≈ 2En. (153)

This shows that En can be taken as a measure of the distribution
emittance. This is useful because an actual number for En can be
obtained by measuring the mean square position

〈
X2
n

〉
.

14



9 Relation between En and Average Emittance

Using (152) in (144), we have

En = E0 +
1
2

(n−An)β
〈
φ2
〉

(154)

which is to be compared with the average emittance

〈En〉 = 〈E0〉+ nβ
〈
φ2
〉

(155)

where
β 〈En〉 =

〈
X2
n

〉
+
〈
Y 2
n

〉
(156)

β 〈E0〉 =
〈
X2

0

〉
+
〈
Y 2

0

〉
. (157)

Using the first of equations (143), we have

〈E0〉 =
2
β

〈
X2

0

〉
(158)

and therefore
〈E0〉 = 2 E0. (159)

In Appendix I this relation is shown to hold for a Gaussian distribution
that is matched to the lattice.

Using (159) together with (154) and (155) gives

2 En = 〈En〉 − An β
〈
φ2
〉

(160)

which shows that 2 En evolves as the average emittance plus an oscillatory
term. We can also write

〈En〉 = 2 En +An β
〈
φ2
〉

(161)

which shows that the average emittance can be obtained from
measurements via equation (152). These equations show that

〈En〉 = 2 En (162)

if and only if
An = 0. (163)

Here again one can argue that for sufficiently large n, the terms
proportional to An can be ignored in (160) and (161). This gives the
approximation

〈En〉 ≈ 2 En. (164)
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10 Evolution of Difference and Skew Terms

Here we give a more rigorous demonstration of (149) and (150). Returning
to (139) and (140) we have difference and skew terms〈

X2
n − Y 2

n

〉
= Cn

〈
X2

0 − Y 2
0

〉
+ 2Sn 〈X0Y0〉 − An β2

〈
φ2
〉

(165)

2 〈XnYn〉 = 2Cn 〈X0Y0〉 − Sn
〈
X2

0 − Y 2
0

〉
− Bn β2

〈
φ2
〉
. (166)

These terms simply oscillate as the average emittance 〈En〉 grows
according to (155).

Assuming as before that the particle distribution is initially symmetric, we
have 〈

X2
0

〉
=
〈
Y 2

0

〉
, 〈X0Y0〉 = 0 (167)

and equations (165) and (166) become〈
X2
n − Y 2

n

〉
= −An β2

〈
φ2
〉

(168)

2 〈XnYn〉 = −Bn β2
〈
φ2
〉

(169)

where
An =

S1Sn
2 (1− C1)

− 1
2

(1− Cn) (170)

Bn = −Sn
2
− S1 (1− Cn)

2 (1− C1)
(171)

and
Cn = cos 2nψ, Sn = sin 2nψ, ψ = 2πQ. (172)

Whenever
Zn = 1, Z 6= 1 (173)

we have
An = 0, Bn = 0 (174)

and equations (168) and (169) give〈
X2
n

〉
=
〈
Y 2
n

〉
, 〈XnYn〉 = 0. (175)

The particle distribution returns to being a symmetric distribution as
already noted in Section 7. The conditions (173) are satisfied whenever

cos 2nψ = 1, cos 2ψ 6= 1 (176)
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which require
2nψ = 2πk, 2ψ 6= 2πm (177)

where k and m are integers and

ψ = 2πQ. (178)

Dividing (168) and (169) by〈
X2
n

〉
+
〈
Y 2
n

〉
= β 〈En〉 (179)

we have 〈
X2
n − Y 2

n

〉
〈X2

n + Y 2
n 〉

= − An
〈En〉

β
〈
φ2
〉

(180)

and
2 〈XnYn〉
〈X2

n + Y 2
n 〉

= − Bn
〈En〉

β
〈
φ2
〉
. (181)

As the average emittance 〈En〉 grows sufficiently large we therefore have
the approximations 〈

X2
n − Y 2

n

〉
〈X2

n + Y 2
n 〉
≈ 0,

2 〈XnYn〉
〈X2

n + Y 2
n 〉
≈ 0. (182)

This shows again that for sufficiently large turn numbers, the distribution
is essentially symmetric.

