
Brookhaven National Laboratory 

U.S. Department of Energy
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)

Collider Accelerator Department

April 2016

S. Seletskiy

How to measure energy of LEReC electron beam with magnetic spectrometer

BNL-112105-2016-TECH

C-A/AP/562;BNL-112105-2016-IR

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for
publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United
States Government purposes.



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



BNL-112105-2016-IR 

C-A/AP/562 
April 2016 

How to measure energy of LEReC electron beam 
with magnetic spectrometer 

 S. Seletskiy 

Collider-Accelerator Department 
Brookhaven National Laboratory 

Upton, NY 11973 

U.S. Department of Energy 
 Office of Science, Office of Nuclear Physics 

Notice: This document has been authorized by employees of Brookhaven Science Associates, LLC under Contract 
No. DE-SC0012704 with the U.S. Department of Energy. The United States Government retains a non- 
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this document, or 
allow others to do so, for United States Government purposes. 



                                                    

How to measure energy of LEReC electron beam with magnetic 
spectrometer 

April 11, 2016 
S. Seletskiy 

Introduction 
For successful cooling the energies of RHIC ion beam and LEReC electron beam must be 

matched with 10-4 accuracy. While the energy of ions will be known with required accuracy, e-
beam energy can have as large initial offset as 5%. 

The final setting of e-beam energy will be performed by observing either Schottky spectrum 
[1, 2] or recombination signal from debunched ions co-traveling with the e-beam. Yet, to start 
observing such signals one has to set absolute energy of electron beam with accuracy better 
than 10-2, preferably better than 5∙10-3. 

The aim of this exercise is to determine whether and how such accuracy can be reached by 
utilizing LEReC 180o bend as a spectrometer. 

180 degree bend 
The 180o bend setup is schematically shown in Fig. 1. 

Figure 1: Schematics of 180o bend. 



The 180o bend is located between the first and the second LEReC cooling sections. It is 
designed to have a bending radius 𝜌𝜌0 = 0.35 m. The entrance to the magnet is equipped with 
two BPMs (one of them hybrid [3]) and its exit is equipped with one hybrid BPM. BPM-to-BPM 
distances are defined by requirements to the precision of energy regulation [4] and were 
recently set in dedicated optical simulations [5].  

 
Hard-edge approximation 
It is not hard to see (Fig. 2) that in the hard-edge approximation the horizontal e-beam 

displacement (xout) at the exit of 180o bend is given by: 
 

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑥𝑥𝑖𝑖𝑖𝑖 + 2𝜌𝜌0 − 2𝜌𝜌 cos 𝜃𝜃𝑖𝑖𝑖𝑖    (1) 
 

The notation used in (1) is explained in Fig. 2. 
 

 
Figure 2: Beam trajectory in 180o bend. 

 
Cosine in (1) can be substituted by 1 unless 𝜃𝜃𝑖𝑖𝑖𝑖 is on the order of 0.01 rad. 
Usually one would approximate magnetic rigidity as: 
 

𝐵𝐵𝜌𝜌
𝐵𝐵0𝜌𝜌0

≈
𝐸𝐸
𝐸𝐸0

≡ 1 + 𝛿𝛿    (2) 

 
thus obtaining standard expression for dispersion 𝐷𝐷 = −2𝜌𝜌0𝐵𝐵0/𝐵𝐵 (or 𝐷𝐷 = −2𝜌𝜌0 for nominal 
dipole field) and finding error in energy setting (for 𝐵𝐵 = 𝐵𝐵0) as 𝛿𝛿 = (𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑖𝑖𝑖𝑖)/𝐷𝐷. Yet, for our 
range of energies (1.6 MeV – 2.1 MeV) the resulting error in found energy would be too large as 
plot in Fig. 3 demonstrates.  
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Figure 3: Relative error in measured energy (when utilizing standard simplified expression for D) 

for various initial offsets of the real beam energy. 
 

