

BNL-101858-2014-TECH AD/RHIC/RD/76;BNL-101858-2013-IR

Shielding of Multi-Leg Penetrations into the RHIC Collider

P. J. Gollon

October 1994

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

RHIC PROJECT

Brookhaven National Laboratory

Shielding of Multi-Leg Penetrations into the RHIC Collider

Peter J. Gollon

SHIELDING OF MULTI-LEG PENETRATIONS INTO THE RHIC COLLIDER

Peter J. Gollon

May 23, 1994

I. INTRODUCTION:

This report documents the neutron leakage calculations done for the multi-leg penetrations leading into the RHIC Injection Line and Collider tunnels. These penetrations are labyrinths for personnel and equipment access, or air ducts for emergency ventilation. With the exception of the new structures at the 10 and 12 o'clock areas, the tunnel penetrations were designed for the much higher beam energies and currents of the former CBA project, so no problems were anticipated when the lower intensity heavy ion accelerator RHIC was placed in the tunnel. However, it appeared prudent to recalculate the attenuation and neutron dose equivalent outside the as-built penetrations at the same time that the labyrinths for the newly designed 10 and 12 o'clock regions were being calculated.

The facilities covered by this report are shown in Figure 1. In particular, this report includes the transfer tunnel from the AGS, the curved RHIC ring tunnels, and all intersection regions. Calculated results are given for neutron dose attenuation of all the personnel access labyrinths and air vents. Combining this calculated dose attenuation with standard beam loss assumptions yields the additional dose outside these tunnels resulting from the presence of these penetrations. Although within the geographical scope of the RHIC Project, this report does not address any straight penetrations, i.e. those in which the tunnel can be viewed directly from the outside, since they require different calculational techniques and approximations. Examples of such straight penetrations are the cryogenic "chimneys" next to each experimental area, the survey holes around the ring, and the cable ducts which will be filled to an as yet unknown degree with shielding material in the form of polyethylene and copper cable.

II. DESCRIPTION OF THE CALCULATION:

The dose (or dose equivalent) in the vicinity of a penetration in a hadron shield may be thought of as consisting of three parts. The first component is the dose which would be present in the absence of any penetration. In the present situation, this is determined by the propagation of the hadron cascade from the loss point through the hadron shield to the outside world. There are a variety of methods for calculating this, with Monte Carlo methods currently being preferred over analytic approximations for all but the simplest situations.

The second component may be thought of as the additional radiation propagating through the shield as a result of the shield's being weakened by the removal of material to make the penetration. This additional radiation passes through a hadron shield of reduced thickness, but is otherwise similar in spectral quality to the radiation passing through the full thickness of the shield. This component is discussed at length by Stevens [ST-94]. For all the 3-legged labyrinths, estimates

are made here of the additional low energy neutron dose ("punch-through") caused by the hadron cascade short-circuiting the first two legs of the labyrinth..

The third component is the radiation which passes through the penetration itself, with only minimal interaction in the bulk shield. In the case of a straight penetration into the accelerator enclosure, this component could include secondary and later generation particles originating in hadron cascades in the accelerator components or facing walls. Because they do not come from an equilibrium spectrum, these particles would have their average energies well above those which pass through the thick hadron shield.

In the case of a multi-legged labyrinth the high energy particles characteristic of the hadron cascade do not get past the first bend of the labyrinth. Those particles that do get past the bends in a labyrinth, and thus carry most of the dose equivalent, are neutrons with energies between thermal and a few MeV. The spectrum of neutrons propagating down a labyrinth softens with increasing distance from the source, and is softer for a softer neutron source. Vogt [VO-75] has some particularly clear calculational results on this subject. Because of the different energy spectra of the particles carrying the dose equivalent in the case of straight and multi-leg penetrations, different approximations are necessary for these two situations. The present work deals primarily with the third component, i.e., the low energy neutrons emerging from a multi-legged labyrinth.

The first step in the calculation is the choice of a beam loss scenario: how many high energy protons or ions will be lost at a particular location, and what hadron flux will that loss produce at the tunnel wall where the labyrinth enters the RHIC enclosure. This beam loss scenario sets the scale for the calculations: if more or fewer particles are actually lost, then the resulting dose equivalents will be proportionately higher or lower.

The second step is the calculation of the attenuation of the dose equivalent in the labyrinth itself, both as a result of simply moving further away from regions of higher flux, and as a result of turning a corner. The attenuation of radiation as it propagates through the labyrinth depends not only on the labyrinth design *per se*, but also on the position of the labyrinth in relation to the beam loss point or RHIC magnet.

Finally, for each three-legged labyrinth considered I have made a rough estimate of the extra high energy dose equivalent resulting from a weakening of the shield caused by the presence of the labyrinth. The mechanism considered is that the radially propagating high energy cascade short circuits the first two legs by "punching through" the shield to the bend between the second and third legs, and then produces evaporation neutrons which diffuse out of the third leg unimpeded.