11 Dependence of Emittance Growth on Tune

According to equation (154) the emittance growth after n passes of
injected beam through the H-minus stripping foil is

En − E0 =
1
2

(n−An)β
〈
φ2
〉

(183)

which we write as
En − E0 = F (n)β

〈
φ2
〉

(184)

where
F (n) =

1
2

(n−An) (185)

An =
S1Sn

2 (1− C1)
− 1

2
(1− Cn) (186)
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and
Cn = cos 2nψ, Sn = sin 2nψ, ψ = 2πQ. (187)

Figures 1 through 12 show plots of An, Bn, and F (n) for various values
of the tune Q. The main conclusion to be drawn from the Figures is that
the oscillatory coefficient An can be ignored in (185) as long as n is
sufficiently large and the tune sufficiently far from integer and half-integer
values. One then can write

F (n) =
1
2
n (188)

and the emittance growth (184) becomes simply

En − E0 =
1
2
nβ
〈
φ2
〉
. (189)

Using
〈En〉 = 〈E0〉+ nβ

〈
φ2
〉

(190)

we then have
〈En〉 − 〈E0〉 = 2 (En − E0) . (191)

Since the initial distribution is assumed to be symmetric we have

〈E0〉 = 2 E0 (192)

which then gives
〈En〉 = 2 En. (193)

12 Lattice beta at the Foil

To obtain an actual number for the emittance growth we need a number
for the lattice beta at the H-minus stripping foil. Modeling [4] of the
lattice with various excitations of quadrupole trim windings [7] has shown
that beta can be made as small as

βH = 4.7 m, βV = 2.6 m (194)

in the horizontal and vertical planes, respectively. We will use

β = 5.0 m (195)

to evaluate (189). The emittance growth for other values of β can be
obtained by simple scaling of (189).
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13 Mean Square Angular Kick at the Foil

We also need a number for the mean square angular kick
〈
φ2
〉

received by
protons passing through the H-minus stripping foil. This depends on the
foil material and thickness, as well as the proton kinetic energy. We
consider carbon foils of 200, 150, 100, and 50 micrograms per cm2

thickness. The proton kinetic energy is 200 MeV.

Assuming a Gaussian probability density of angular kicks

ρ(φ) =
(

1
2πσ2

)1/2

exp

(
− φ2

2σ2

)
(196)

gives 〈
φ2
〉

=
∫ +∞

−∞
φ2ρ(φ) dφ = σ2. (197)

The root mean square (rms) angular kick for the distribution is then

φrms =
〈
φ2
〉1/2

= σ. (198)

For a discrete set of particles one has

φrms =
〈
φ2
〉1/2

=

{
1
M

M∑
i=1

φ2
i

}1/2

(199)

where M is the number of particles and φi is the angular kick received by
the ith particle.

Angular scattering simulations performed with the code TRIM [5] show
that the Gaussian distribution is a reasonable approximation. Figures 13,
14, 15, and 16 show the results obtained for 200 MeV protons incident on
200, 150, 100, and 50 microgram per cm2 carbon foils, respectively. The
angles φrms obtained for these foils are respectively,

0.0344 and 0.0331 mrad (200)

0.0297 and 0.0283 mrad (201)

0.0243 and 0.0226 mrad (202)

0.0165 and 0.0154 mrad. (203)

Here the numbers on the left were obtained directly from (199) using the
angles φi generated by the TRIM code. Those on the right were obtained
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by binning the TRIM data and then fitting the Gaussian (196) to the
binned data. In order to get agreement between the left and right
numbers, the angular data from TRIM had to be restricted to the range
indicated by the fitted Gaussians in the Figures. The details of setting up
the TRIM code to generate the angles φi are given in Appendix II.

14 Emittance Growth Numbers

Using (199) we write (189) as

En − E0 =
1
2
nβ (φrms)

2 (204)

where φrms is given by (200), (201), (202), and (203). We use the left
number given in each of these equations.

Taking
n = 100 turns (205)

and
β = 5 m (206)

then gives emittance growths

En − E0 = 0.296, 0.221, 0.148, 0.068 mm mrad (207)

for the 200, 150, 100, and 50 microgram per cm2 foils, respectively.