 To measure real beam energy with required accuracy of about 0.1% one, instead of using 
(2), must perform proper Taylor expansion of exact expression for magnetic rigidity: 

 

𝐵𝐵𝜌𝜌 =
𝑚𝑚𝑚𝑚
𝑒𝑒
��

𝐸𝐸0(1 + 𝛿𝛿)
𝑚𝑚𝑚𝑚2

+ 1�
2

− 1    (3) 

 
Expanding (3) with small parameter δ we obtain: 
 

𝐵𝐵𝜌𝜌 = 𝐵𝐵0𝜌𝜌0 �1 +
𝐸𝐸0 + 𝑚𝑚𝑚𝑚2

𝐸𝐸0 + 2𝑚𝑚𝑚𝑚2
𝛿𝛿�     (4) 

 
Substituting (4) into (1) for 𝐵𝐵 = 𝐵𝐵0 we get: 
 

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑥𝑥𝑖𝑖𝑖𝑖 − 2𝜌𝜌0
𝐸𝐸0 + 𝑚𝑚𝑚𝑚2

𝐸𝐸0 + 2𝑚𝑚𝑚𝑚2
𝛿𝛿    (5) 

 
Utilizing (5) one can measure the real beam energy with better than 10-4 accuracy (under 

the worst case scenario) as the plot in Fig. 4 demonstrates. 
 



 
Figure 4: Relative error in measured energy (we are utilizing proper formula (5) to measure the 

energy) for various initial offsets of the real beam energy. 
 
Finally, defining fractional error in setting dipole field as ∆≡ 𝐵𝐵/𝐵𝐵0 − 1, from (1) and (4) we 

get: 
 

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = −𝑥𝑥𝑖𝑖𝑖𝑖 − 2𝜌𝜌0
𝐸𝐸0 + 𝑚𝑚𝑚𝑚2

𝐸𝐸0 + 2𝑚𝑚𝑚𝑚2
𝛿𝛿 + 2𝜌𝜌0∆    (6) 

 
Equation (6) solves the problem of the dependence of accuracy of energy measurement on 

accuracies of BPM settings and magnetic field measurement. Indeed, since 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 
correspond to BPM readings 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 (see Fig. 5 for details) as: 

 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥2 + 𝑆𝑆𝑏𝑏
𝑥𝑥2 − 𝑥𝑥1
𝑆𝑆12

    (7) 

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑥𝑥3 + 𝑆𝑆𝑏𝑏
𝑥𝑥2 − 𝑥𝑥1
𝑆𝑆12

    (8) 

 
the accuracy of energy measurement (𝛿𝛿 ≡ (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟)/𝐸𝐸0) is given by: 

 

𝛿𝛿 =
𝐸𝐸0 + 2𝑚𝑚𝑚𝑚2

𝐸𝐸0 + 𝑚𝑚𝑚𝑚2
�∆ +

𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵
𝜌𝜌0

�1 + 2
𝑆𝑆𝑏𝑏
𝑆𝑆12

��     (9) 

 



Here 𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵 is the absolute error of BPM readings, which includes accuracy of BPM alignment 
with respect to the other and with respect to the dipole and the reading accuracy per se. 
Assuming 1.6 MeV nominal energy of the beam (the worst case) we get: 

 
𝛿𝛿 = 1.24∆ + 7.52𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵    (10) 

 
If the accuracy of magnetic field measurement/setting is 10-3 and 𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵 = 0.1 mm then 

𝛿𝛿 = 2 ∙ 10−3. For the case of relaxed requirements of BPM measurement/setting error of 
𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵 = 0.5 mm we get 𝛿𝛿 = 5 ∙ 10−3. 

 

 
Figure 5: Schematics of BPM settings with respect to the dipole. 

 
Dipole with soft-edge field 
The real dipole has a soft-edge field. While formulas (6-10) might be a good approximation 

of beam dynamics in the real dipole it is worth to simulate beam trajectory in the soft-edge 
dipole, introduce the errors in BPM readings and field settings and see with what accuracy we 
can measure beam energy in real life.  

The algorithm of beam dynamics simulation in varying dipole field is discussed in Appendix 
A. Here we will consider the results of these simulations for the case of 1.6 MeV beam. 

We choose such strength of realistic dipole field that the resulting dispersion downstream 
of the bend is equal to nominal 70 cm. Figure 6 shows the field along beam trajectory and the 
actual beam trajectory between BPMs 2 and 3 along with the field and trajectory in equivalent 
hard-edge dipole.   