III. BEAM LOSS SCENARIOS:

RHIC is a complex of two counter-rotating intersecting heavy ion accelerator-storage rings in the same underground tunnel. Each ring will be filled in turn from the existing Alternate Gradient Synchrotron (AGS) via a transfer line and injection system. The beam particles could range from protons to gold ions. The day-one operating scenario outlined in the Conceptual Design Report uses 57 AGS bunches to fill each RHIC ring, each bunch having either 1 x 10⁹ Au ions, or 1 x 10¹¹

protons. A RHIC ring will be filled by AGS pulses consisting of either 3 bunches of heavy ions at $10.4~\rm GeV/u$ with a $1.5~\rm second$ cycle time, or $12~\rm bunches$ of protons at $28~\rm GeV/u$ every $2~\rm seconds$. A stacked current four times higher is assumed here for calculational purposes; this is assumed to be achieved using twice as many AGS bunches, each with twice the number of particles given in the Design Manual. Thus the stored current in each RHIC ring will be taken as either $2.28~\rm x~10^{11}~\rm Au$ ions, or $2.28~\rm x~10^{13}$ protons.

The stored beam will be accelerated to experimental energy (typically between a few times the injection energy and 250 GeV/u for protons or 100 GeV/u for gold) and stored for a period of hours [BNL-89]. When the beam quality deteriorates sufficiently to hamper the experiments by reducing the interaction rate or raising the background rate, it will be dumped in special-purpose beam dumps, and the injection, storage and acceleration cycle will start anew. However, the losses during routine operation will be minimal, and it is shown by Harrison and Stevens [HA-92] that large losses in the Collider during a possible fault, rather than the low chronic losses, are the limiting factor for personnel exposure.

There are a number of different beam loss scenarios which have been considered separately:

Transfer Line Fault Losses: It is the intention of the RHIC Project to provide interlocked radiation monitors at appropriate locations outside the shielding to inhibit further AGS operation if large transfer line losses occur on two successive AGS pulses. [ST-92] Because each AGS proton pulse has four times the number of bunches as a heavy ion pulse, more radiation is produced *per pulse* for protons under fault conditions involving the loss of an entire pulse in the Transfer Line. Thus the source term used here for the transfer line consists of losses which occur during two AGS pulses of 2.4 x 10¹² protons at 28 GeV/c.

Chronic Transfer Line Losses: The various routine beam losses in the transfer line are discussed by Harrison and Stevens [HA-92]. In particular, the largest routine operational loss was taken to be 0.05% of the beam on any magnet in the Transfer Line. When the loss of the same fraction of the Au and proton beams are compared, the Au ions produce more radiation than do the protons. When the operating cycle of RHIC is factored in, the case producing the highest dose rates is the loss of 8.28 x 10⁸ Au ions per hour, or 8.78 x 10¹¹ Au ions per year [ST-92]. If the largest chronic loss of 0.05% occurred at the same location for a full year's operation of the Transfer Line, the resulting dose outside the shielding would be about 18 times greater than that resulting from the loss of two pulses of 2.4 x 10¹² protons at 28 GeV/c. Both the Transfer Line chronic losses and fault losses need to be considered separately.

RHIC Tunnel Beam Losses: Beam losses can range from routine and expected but low operating losses, to the extremely large loss of a major fraction of the accelerator intensity during a fault condition. All calculations here assume an intensity of four times the Design Manual beam intensity, that is, 2.28 x 10¹¹ Au ions per beam. The highest anticipated stored beam energy (100 GeV/u) for heavy ions was used for losses inside the RHIC tunnel. Because of the extremely clean nature of the stored RHIC beam, the dose from the chronic losses will be negligible compared to the possible dose from a fault.

We make the reasonable assumption that a large uncontrolled beam loss (fault condition) would involve the beam in only one ring. Although it is easy to conceive of an entire beam being lost, it is not possible to define a sequence of events which would realistically lead to an uncontrolled loss of 100% of the beam at a single point. We thus follow Harrison and Stevens [HA-92] in assuming that the most serious but still realistic failure scenario ("maximum credible fault") involves the loss or scraping of not more than 50% of one beam at an arbitrary location (i.e. a magnet), with the remainder of the loss being distributed around the ring. They consider faults involving the loss of an entire beam at one point to be possible only at aperture-defining locations such as high-beta quadrupoles, limiting aperture collimators and the beam dump. So long as aperture defining objects are not placed near penetrations into the RHIC tunnel, it is not necessary for purposes of this calculation to consider the loss of 100% of the stored beam at a single point. Calculations by Stevens again indicate that loss of the Au beam is more effective than the loss of the proton beam in producing secondary radiation, so we consider only that case here.