These numbers are plotted in Figure 17 and show that the emittance
growth increases linearly with foil thickness. The slope of the red
line in the Figure is

M = 0.296/200 (208)

mm mrad per (microgram per cm2), which gives emittance growth

En − E0 =MT (209)

for foil thickness T . The numbers in (207) can be scaled for different
values of n and β. For arbitrary n and β we then have

En − E0 =
(
n

100

)(
β

5

)
MT . (210)
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If the particle distributions happen to be Gaussian (or nearly so) then, as
shown in Appendix I, the emittances that contain fraction F = 0.9502 of
the particles are 6E0 and 6En. The emittance growth (210) then becomes

6En − 6E0 =
(

6n
100

)(
β

5

)
MT . (211)

All of the emittances given above are un-normalized. Normalized
emittances are obtained by multiplying the un-normalized ones by the
relativistic factor βγ = 0.68684 for 200 MeV protons. Equation (211) then
becomes

(6En − 6E0)N = (0.68684)
(

6n
100

)(
β

5

)
MT (212)

where the subscript N denotes normalized emittance.

Figure 18 shows (6En − 6E0)N versus turn for a 100 microgram per cm2

carbon foil. The black, magenta, and blue lines give, respectively, the
growth for 5, 8, and 11 m lattice beta at the foil. The revolution period of
200 MeV protons in Booster is 1.1888 microseconds, which gives a time
interval of 396 microseconds for the 333 plotted turns.

Figure 19 shows (6En − 6E0)N versus turn for a 200 microgram per cm2

carbon foil. The black, magenta, and blue lines again give the growth for
5, 8, and 11 m lattice beta at the foil.

The data plotted in these Figures agree at least qualitatively with the data
plotted in Figure 8 of Ref. [4]. Measurements of the lattice beta at the
H-minus stripping foil, and turn-by-turn measurements of the circulating
beam profile at injection would allow for a more precise comparison.
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16 Appendix I

The particle density for a Gaussian distribution that is matched to the
machine lattice is

ρ(x, x′) =
1

2πε
e−E/(2ε) (213)

where
E = γx2 + 2αxx′ + βx′2. (214)

Using
βγ = 1 + α2 (215)

we have
βE = x2 + (αx+ βx′)2. (216)

Define
F (w) =

∫∫
ρ(x, x′) dxdx′ (217)

where the integral is taken over the region E ≤ w2.

To evaluate the integral we first transform to Courant-Snyder coordinates(
u
v

)
=

(
1/
√
β 0

α/
√
β
√
β

)(
x
x′

)
. (218)

Then we have
u2 + v2 = E (219)

(
x
x′

)
=

( √
β 0

−α/
√
β 1/

√
β

)(
u
v

)
(220)

∂x

∂u
=
√
β,

∂x

∂v
= 0 (221)

∂x′

∂u
= − α√

β
,

∂x′

∂v
=

1√
β

(222)

and
∂x

∂u

∂x′

∂v
− ∂x

∂v

∂x′

∂u
= 1 (223)

which give

F (w) =
1

2πε

∫∫
e−(u2+v2)/(2ε) dudv (224)

22



where the integral is taken over the region u2 + v2 ≤ w2.

Now let
u = r cosφ, v = r sinφ. (225)

Then
u2 + v2 = r2 (226)

∂u

∂r
= cosφ,

∂u

∂φ
= −r sinφ (227)

∂v

∂r
= sinφ,

∂v

∂φ
= r cosφ (228)

∂u

∂r

∂v

∂φ
− ∂u

∂φ

∂v

∂r
= r (229)

and

F (w) =
1

2πε

∫ w

0

∫ 2π

0
e−r

2/(2ε) rdrdφ. (230)

Thus
F (w) =

1
ε

∫ w

0
e−r

2/(2ε) rdr = 1− e−w2/(2ε). (231)

This is the fraction of particles with E ≤ w2. The fraction of particles with

γx2 + 2αxx′ + βx′2 ≤ 6ε (232)

is then
F = 1− e−3 = 0.9502. (233)

Following the same steps, the average of E over the distribution is

〈E〉 =
∫∫

E ρ(x, x′) dxdx′ (234)

