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Ion Emittance Growth Due to Focusing Modulation from Slipping
Electron Bunch

Low energy RHIC operation has to be operated at an energy ranging from y=4.1
to ¥=10. The energy variation causes the change of revolution frequency. While the

rf system for the circulating ion will operate at an exact harmonic of the revolution
frequency (h=60 for 4.5 MHz rf and h= 360 for 28 MHz rf.), the superconducting rf
system for the cooling electron beam does not have a frequency tuning range that is
wide enough to cover the required changes of revolution frequency. As a result,
electron bunches will sit at different locations along the ion bunch from turn to turn,
i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At
cooling section, ions see a coherent focusing force due to the electrons’ space
charge, which differs from turn to turn due to the slipping. We will try to estimate
how this irregular focusing affects the transverse emittance of the ion bunch.

Time Domain Analysis

Assuming the line charge distribution of the electrons and the ions are Gaussian,
their currents can be written as
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The electron current as observed by an ion bunch at its M " revolution is given by
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with f, . being the repetition frequency of the electron beam and f is RHIC

revolution frequency, i.e. ~78 KHz. The ions sitting at the center of the bunch, i.e.
7=0, getakickatits M" revolution of

1 We consider one circulating ion bunch.
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Figure 1: mountain range plot of electron current evolution for 5 successive turns as
observed by an ion bunch at the cooling section. The electron current is calculated

from eq. (3) for =41, o,=Ins , AT,=10ns, Q,=0.8nC , f . =4.56MHz,
0, =5.8m/(4c)=19.95ns and N; =0.75x10°.
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Figure 2: focusing strength seen by ions at the center of the ion bunch in the cooling
section. The abscissa is the independent time variable in number of turns and the
ordinate is the focusing strength of the electrons at the location of the ion bunch
center as calculated from eq. (5) and (8) (they overlap).
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Assuming AT, >> o, only the closest electron bunch, with i=0, has contribution

and hence eq. (5) simplifies to
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Using eq. (9) from [1], we have
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The evolution of the phase is given by
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Fourier Analysis
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In order to find out the resonant condition for emittance growth, we Fourier
decompose eq. (1) as

with
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The average electron current seen by ions is thus
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Applying eq. (27) to the flrst term of eq. (16) produces
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Hence the resonant condition is
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with K being an integer. Letting 2Q,, be the fractional part of 2Q and v, be the
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fractional part of , €g. (31) becomes

rev

2Q,.. = Kxkv,.
If ZQ—I—_Ek =0, eq. (28) becomes
2(2)2 oAy, | A
u (N,y)=— " Ne T sin(2y)

e

eq. (29) becomes

e [1+cos(4y) .

oAy 2 _4k’r’cl
Uz(N,‘/7)z87Z3(e—wak] NZe *%

Inserting eq. (33) and (34) into eq. (15) yields
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Simple Tracking

Using the normalized canonical variables:
P =P /2] cosy (40)

Jo.
X =x/Q, =v2Jsny , (41)

the one turn transfer map can be written as

and

X, (k+1)=cos(27Q,) X, (k) +sin(2zQ,) R, (k) (42)

and
Pn(k+1)=cos(27er) Pn(k)—sin(27rQX)Xn(k)+as‘an(k+1). (43)

The tracking is done in Mathcad and the results are shown in fig. 7 for the relative
growth of the average action growth of 300 macro-particles with the same initial
action and evenly uniformly distributed phases. The betatron tune is taken as
Q, =28.15 and the electron bunch repetition frequency is taken such that the

erep | ey 15 0.3. As shown in fig. 3, the square growth formula, eq.

(39) fully agrees with the tracking results. Fig. 8 shows the phase space plot
comparison between the initial and final distribution after 2000 turns.
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Figure 3: comparison of average action growth as calculated from eq. (38) and (39)
with direct time domain tracking according to eq. (40) and (43).
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Figure 4: comparison of phase space distribution. The blue curve is the initial phase
space distribution in normalized variables and the red curve is the phase space
distribution after 2000 turns.