RHIC Experimental Hall Beam Losses: The approach discussed above makes sense when applied to a magnet enclosure, within which the size and location of the magnets and other large objects are known. It does not make sense to use this approach with the experimental halls, since it is not useful to calculate a "worst case" situation with an otherwise empty hall. The empty halls have thinly shielded areas such as their roofs and front walls. The apparatus that goes inside a hall will be massive enough to provide significant shielding against losses. One attempt to calculate the self-shielding of a RHIC detector has been made by A. J. Stevens for the STAR detector. [ST-92b] This self-shielding must be considered when calculating dose rates outside the shield, whether that dose occurs as a result of radiation penetrating the thin shield, or escaping through openings in it. The appropriate standard for the attenuation of a multi-leg penetration in an experimental hall is that the labyrinth provide better attenuation than the nearby fixed shielding. For then the addition of enough additional shielding or apparatus inside the hall to make the radiation levels outside the shield acceptably low, will also make the levels outside the penetration acceptably low. Of course, the definition of an "acceptably low" level depends on the accessibility and occupation of the area; and the thinly shielded experimental hall roofs will be fenced if the anticipated radiation levels there require it.

In light of the preceding discussion, although the nominal dose rate at the opening of each vent in an experimental hall is calculated using an unrealistic empty hall assumption, and the dose-equivalent attenuation of each duct is estimated, these two numbers are *not* multiplied together to "predict" what the DE rate outside the duct would be in the event of a beam loss inside the hall.

IV. MONTE CARLO CALCULATION OF SOURCE TERM:

The dose rate outside a penetration can be calculated as the product of the dose rate incident on the mouth of the penetration in the magnet enclosure, multiplied by the neutron attenuation of the penetration itself. The hadron Monte Carlo cascade program CASIM [VAN-75], as modified and updated by Alan Stevens, [ST-90] was used by Stevens to determine the dose striking the tunnel wall at the location of each labyrinth mouth.

For losses in the Transfer line, we use the "sparse lattice" calculations for 10.4 GeV/u Au ions and 28 Gev protons reported by Stevens in ST-92. That calculation considers the loss of the

transported beam inside a magnet within a magnet enclosure of radius 1.5 meters. The secondary and subsequent generation particles are transported through the magnet and into the earth tunnel walls. Results for the maximum star density as a function of radial shielding thickness are shown in that reference as Figures 2 and 3.

Stevens computed two different cases for losses inside the RHIC Collider. The first case assumed the beam scraped on the beampipe of RHIC quadrupole Q1. The second case assumed the scraping occurred on a quadrupole in the regular lattice. In both cases, he then propagated the lost beam and secondary radiation through the downstream magnets inside a typical RHIC magnet enclosure of radius 2.5 meters. [A. J. Stevens, private communication]. Both calculations gave essentially identical results for the maximum star density at the tunnel walls $(1.35 \times 10^{-4} \text{ star/cm}^3 \text{ in soil per ion lost})$. Plots of the star density in the tunnel wall as a function of distance from the loss point are shown in Figure 2. None of the labyrinths entered tunnels whose radius exactly matched the 2.5 m radius assumed in the Monte Carlo cascade calculations, so the calculated star density was scaled to the appropriate tunnel radius using inverse square scaling.

The result of a CASIM calculation is the star density for hadrons with energies above a particular threshold, usually 300 Mev/c, equivalent to 49 Mev for nucleons. This star density must be converted to dose equivalent to be useful here. Following Stevens [ST-92], we use Van Ginneken's original star to dose conversion factor, rather than the lower one proposed by Stevenson [ST-88]. Van Ginneken's conversion factor of 9.0 x 10^{-6} rem/star in concrete (density = 2.3 gm/cm³) can be generalized as:

Dose-equiv (rem) =
$$2.25 \times 10^{-7} \times L \times (\text{stars/cm}^3)$$
, (1)

where L is the high energy neutron interaction length in cm. For BNL soil (density = 1.8), L = 53.3 cm. This conversion factor is then modified by an additional factor of two in anticipation of a doubling of the quality factors for low energy neutrons, as given in the new facility design criteria in the "RadCon" Manual [DOE-92].

However, not all of the radiaton incident on the mouth of a labyrinth is equally well propagated through the first leg of that labyrinth. Some of the dose equivalent inside the magnet enclosure is due to high energy hadrons propagating in a generally forward direction, down the magnet enclosure. Those high energy hadrons which do enter the labyrinth at a such a shallow angle will bury themselves in the downstream labyrinth wall, rather than propagate in a direction nearly perpendicular to the beam. Thus the high energy part of the spectrum contributes minimally to the leakage through the labyrinth. In contrast to this, the lower energy neutrons which emerge from the magnets or nearby walls have an approximately isotropic distribution. Thus they can freely propagate down the first leg of any penetration that "looks" at the beamline. Vogt [VO-75] suggests 20 MeV as the energy above which "neutrons may be neglected if the source cannot be seen from the point of detection.... This effect is due to the ratio of elastic and total cross-section involving a decreasing albedo with increasing energy in this range." Vogt's calculations, using the analog Monte Carlo program SAM-CE, indicate that the exact spectral shape of the incident spectrum is not critical to the dose attenuation, and that neutrons of all energies below this suggested maximum have approximately the same attenuation.