Now, we will consider various measurement and setting errors, which affect the accuracy of 
energy measurement. 

  



 
Figure 6: Dipole magnetic field along e-beam trajectory (left) and e-beam trajectory from BPM 2 
to BPM 3 (right). The solid red line represents simulation results for the realistic soft-edge 
dipole. The dotted blue line represents simulation results for equivalent hard-edge 
approximation. 

 
1.) Accuracy of the magnetic probe 

The dipole field will be mapped in the region covering possible trajectories of the 
electron beam with magnetic probe – NMR probe in homogeneous field region and Hall 
probe in the edges. For NMR typical measurement accuracy is 10-4 or 0.02 G for ~200 G 
filed. We believe that since the Hall probe is installed together with NMR in the same 
holder and can be calibrated vs. NMR in homogeneous field, the accuracy of edge field 
measurement also will be 0.02 G. We also consider the worst case scenario assuming 
0.1 G accuracy of the field measurement.  
Therefore, in our simulations we introduce 0.02 G (0.1 G for worst case scenario) of 
systematic “shift” in the realistic dipole field.  

2.) Inclination of magnetic probe with respect to the dipole field 
If the axis of magnetic probe is inclined with respect to the dipole field by angle α then 
the measured field is reduced by cos(α). In simulations we will assume this angle to be 
1o (2o for the worst case scenario). 

3.) Accuracy of setting dipole current 
We procured the dipole power supply, which provides 3∙10-5 accuracy. We also will 
develop and implement an automated hysteresis cycling system to set the dipole 
operating point. In simulations we assume overall accuracy of field setting to be 10-4. 

4.) Field quality (asymmetry of the edges) 
While ideal 180o bend is a magnetic mirror, the real dipole field is not ideally symmetric. 
This is especially true for symmetry of the entrance/exit edge fields. 



In principal, if this asymmetry is properly measured, than one can account for it in 
simulations and adjust dipole current accordingly. In such scenario one still gets nominal 
dispersion D in BPM3. Yet, there also is nonzero D’ downstream of the dipole. If D’ is 
small enough it will neither affect energy measurement, nor hinder the cooling process 
in the second CS. 
For simulations we will assume that possible misbalance in edge fields (see Fig. 7 for 
details) is not higher than 0.5 G (and we are not “compensating” resulting dispersion 
change). 
 

 
Figure 7: The difference between asymmetric entrance and exit edge fields (solid red line). For 

the reference the dotted blue line shows the edge field profile (divided by 200). 
 

5.) Ambient magnetic field 
There is an ambient magnetic field present in the RHIC tunnel. It is probable that the 
dipole will be measured in the magnetic lab only and that this measurement will not be 
repeated inside the tunnel. The ambient field shall be well shielded inside the dipole and 
not that well shielded around dipole entrance and exit. 
The transverse field at dipole location inside RHIC tunnel was measured to be about 
0.35 G. For our simulations we assume that the unaccounted for dipole field of 0.4 G is 
present in 35 cm long regions downstream of BPM 2 and upstream of BPM 3.  

6.) Beam trajectory errors 
Finally, there are errors in BPM readings due to reading accuracy (cable length, 
electronics noise etc.) and due to the errors in BPMs positioning both with respect to 
each other and with respect to the mapped dipole field. In our simulations we assume 
that all these errors result in BPM readings accuracy to be 0.1 mm (0.5 mm in the worst 
case scenario). 
We suggest that for the sake of simplicity of interpreting results energy measurement is 
done for zeroed entrance angle of the beam trajectory. Assuming that BPMs 1 and 2 are 



set with 0.1 mm accuracy we get the entrance angle with 0.4 mrad accuracy (2 mrad for 
the worst case scenario). 
 

We introduce all the described errors to our simulations in such fashion that the total 
resulting measurement error is maximized. Next, we simulate 5%-off-energy beam trajectory in 
the dipole (Fig. 8) and calculate the measured energy according to (5) with  𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥2 = 0 and 
𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑥𝑥3, assuming 0.1 mm accuracy of BPM readings. 

As a result we measure the real beam energy with 2.6∙10-3 accuracy. In the worst case 
scenario the measurement accuracy becomes 6.7∙10-3. 