Requirement on Electron Bunch Repetition Frequency Accuracy

In order to store the ions for N___ turns with the action growth below a factor of

store

two, the highest order resonances to avoid is given by eq. (39), i.e.
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Eq. (45) suggests that the growth will always slower than the requirement if the

space charge tune shift is smaller than
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If eq. (46) is not satisfied, eq. (45) requires
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Figure 5: required electron repetition frequency accuracy level as a function of ion
beam store time. The plot is generated from eq. (49) forAT,6=10ns, o, =1ns,

Q.=4nC, Av ., =3x10"and y=4.1.
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Figure 5 shows the dependence of the required electron bunch repetition frequency
as a function of RHIC ion beam storing time as calculated from eq. (49). For
parameters listed in the caption of fig. 5, the required accuracy of the electron bunch
repetition frequency is 3 KHz.



Estimation of Required Arriving Time Jitter Level

In the presence of arriving time jitter, eq. (13) becomes
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with 6,,, being the arriving time error in the M™ turn and7 is the location of the

ion. If v, =0, eq. (50) becomes
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with the rms variation of
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Eq. (13) of [1] reads
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with & being the characteristic parameter of the time correlation of the jitter, i.e.
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Assuming o — << , i.e. there is no correlation between arriving time jitters for two
different turns, eq. (57) reduces to
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Requiring the growing time to be longer than the store time leads to
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Fig. 6 shows the required arriving time jitter level as a function of the beam store
time. For the action growth below a factor of e, the required arrival time jitter is 37

ps.
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Figure 6: required time jitter level as calculated from eq. (62). It is assumed that
there is no correlation between time jitters of two different turns.

Estimation of Required Peak Current Jitter Level

The maximal focusing strength is at the electron bunch center and is related to the
electron bunch peak current by

ey =0o-1,(M,0), (63)
with & defined in eq. (9). The rms variation of the focusing strength is thus
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According to eq. (14), the coefficient & can be written as
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Inserting eq. (65) into (64) produces
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which combines with eq. (57) leads to
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Assuming peak current jitters from two different turns are uncorrelated, i.e. @ — o,
eq. (67) reduces to
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Hence requiring the action growth time longer than the beam store time (or cooling
time) gives the requirement for the current jitter as

2
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Fig.7 plots the required peak current jitter level as calculated from eq. (71) with
parameters given in the caption of fig. 5. As shown in fig. 7, in order to have the local
growth time smaller than 1000 seconds, the required peak current jitter level is
below 4.3%.
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Figure 7: required relative peak current jitter level as calculated from eq. (71). The
jitters from two different turns are assumed to be uncorrelated. The parameters
applied are given in the caption of fig. 5.

APPENDIX A:

Now we will find the coefficient & so that dg,, has the same definition of reference

[1]. According to eq. (1) of [1], the equation of motion reads
d2
45 = -Q’x-6,(0)Qe, (), (72)
with
6=2nt/T,,. (73)

Inserting eq. (73) into eq. (72) leads to
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Taking
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and inserting it into eq. (74) leads to
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Integrating eq. (76) for the M" turn leads to
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The space charge field from the electron beam in the co-moving frame is

E '=—2T1",
1 280 1
E,'=0,
and
B'=0
Explicitly, eq. (78) can be written as
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In lab frame, the field is Lorentz transformed to
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Thus the space charge force that the ions experienced from the electrons is
Zen,
F.=ZelE —-fcB |=—— X,
X i ( X ﬂ y) 28072

and

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)



2
Zen,

F,=ZelE,+fcB, |=———YV.
y 1 ( y ﬂ X) 2807/2 y
The equation of motion is thus
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Comparing eq. (89) with eq. (74) yields
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Comparing eq. (90) with eq. (5) leads to
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