To determine the fraction of incident dose equivalent carried by neutrons of energy less than 20 MeV, we need to know the incident neutron spectrum. For a spectrum characteristic of a fully developed hadron cascade in soil or concrete, Figs. VI.12 and VI.13 of Van Ginneken and Awschalom [VA-75] suggest that 65% of the dose equivalent is carried by neutrons below 20 MeV. Of course, the spectrum outside a RHIC magnet is far from an equilibrium spectrum, and would thus be expected to be harder than an equilibrium spectrum. The corresponding results for a much harder spectrum outside a 5 cm radius iron target may be obtained from Fig. VI.8 as 15%. This figure is an underestimate for two reasons: the RHIC magnets are thicker than a mere 5 cm, and Van Ginneken and Awschalom ignored the "hole" in the iron non-elastic cross section below about 1 MeV. This effect is taken into acount by Gollon [GO-76] for an iron magnet of 28 cm radius. Figure 3 of this reference indicates that fully 85% of the dose equivalent is carried by neutrons of energy less than 20 MeV. This latter figure will be used in the subsequent calculations. Use of softer this spectrum also results in a slightly higher flux-to-dose conversion factor of 10.2 x 10⁻⁶ rem/star in concrete [GO-76], or more generally:

Dose-equiv (rem) =
$$2.5 \times 10^{-7} \times L \times (\text{stars/cm}^3)$$
, (1a)

V. LABYRINTH CALCULATONS:

Straight-Legged Labyrinths:

A number of different techniques exist for the calculation of neutron leakage through access labyrinths. Brief reviews of the different calculational techniques, including analog and albedo Monte Carlo methods, are given by Routti and Van de Voorde [RO-75], by Vogt [VO-75], and by Stevenson [ST-87b]. (An "albedo" Monte Carlo program treats the neutrons as if they were reflected from the *surface* of the material they strike, instead of following their actual behavior as they enter the enclosure wall, multiple scatter, and then perhaps emerge some distance from their entry point. The "analog" Monte Carlo programs attempt to reproduce these detailed neutron interactions in the enclosure walls; as a result they execute much more slowly than the albedo programs.) These articles should be consulted by those interested in a detailed discussion of the subject.

Ultimately all calculational techniques are based on labyrinth measurements, or are validated by comparison with such measurements. Unfortunately, the geometries and other conditions on which they are based, or with which they are validated, are not mutually compatible, nor are they entirely compatible with the conditions here. Further, the predictions made by the various techniques when applied to the same geometry do not agree as closely as one would like.

A key feature in all calculations is the attenuation of the transmitted dose down the first leg, since this depends strongly on the position of the source in relation to the opening of the first leg. Low energy measurements by Tesch and high energy measurements by Cossairt et. al both indicate that the actual first leg falloff is somewhat *faster* than $1/r^2$ for an *on*-axis source. The origin of this deviation is thought to be those neutrons which scatter in the accelerator enclosure and enter the labyrinth with an off-axis direction, striking a wall some distance down the first leg. By thus contributing to the dose at the front of the leg, but not at the back, they produce a falloff faster than inverse square.

When the source extends beyond the opening of the labyrinth, or is located off the axis of the first leg, the attenuation of the first leg is considerably better than for a point source on-axis. This is a result of the small number of neutrons which enter the first leg more or less parallel to its axis and thus propagate to the end of that leg withour first striking a wall. The different calculational techniques reproduce these effects much more unevenly than they do for a source on the axis of the first leg, or for a second leg.

For example, one of the easiest techniques to use prior to the advent of personal computers was the graphical scaling of Gollon and Awschalom [GO-71] based on their Monte Carlo calculations using the monokinetic (single energy group) albedo Monte Carlo code ZEUS [GE-68]. The experimental measurements of dose attenuation reported by Cossairt et al. [CO-85] and shown in Figure 4 match the scaled curves of Gollon and Awschalom, as well as the formulas of Tesch (see below). The agreement between measurement and both calculational techniques is best in the first two legs of his multi-leg experiment; in the third leg both techniques underestimate the measured dose by a factor of about three. This underestimate may be caused by neutron punch-through which short-circuits the first two legs of the labyrinth being measured. However, this discrepancy may also be caused by the tendency of these techniques to underestimate the transmitted dose at deep depths in multi-leg labyrinths. This is shown by their comparison with the presumably more accurate analog Monte Carlo programs MORSE and SAM-CE quoted by Stevenson [ST-82b] and by Goebel et al. [GO-75]. In addition, the first leg"point source off-axis" flux of Gollon and Awschalom in particular is quite likely very much too low.