 

 
Figure 8: 5% off energy beam trajectory (solid red line) and reference on-energy beam 
trajectory (dotted blue line) in realistic soft-edge dipole. The off-energy beam trajectory 
includes all errors listed above.  
 

Conclusion 
We estimated the accuracy of absolute energy measurement utilizing LEReC 180o dipole 

magnet.  We performed both the analytical estimates in hard-edge bend approximation and 
simulations of beam trajectory in realistic soft-edge dipole field.  

We conclude that assuming various errors listed in Table 1 we expect measuring beam 
energy with 2.6∙10-3 accuracy. In the worst case scenario we can measure beam energy with 
6.7∙10-3 accuracy.  

It is essential to use formula (5) to calculate real beam energy. 
 



 
Table 1: Upper limit on various errors affecting accuracy of beam energy measurement 
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Appendix A: Proper simulations of beam trajectory in dipole field 
Since we are interested in rather accurate measurement of beam energy it is essential to 

perform proper simulation of beam motion in the dipole field without neglecting “small” values 
acquired at each infinitesimal step. We suggest using the algorithm described by the formulas 
listed below and geometrically explained in Fig. A1. 

 

 
Figure 1A: Beam trajectory through one infinitesimal step ds. 

 
In the following formulas j is the step number. The notations are explained in Fig. 1A. 
 

𝜌𝜌𝑗𝑗 =
𝐵𝐵𝜌𝜌

𝐵𝐵(𝑧𝑧𝑗𝑗−1)
,    𝑑𝑑𝜃𝜃𝑗𝑗 =

𝑑𝑑𝑑𝑑
𝜌𝜌𝑗𝑗

 

𝑑𝑑𝑧𝑧𝑗𝑗 = 𝜌𝜌𝑗𝑗�sin�𝜃𝜃𝑗𝑗−1 + 𝑑𝑑𝜃𝜃𝑗𝑗� − sin�𝜃𝜃𝑗𝑗−1�� 
𝑑𝑑𝑥𝑥𝑗𝑗 = 𝜌𝜌𝑗𝑗�cos�𝜃𝜃𝑗𝑗−1� − cos�𝜃𝜃𝑗𝑗−1 + 𝑑𝑑𝜃𝜃𝑗𝑗�� 

𝑧𝑧𝑗𝑗 = 𝑧𝑧𝑗𝑗−1 + 𝑑𝑑𝑧𝑧𝑗𝑗 ,    𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑗𝑗−1 + 𝑑𝑑𝑥𝑥𝑗𝑗 ,    𝜃𝜃𝑗𝑗 = 𝜃𝜃𝑗𝑗−1 + 𝑑𝑑𝜃𝜃𝑗𝑗  
 
The only requirement to this algorithm is that ds is small enough that change in B over one 

step is negligible. For our simulations we initially choose 𝑑𝑑𝑑𝑑 = 1 µm. For such choice the 
relative change in magnetic field never exceeds 5∙10-5.  Eventually, we increased ds to 10 µm, 
checking that the results of simulations do not change. 
  



Appendix B: Algorithm of energy measurement 
Below we suggest an algorithm for absolute measurement of beam energy. 
 
Prerequisites: 
1.) Dipole field is mapped with 0.02 G accuracy. 
2.) The hysteresis cycling for precise setting of dipole working point has being worked out. 
3.) Two BPMs in front of the dipole (BPMs 1&2) and one BPM downstream of the dipole 

(BPM 3) are set with the accuracy of 0.1 mm with respect to one another and with 
respect to the mapped dipole field. 

 
Measurement procedure: 
1.) Simulate beam motion in the measured dipole field. For the nominal beam energy set 

dipole current so that the dispersion at BPM 3 location is equal to the nominal 70 cm 
dispersion. 

2.) Utilizing CS correctors zero both the horizontal beam displacement in BPM 2 and beam 
trajectory angle in BPM1-BPM2 drift. 

3.) Measure obtained beam displacement in BPM3. 
4.) Apply equation (5) to calculate beam energy. 

 
 
As a final note, we might want to change the current design of BPM 1 from regular BPM to 

hybrid BPM. 