〈E〉 =
1

2πε

∫∫ (
u2 + v2

)
e−(u2+v2)/(2ε) dudv (235)

〈E〉 =
1

2πε

∫ ∞
0

∫ 2π

0
r2 e−r

2/(2ε) rdrdφ (236)

and
〈E〉 =

1
ε

∫ ∞
0

r3 e−r
2/(2ε) dr. (237)
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Similarly we have 〈
E2
〉

=
∫∫

E2 ρ(x, x′) dxdx′ (238)

〈
E2
〉

=
1

2πε

∫∫ (
u2 + v2

)2
e−(u2+v2)/(2ε) dudv (239)

〈
E2
〉

=
1

2πε

∫ ∞
0

∫ 2π

0
r4 e−r

2/(2ε) rdrdφ (240)

and 〈
E2
〉

=
1
ε

∫ ∞
0

r5 e−r
2/(2ε) dr. (241)

Using the definite integrals [8]∫ ∞
0

r3e−a
2r2 dr =

1
2a4

,

∫ ∞
0

r5e−a
2r2 dr =

1
a6

(242)

with
a2 =

1
2ε

(243)

we then have 〈
E2
〉

= 8ε2 (244)

and
〈E〉 = 2ε. (245)

Thus 〈
(E − 〈E〉)2

〉
=
〈
E2
〉
− 〈E〉2 = 4ε2 (246)

which gives 〈
(E − 〈E〉)2

〉
= 〈E〉2 (247)

and
Erms =

{〈
(E − 〈E〉)2

〉}1/2
= 〈E〉 . (248)

Since
〈E〉 =

〈
γx2 + 2αxx′ + βx′2

〉
(249)

we have
〈E〉 = γ

〈
x2
〉

+ 2α
〈
xx′
〉

+ β
〈
x′ 2
〉

(250)

and therefore
γ
〈
x2
〉

+ 2α
〈
xx′
〉

+ β
〈
x′ 2
〉

= 2ε. (251)
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Consider now the projections of the distribution ρ(x, x′) on the x and x′

axes. These are [9]

P (x) =
∫ +∞

−∞
ρ(x, x′) dx′ =

(
1

2πεβ

)1/2

exp

(
− x2

2εβ

)
(252)

and

Q(x′) =
∫ +∞

−∞
ρ(x, x′) dx =

(
1

2πεγ

)1/2

exp

(
− x
′ 2

2εγ

)
. (253)

Using the definite integral [8]∫ +∞

−∞
x2e−a

2x2
dx =

√
π

2a3
(254)

we then have 〈
x2
〉

=
∫ +∞

−∞
x2P (x) dx = εβ (255)

and 〈
x′ 2
〉

=
∫ +∞

−∞
x′ 2Q(x′) dx′ = εγ. (256)

Using these results in (251) we have

γ (εβ) + 2α
〈
xx′
〉

+ β (εγ) = 2ε (257)

which gives, with the help of (215),〈
xx′
〉

= −εα. (258)

Equations (255), (256), and (258) are in agreement with (71), (73), and
(72), respectively.

Finally, defining
y = αx+ βx′ (259)

we have
〈xy〉 = α

〈
x2
〉

+ β
〈
xx′
〉

(260)

and 〈
y2
〉

= α2
〈
x2
〉

+ 2αβ
〈
xx′
〉

+ β2
〈
x′ 2
〉

(261)

which give
〈xy〉 = 0 (262)

and 〈
y2
〉

=
〈
x2
〉

(263)

in agreement with the conditions (52) and (53) for a symmetric
distribution.
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17 Appendix II

The following items are selected or entered on the TRIM user interface [5].

1. “Ion Distribution and Quick Calculation of Damage” option.

2. “Ion Distribution Only (no recoils) Projected on Y-Plane” option.

3. Hydrogen for the projectile ion.

4. 200 MeV for the ion kinetic energy.

5. 0 degrees for ion angle of incidence.

6. Carbon for the target material.

7. Target thickness in units of 10−6 or 10−10 meters.

8. 99999 for the number of ions. (This is the default value.)

9. “Transmitted Ions/Recoils” option.