Both the ZEUS and SAM-CE results have the advantage of scaling: all dimensions are measured in terms of the square root of the cross sectional area of the duct. When dimensions are given in this way, all ducts of similar shapes but whose physical dimensions differ by a constant multiple have the same dose attenuation curves. (This simplification generally works for height:width ratios between 1:1 and 2:1.) This greatly facilitates calculations and comparisons between different ducts. In practice one has to be make sure that the source geometry scales appropriately before using such curves for the first leg.

The SAM-CE results discussed by Goebel et al. have their own difficulties. The source geometry used for the various calculations is never fully described, so it is unclear how to adapt the given results to a modified geometry. Further, their various SAM-CE calculations are not consistent: some of their graphs show point sources having faster attenuation with distance down the labyrinth than line sources which extend past the labyrinth mouth. On simple geometric grounds, this is not possible.

Goebel et al. reduce the effects of the difficulties of the ZEUS and SAM-CE calculations by combining the results of these calculations with various measurements to yield a set of "universal curves" for the first leg (point source on axis, line source, point source off axis or plane source), and a single curve for the second leg. These curves give the dose H(d) at any point down a labyrinth leg in terms of the dose H(0) at the entrance to that leg and the distance d measured from the beginning of the leg in units of the square root of the cross sectional area of that leg. Stevenson and Fassò [ST-87c] parameterize the curve for the first leg dose from a plane source or point source off axis as:

$$H(d) = H(0)/(1 + 2.5\sqrt{d} + 0.17d^{1.7} + 0.79d^{3})$$
 (2)

and the second leg dose as:

$$H(d) = H(0)/(1 + 2.8 d (1.57)^{d+2})$$
 (3)

They also compare dose attenuation measurements in a 1 meter diameter shaft going down to the CERN SPS tunnel with predictions based on Goebel's "universal curves". Goebel's "universal curves" provided one method for evaluating the RHIC duct attenuations.

For a second, independent method I chose the empirical formulas of Tesch [TE-82]. These are based on the measured attenuation of ²⁵²Cf fission and ²⁴¹Am-Be neutron sources in a labyrinth built of concrete blocks. Tesch's original formula for the dose equivalent in the first leg is a modified inverse-square dependence suitable for a penetration which directly views a point neutron source:

$$H(r_1) = 2 H_0(a)a^2r_1^{-2}$$
 (4)

Here $H(r_1)$ is the dose equivalent rate as a function of distance r_1 down the first leg, as measured from the point source, and a is the distance from the source (beam line) to the mouth of the first leg. (There is no uniform notation for these distances in the literature, although this notation is consistent with that of Tesch and of Cossairt.) H_0 is the dose calculated to exist a distance a away from the source in the absence of scattering by the accelerator enclosure. This notation is shown in Figure 5, which represents a typical 3-legged personnel access labyrinth. A typical 2-legged ventilation duct is shown with its associated notation as Figure 6.

The factor of two in Equation (4) takes into account those neutrons which leave the point source heading away from the labyrinth, but which are scattered into the labyrinth opening by one of the walls of the accelerator enclosure. The extra factor of two is appropriate when the calculated flux at the labyrinth opening is based on an inverse square model which includes only neutrons going directly from the neutron source to the labyrinth opening. This is not so in the present case. The calculated star density at the wall includes neutrons coming from interactions in the tunnel walls and from interactions in the magnet. Since the CASIM conversion factor from star density to dose equivalent of Equation (1) incorporates the omni-directional low energy neutrons that would come from backscattering from the accelerator enclosure wall, this empirical correction factor of two is not necessary. The low energy neutron spectrum used in GO-76 was taken from calculations by Armstrong and Alsmiller [AR-69] using an analog Monte Carlo technique that included neutron backscatter, so no correction is necessary if Equation (1a) is used, either.

For the second and subsequent legs, Tesch presents a formula which is the sum of two exponentials:

$$H(r_k) = H(0) \frac{c_k[\exp(-r_k/0.45) + 0.022 A_k^{1.3} \exp(-r_k/2.35)]}{[1 + 0.022 A_k^{1.3}]}$$
(5)

Here A_k is the cross sectional area of the enclosure in square meters, and r_k is the distance in meters measured down each leg from the beginning of that leg, as shown in Figure 5. (Note again that

notational differences exist between GO-71 and TE-82 concerning where to start measuring the distance in each leg: the former starts from the centerline of the previous leg; the latter starts after one is completely out of the previous leg. These distance coordinates differ by half the width of the previous leg; and are described in the tables in the Appendix as "centerline length" and "leg opening to mid-bend", respectively.) The factor $c_k = 1$ in general, except that it is set equal to two for the second leg of a labyrinth transmitting accelerator-produced neutrons because "the dose equivalent due to neutrons scattered into the second section is roughly a factor of 2 higher for accelerator-produced neutrons than for isotopic-source neutrons because of spectral differences" between the two sources. Clearly this is an approximaton valid only at distances greater than a meter or so into the second leg; at smaller distances the "attenuation" given by the above formula is greater than one.

