

BNL-108532-2015-TECH C-A/AP/549;BNL-108532-2015-IR

Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

C. J. Gardner

August 2015

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

C-A/AP/549 August 2015

Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

C. J. Gardner

Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973

U.S. Department of Energy Office of Science, Office of Nuclear Physics

Notice: This document has been authorized by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this document, or allow others to do so, for United States Government purposes.

Polarized Proton Parameters for the 2015 PP-on-Au Setup in RHIC

C.J. Gardner

August 25, 2015

Proton mass-energy equivalent $m_p c^2 = 938.272046(21)$ MeV [1] Proton g factor $g_p = 5.585694713(46)$ [1] Proton $G = (g_p - 2)/2 = 1.79284735650$ Booster Injection Kinetic Energy = 200 MeV Booster Extraction $G\gamma = 4.5$ Nominal Booster radius-of-curvature $\rho = 13.8656$ m Nominal AGS radius-of-curvature $\rho = 85.378351$ m Ags Injection $G\gamma = 4.5$ Ags Extraction $G\gamma = 45.5$ Nominal RHIC Circumference: $C_r = 3833.845181$ m RHIC Store $G\gamma = 198.5$

Circumference Shifts

The RHIC circumference shift due to snakes [2, 3] is

$$\delta L = 26.1928376473988/(B\rho)^2 \tag{1}$$

where the units of δL and $B\rho$ are m and Tm respectively.

Shift at $G\gamma = 45.5$ due to snakes: $\delta L = 4.1582$ mm

Shift at E = 100 GeV due to snakes: $\delta L = 0.2354$ mm

Shift at $G\gamma = 191.5$ due to snakes: $\delta L = 0.2344$ mm

Shift at $G\gamma = 198.5$ due to snakes: $\delta L = 0.218156$ mm

Shift at E = 250 GeV due to snakes: $\delta L = 0.0377$ mm

There are also circumference shifts δD due to unequal ion rigidities in the DX magnets.

The total RHIC circumference shift is $\delta C = \delta L + \delta D$.

Ags Circumference at Extraction = $4(C_r + \delta C)/19$.

The DX magnets give shift $\delta D = 12.807866$ mm at blue injection [4].

The DX magnets give shift $\delta D = 11.225979$ mm at blue store [4].

References

- P.J. Mohr and B.N. Taylor, "Values of Fundamental Physical Constants", Physical Constants, Physical Reference Data, www.nist.gov.
- [2] W. MacKay, "Path Length through Helical Snakes and Rotators", C-A/AP/Note 140, March 2004.
- [3] Formula (1) follows from those derived in [2]. It is used by Al Marusic to obtain path lengths in the RHIC snakes.
- [4] As calculated by Al Maursic.

Parameter	Injection	Extraction	Unit
$G\gamma$	2.17500674495	4.5	
W	200.000	1416.76626314	MeV
cp	644.444581326	2160.05810228	MeV
E	1.13827204600	2.35503830914	GeV
B ho	2.14963573675	7.20517826462	Tm
β	0.566160421483	0.917207203761	
γ	1.21315779454	2.50997386012	
η	-0.6362	-0.1159	
h	1	1	
hf	841.166737926	1362.77884657	kHz
R	$201.780/(2\pi)$	128.4526/4	m

Table 1: Polarized Protons in Booster

Table 2: Polarized Protons in Booster

Parameter	$G\gamma = 3$	$G\gamma = 4$	Unit
$G\gamma$	3.0	4.0	
W	631.753493427	1155.09533990	MeV
cp	1.25881919359	1.87131840691	GeV
E	1.57002553943	2.09336738590	GeV
B ho	4.19896885328	6.24204631230	Tm
(B ho)/ ho	0.302833548731	0.450182199999	Т
β	0.801782621988	0.893927372480	
γ	1.67331590675	2.23108787566	
η	-0.3143	-0.1581	
h	1	1	
hf	1.19123988020	1.32814294910	MHz
R	$201.780/(2\pi)$	$201.780/(2\pi)$	m

Parameter	Injection	Transition	Extraction	Unit
$G\gamma$	4.5	15.2392025302	45.5	
W	1.41676626314	7.03703998500	22.8737819686	GeV
cp	2.16005810228	7.91992760710	23.7935613552	GeV
E	2.35503830914	7.97531239100	23.8120540146	GeV
B ho	7.20517826462	26.4180348630	79.3667776499	Tm
β	0.917207203761	0.993055471537	0.999223390833	
γ	2.50997386012	8.5000	25.3786245857	
η	-0.1449	0.0	0.01229	
h	12	12	12	
hf	4.08833653972	4.42642071890	4.45370715516	MHz
R	128.4526	128.4526	128.458549862	m

Table 3: Polarized Protons in AGS for PP-on-Au Stores

Table 4: Polarized Protons in RHIC for PP-on-Au Stores

Parameter	Injection	$G\gamma = 191.5$	$G\gamma = 198.5$	Unit
$G\gamma$	45.5	191.5	198.5	
W	22.8737819686	99.2816915541	102.945084479	GeV
cp	23.7935613552	100.215571393	103.879119213	GeV
E	23.8120540146	100.219963600	103.883356525	GeV
B ho	79.3667776499	334.283163964	346.503444104	Tm
β	0.999223390833	0.999956174327	0.999959210867	
γ	25.3786245857	106.813332047	110.717735830	
η	3.560×10^{-4}	1.8209×10^{-3}	1.8270×10^{-3}	
f	78.1352132485		78.1928640114	kHz
h	360		360	
hf	28.1286767694		28.1494310441	MHz
δC	16.9661		11.4441	mm

Parameter	Injection	$G\gamma = 477.5$	E = 250 GeV	Unit
$G\gamma$	45.5	477.5	477.699235564	
W	22.8737819686	248.957459646	249.061727954	GeV
cp	23.7935613552	249.893970242	249.998239285	GeV
E	23.8120540146	249.895731692	250	GeV
B ho	79.3667776499	833.556560794	833.904364882	Tm
β	0.999223390833	0.999992951261	0.999992957140	
γ	25.3786245857	266.336115157	266.447243170	
η	3.560×10^{-4}	1.8945×10^{-3}	1.8945×10^{-3}	
h	360	360	360	
hf	28.1287707269	28.1504646061	28.1504647716	MHz
δC	4.160	0.038	0.038	mm

Table 5: Polarized Protons in RHIC for 250 GeV PP Stores

Table 6: Polarized Protons in RHIC for 255 GeV PP Stores

Parameter	Injection	$G\gamma = 487.0$	E = 255 GeV	Unit
$G\gamma$	45.5	487.0	487.253220275	
W	22.8737819686	253.929207188	254.061727954	GeV
cp	23.7935613552	254.865752145	254.998273809	GeV
E	23.8120540146	254.867479234	255	GeV
B ho	79.3667776499	850.140640113	850.582684802	Tm
β	0.999223390833	0.999993223582	0.999993230624	
γ	25.3786245857	271.634948862	271.776188033	
η	3.560×10^{-4}	1.8950×10^{-3}	1.8950×10^{-3}	
h	360	360	360	
hf	28.1287707269	28.1504722721	28.1504724704	MHz
δC	4.160	0.038	0.038	mm