The coordinate system used by TRIM is defined by three mutually
orthogonal unit vectors x̂, ŷ, and ẑ with ŷ and ẑ in the plane of the target
and x̂ perpendicular to the target. For an incident angle of zero degrees,
the direction of the incident ion is parallel to x (and therefore
perpendicular to the target).

Let n̂ be the unit vector parallel to the direction of an ion as it exits the
target. In the x̂, ŷ, ẑ coordinate system one then has

n̂ = (x̂ · n̂) x̂ + (ŷ · n̂) ŷ + (ẑ · n̂) ẑ. (264)

The TRIM output file gives the values of

CX = (x̂ · n̂), CY = (ŷ · n̂), CZ = (ẑ · n̂) (265)

for each ion. Using these numbers one computes

φy = arctan(CY/CX), φz = arctan(CZ/CX) (266)

which are the desired angles φi. Note that since we are considering the
emittance in just one plane, we can use the 99999 numbers for φx and φy
as independent data sets. (I am indebted to P. Thieberger for pointing this
out.)
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Figure 1: Coefficients An (black circles) and Bn (red circles) for tune
Q = 0.96. The horizontal axis gives the turn number n. The curves connect
the centers of the circles.
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Figure 2: Function F (n) = (n − An)/2 (black circles) for tune Q = 0.96.
The horizontal axis gives the turn number n. The red curve is the line
G(n) = n/2. Here we see that the values of F (n) simply oscillate about the
line. As long as n is sufficiently large, the difference between F (n) and G(n)
will be small compared to F (n).
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Figure 3: Coefficients An (black circles) and Bn (red circles) for tune
Q = 0.54. The horizontal axis gives the turn number n. The curves connect
the centers of the circles. Note that 0.54 and 0.96 are equidistant from but
on opposite sides of 0.75. The coefficient An is the same for tunes with
this symmetry. The coefficient Bn changes sign. This follows from equa-
tions (134), (137), and (138), and is easily verified by comparing the values
plotted here with those plotted in Figure 1.
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Figure 4: Function F (n) = (n − An)/2 (black circles) for tune Q = 0.54.
The horizontal axis gives the turn number n. The red curve is the line
G(n) = n/2. The values of F (n) plotted here are the same as those plotted
in Figure 1. This is because An is the same for Q = 0.54 and Q = 0.96.
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Figure 5: Coefficients An (black circles) and Bn (red circles) for tune
Q = 0.82. The horizontal axis gives the turn number n. The curves connect
the centers of the circles. The values plotted here are significantly smaller
than those plotted in Figures 1 and 3. This is because the tune is well
away from integer and half-integer values.
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Figure 6: Function F (n) = (n − An)/2 (black circles) for tune Q = 0.82.
The horizontal axis gives the turn number n. The red curve is the line
G(n) = n/2. The oscillations of F (n) about the line are much smaller here
because the tune is well away from integer and half-integer values.
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Figure 7: Coefficients An (black circles) and Bn (red circles) for tune
Q = 0.99. The horizontal axis gives the turn number n. The curves connect
the centers of the circles. The oscillation amplitudes are large here because
the tune is very close to 1.
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Figure 8: Function F (n) = (n − An)/2 (black circles) for tune Q = 0.99.
The horizontal axis gives the turn number n. The red curve is the line
G(n) = n/2. The oscillations of F (n) about the line are large because the
tune is very close to 1.
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Figure 9: Coefficients An (black circles) and Bn (red circles) for tune
Q = 0.751. The horizontal axis gives the turn number n. The curves connect
the centers of the circles. Here the tune is well away from 0.5 and 1.
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Figure 10: Function F (n) = (n−An)/2 (black circles) for tune Q = 0.751.
The horizontal axis gives the turn number n. The red curve is the line
G(n) = n/2. The oscillations of F (n) about the line are small here because
the tune is well away from 0.5 and 1.
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Figure 11: Coefficients An (black circles) and Bn (red circles) for tune
Q = 0.51. The horizontal axis gives the turn number n. The curves connect
the centers of the circles. The oscillation amplitudes are large here because
the tune is very close to 0.5.
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Figure 12: Function F (n) = (n − An)/2 (black circles) for tune Q = 0.51.
The horizontal axis gives the turn number n. The red curve is the line
G(n) = n/2. The oscillations of F (n) about the line are large because the
tune is very close to 0.5.
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Figure 13: Distribution of scattering angles for 200 MeV protons incident on
a 200 microgram per cm2 carbon foil. The horizontal axis gives the scattered
proton angle in milliradians (mr). The vertical axis gives the number of
scattered protons for a given angle. The black circles represent data from
TRIM that has been binned. The red curve is the fitted Gaussian. The
indicated error bars were chosen to be ±500 for convenience. The rms angles
obtained from (199) and from the fitted Gaussian are 0.0344 and 0.0331 mr,
respectively. In order to get agreement between these two numbers, the
angular data from TRIM had to be restricted to the range indicated by the
red curve.