One of the difficulties of using the Tesch results are that although they were obtained for labyrinths of two different cross sections (2.2 m x 1 m and 2.2 m x 2 m), the results are presented in terms of the distance in meters along the leg with the dependence on labyrinth cross section coming only from the factor A^{1.3} in the second exponential. At distances large enough for the first exponential to be negligible, the rate of falloff of the DE with distance is independent of the labyrinth cross section. Further, at constant distance labyrinths of different cross sections have transmitted doses in ratios which depend only on the factors of A^{1.3}. Figure 10 shows the falloff of transmitted dose with distance as predicted by the Tesch and Goebel formulae for 30" and 60" diameter ducts and a 2 meter square passageway. Tesch's approach clearly has its limitations, especially for large distances and small duct cross sections. Nevertheless, these formulae were used with corrections for the source geometry (see below) to provide a second independent method of calculating the dose attenuation of the various RHIC labyrinths. I have taken rough agreement between these two methods as an indication of the correctness of their common prediction. Where they have disagreed, however, I have favored the Goebel result, but taken the disagreement between the methods as a warning that there should be a greater degree of uncertainty attached to the single number chosen.

The relative positions of the labyrinth opening and the beamline and loss point are critical to understanding the attenuation of the first leg. A "typical" cascade from a beam loss in a magnet extends perhaps 4 meters along the beam direction. Since most vents and labyrinths are 2 to 3 meters, and almost always less than 5 meters from the beamline, and a meter (vents) or two (personnel labyrinths) in width, it is clear that an actual beam loss distribution will more closely resemble a line source than an on-axis point source. For that part of the source which is off the axis of the first leg, a greater first-leg attenuation is to be expected. The calculations of Gollon and Awschalom (see Figure 7) show a first leg attenuation typically four times better for an isotropic line source than for an on-axis point source, although the exact difference in attenuation depends on the length of the leg. The "universal" curves of Goebel et al. show a smaller difference.

In a few cases, the mouth of the first leg lies at an elevation so far above the beamline that no neutrons emitted from a magnet can travel down the axis of the first leg without first scattering off the back wall of the tunnel. An example of this is shown as Figure 8. This situation is similar to that of the point source 45 degrees off axis as calculated by Gollon and Awschalom and shown in Figure 7. A similar effect is shown in Tesch's measurements, reproduced here as Figure 9, of an off-axis source position compared to an on-axis position for the same labyrinth used in the measurements leading to Equation (4). The attenuation for this situation can be an order of magnitude or more better than for a point source on axis, since when the source is far off the axis of

the first leg, that leg starts to attenuate like a second leg. The SAM-CE calculations reported by Goebel et al. [GO-75] show a similar effect in their Figure 3, but do not fall off as rapidly.

The preceeding discussion is most relevant when the the beam loss is known to be just upstream of the labyrinth entrance. The neutrons entering the labyrinth will then be primarily evaporation neutrons originating in the *magnets themselves at the cascade maximum*. When the loss point is not known, the labyrinth entrance dose and attenuation should be calculated using the loss location producing the highest transmitted dose. This will occur (A. J. Stevens, private communication) when the labyrinth is located at the point of *the cascade maximum along the accelerator tunnel wall*. At this point, the source of neutrons will be the omnidirectional "sea" of evaporation neutrons inside the accelerator enclosure coming from the cascade in the tunnel walls. This source term most closely resembles the "plane" sources of Goebel et al.

The effect of a distributed source is taken into account for all personnel labyrinths and air vents. In the Goebel method, this is done by using the formula (Equation 2) for a line or plane source. In the Tesch calculations, a "source geometry factor" is used to reduce the transmitted neutron flux below that predicted by the on-axis formula of Equation (4). The magnitude of this effect is somewhat arbitrarily taken to be 0.25 for all cases in which the beamline is within 25 degrees of the axis of the first leg, 0.15 for those cases in which the beamline is between 25 and 40 degrees, and 0.10 for larger angles. This is an oversimplification: the use of any single correction factor for a given angle will result in an overestimate of the tranmitted flux for long first legs, and an underestimate for short first legs.