40



Figure 14: Distribution of scattering angles for 200 MeV protons incident on
a 150 microgram per cm2 carbon foil. The horizontal axis gives the scattered
proton angle in milliradians (mr). The vertical axis gives the number of
scattered protons for a given angle. The black circles represent data from
TRIM that has been binned. The red curve is the fitted Gaussian. The
indicated error bars were chosen to be ±500 for convenience. The rms angles
obtained from (199) and from the fitted Gaussian are 0.0297 and 0.0283 mr,
respectively. In order to get agreement between these two numbers, the
angular data from TRIM had to be restricted to the range indicated by the
red curve.

41



Figure 15: Distribution of scattering angles for 200 MeV protons incident on
a 100 microgram per cm2 carbon foil. The horizontal axis gives the scattered
proton angle in milliradians (mr). The vertical axis gives the number of
scattered protons for a given angle. The black circles represent data from
TRIM that has been binned. The red curve is the fitted Gaussian. The
indicated error bars were chosen to be ±500 for convenience. The rms angles
obtained from (199) and from the fitted Gaussian are 0.0243 and 0.0226 mr,
respectively. In order to get agreement between these two numbers, the
angular data from TRIM had to be restricted to the range indicated by the
red curve.
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Figure 16: Distribution of scattering angles for 200 MeV protons incident on
a 50 microgram per cm2 carbon foil. The horizontal axis gives the scattered
proton angle in milliradians (mr). The vertical axis gives the number of
scattered protons for a given angle. The black circles represent data from
TRIM that has been binned. The red curve is the fitted Gaussian. The
indicated error bars were chosen to be ±500 for convenience. The rms angles
obtained from (199) and from the fitted Gaussian are 0.0165 and 0.0154 mr,
respectively. In order to get agreement between these two numbers, the
angular data from TRIM had to be restricted to the range indicated by the
red curve.
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Figure 17: Emittance growth versus thickness of carbon foil. The black
circles show the emittance growth given by (207) for foils of 200, 150, 100,
and 50 microgram per cm2 thickness. The vertical axis gives the emittance
growth in mm mrad. The horizontal axis gives the foil thickness in micro-
grams per cm2. The red curve is the straight line that connects the circle
at 0 with the circle at 200 micrograms per cm2. The slope of the line is
M = 0.296/200, which gives emittance growth En−E0 =MT for foil thick-
ness T .
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Figure 18: Emittance growth (212) versus turn for 100 microgram per cm2

carbon foil. The black, magenta, and blue lines give, respectively, the growth
for 5, 8, and 11 m lattice beta at the foil. The vertical axis gives the
normalized emittance growth (6En − 6E0)N in mm mrad. The horizontal axis
gives the turn number. The revolution period of 200 MeV protons in Booster
is 1.1888 microseconds, which gives a time interval of 396 microseconds for
the 333 plotted turns.
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Figure 19: Emittance growth (212) versus turn for 200 microgram per cm2

carbon foil. The black, magenta, and blue lines give, respectively, the growth
for 5, 8, and 11 m lattice beta at the foil. The vertical axis gives the
normalized emittance growth (6En − 6E0)N in mm mrad. The horizontal axis
gives the turn number. The revolution period of 200 MeV protons in Booster
is 1.1888 microseconds, which gives a time interval of 396 microseconds for
the 333 plotted turns.
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