The effect of a cul-de-sac or neutron trap at the end of a labyrinth leg has not been unequivocally determined. In both models, I have taken the maximum effect to be a reduction to 50% of the flux that would penetrate the labyrinth if the cul-de-sac were not there, when the depth of the cul-de-sac is equal to the square root of the cross sectional area of the labyrinth. This is a conservative assumption. For shorter cul-de-sacs, the effect was reduced proportionately. No such modifications have been made for the emergency ventilation shafts, which do not have cul-de-sacs.

The effect of neutron "punch-through" around the first two legs of a three-legged labyrinth was calculated by taking the star density at the accelerator tunnel wall, and extrapolating radially a distance equal to the length of the first leg to the wall at the second bend. The extrapolation was made using a RHIC tunnel CASIM calculation whose radial falloff was parametrized by Stevens [ST-92] as $C \exp(-r/r_0)/R^2$, where r is the shield thickness and R is the radial distance to the beamline, both in cm. The radial falloff parameter r_0 was found to be 67 cm in BNL soil in an "eyeball" fit to the CASIM results at large radii; see ST-92 figs. 2 and 3. At smaller radii the CASIM results generally fell above the fitted line. This was because the first few bins contain proton and pion produces stars; the fluxes of these particles die away quickly compared to the neutron flux [Stevens, private communication]. Extrapolating from the entrance dose using this model ignores the faster initial falloff shown in the CASIM runs, and thus produces an overestimate of the dose at large radii. The magnitude of this effect varied between the different geometries and runs made by Stevens, and the star density so calculated could therefore be as much as 50% too high, with a more likely figure being half that. In addition, uncertainties in the density of BNL soil can produce a systematic error of perhaps 15%.

This wall, a plane source of omnidirectional neutrons, was used as the source for a 1-leg labyrinth calculation. For convenience and conservatism, the Tesch on-axis (inverse square) formalism was used.

Circular Access Tunnel:

The only labyrinth which cannot be calculated using these methods is the circular access tunnel (case P-2) coming out of the transfer line from the AGS to RHIC. This tunnel has a central radius of 31.5 feet, a cross section of 7' wide x 8' high, and turns through 90 degrees. Circular access tunnels are hardly ever treated in the literature, since they are very rarely built. The only really satisfactory method is a full-scale Monte Carlo calculation.

Fortunately, such a calculation was made for a similar tunnel as part of a systematic study [GO-71]. The attenuation of a 90 degree tunnel of 27.5' central radius had been calculated for three cross sections having two different areas and aspect ratios. All transmitted fluxes were exponential in the bending angle θ : $H(\theta) = H(0) \exp(-\theta/\Lambda)$, where Λ was in the range of 9 to 12 degrees. For an aspect ratio of 2:1 (H:W), Λ could be parameterized as

$$\Lambda = 30 \left(\sqrt{A/R} \right)^{0.625} \text{ (degrees)}$$

Scaling all dimensions by 86% to match the Monte Carlo calculation's radius of 27 ft yields an equivalent labyrinth of dimensions 6.9 ft by 6 ft, or an area A of 41.1 sq. ft. This yields an attenuation angle Λ of 12.2 degrees. After increasing the flux by a factor of two to account for the lesser effectiveness of a 1:1 aspect ratio [see Fig. 13 of GO-71], the resulting labyrinth attenuation is 1.25×10^{-3} .

The loss point for this labyrinth was taken to be the first magnet in the enclosure. At this point, the labyrinth itself is at an angle of 135⁰ with respect to the beam, i.e. in the backwards hemisphere. Essentially all the dose at this location is low energy evaporation neutrons coming from the loss point and not obtainable directly from CASIM. I therefore assumed that the isotropic part of the dose (85%) at 45⁰ (forward hemisphere) is also present in the backward hemisphere. To obtain this latter quantity I used Stevens' calculation of the star density on the wall of the transfer line enclosure for incident 10.4 GeV/u Au ions at 45⁰ as a starting point. (The star density for this location was one third the star density at the peak of the cascade along the wall.) This was converted from stars per incident Au ion to stars per incident proton using the ratio of 125:1 obtained from figures 2 and 3 of ST-92. The dose incident on the tunnel entrance is then calculated to be 13 rem per AGS pulse of 2.4 x 10¹² protons. The dose outside the tunnel entrance is then 32 mrem when two AGS pulses are lost in the tunnel on their way to RHIC.

Beam lost in the tunnel from the AGS at a point just upstream of the junction of this curved labyrinth with the transfer tunnel will produce neutrons which can penetrate the thin earth and concrete "wedge" and then propagate through the remaining portion of the accessway. The effect of this punchthrough was calculated to be 1.5 mrem for two lost AGS pulses. For either loss situation, the dose outside the tunnel entrance will be limited by radiation activated interlocks which will limit the losses in the transfer line to at most two AGS pulses.

VI. DISCUSSION:

Quantities Calculated:

The necessary calculations were made using a spreadsheet program to facilitate revisions and documentation. The tables in the Appendix -- one per case for the personnel access labyrinths and ventilation ducts -- show all the input data, and the resulting labyrinth attenuation and exit dose in rem for the assumed loss scenarios. For each case, the dose rate incident on the labyrinth opening was calculated from the assumed loss scenario. In the case of the experimental halls, however, the number so calculated for an empty hall has minimal relation to the dose rate that would actually be present if a beam loss occurred in a hall filled with massive detectors.

The attenuation of each labyrinth was calculated from both the Tesch and Goebel formulas, and both results and their geometric mean are presented. In a number of cases the two methods agree extraordinarily well, being within 20 or 30% of one another. As a crude measure of the agreement of the two results, a "variance factor" is given: this is the number by which the geometric mean must be multiplied (divided) to obtain the larger (smaller) of the two results. Thus a variance factor of two means that both calculations yield results that are a factor of two away (one twice, the other half) from the stated geometric mean.

The geometric mean of these results is perhaps a better estimator of the actual attenuation than provided by either method by itself. Unless otherwise stated, it will be used as the basis for comparison with RHIC dose limits; when this is intended the numerical value of the geometrical mean is italicized. However, in a number of cases of exhaust vents (especially those with the smallest diameters) from the experimental halls, the Tesch formulas significantly underestimate the attenuation, and thus overestimate the transmitted dose. This results from two factors: first, the large size of the halls puts the supposed loss point some distance from the labyrinth opening, and thus Tesch's inverse square falloff from the source has only a small effect over the six foot length of the first leg. In addition, in the second legs Tesch does not take into account the fact that at large distances the dose falls off more rapidly in a 30 inch diameter duct than it does in a 60 inch duct or in a two meter accessway. This may be seen most readily in Figs. 10a and 10b. In such situations, the Goebel attenuation is indicated as being "preferred", and is italicized.

Finally, except in the case of experimental halls, the product of the incident dose rate and the labyrinth attenuation is presented as the "exit dose rate". In the case of the experimental halls, this is not a meaningful quantity, and is not thus given.

Radiation Protection Standards:

The RHIC SAD provides the following criteria for doses in unrestricted regions, and for regions which are restricted to "radiation workers":

<u>Unrestricted Regions (Non-Radiation Workers):</u>

	High Occupany	Low Occupancy
Normal Loss dose Fault Loss Dose	<15 mrem/yr	<240 mrem/yr
	<10 mrem/yr	<160 mrem/yr

Regions Restricted to Radiation Workers:

	High Occupany	Low Occupancy
Normal Loss dose	<0.2 mrem/hr	<3.2 mrem/hr
Fault Loss Dose	<500 mrem/yr	<1000 mrem/yr

In the above table, a "year" is defined as 2000 hours, which is taken to be the maximum amount of time an individual could spend in one location over the course of a year. "Low occupancy" is defined as 1/16 of this, or 125 hours per year, but not more than 1/2 hour per day. Regions which are not "low occupancy" must meet the more stringent "high occupancy" criteria. The area around an emergency exit in the middle of an empty field is considered a "low occupancy" area; the inside of a power supply building near the RHIC ring would be a "high occupancy" area.

Calculated Fault Losses at Personnel Access Labyrinths:

For all three-legged personnel access labyrinths, the assumed loss of the stored Au beam (RHIC) or two proton bunches during injection (Transfer Line) produces a dose outside the labyrinth of at most a few millirem. Many of these cases involve doses outside labyrinths such as emergency exits in isolated locations, where people are not expected to be in any case. For these labyrinths, the fault dose is obviously considerably below the 160 mrem/yr (interpreted as 160 mrem/fault) level permitted for unrestricted low occupancy areas. The curved access labyrinth, case P-2, with a calculated fault dose of 32 mrem is also below this level. All 3-leg labyrinths ending in "high occupancy" areas have fault doses calculated to be below 10 mrem.

The two legged labyrinths have poorer calculated neutron attenuations. The calculated additional dose equivalents due to the presence of the labyrinths under the same circumstances are higher, as shown below:

<u>Case</u>	Location	Calculated	Variance Factor
		Fault DE	
P-11	10 O'clock to Service Bdlg	33 mrem	1.5
P-13	12 O'clock to Service Bdlg	50 mrem	2.6 Not As built See P-14
P-4	Eqt Areas 1A,1C,3A,3C Em. Exit	42 mrem	1.4

Since the first two of these terminate in Service Buildings, they cannot be considered as ending in low occupancy areas. The permitted fault dose for high occupancy areas is 10 mrem for unrestricted regions; for regions restricted to radiation workers, 500 mrem. Both of these regions are comfortably below the 500 mrem limit, but above the 10 mrem limit. Thus, once the RHIC intensity approaches that given in the Design Manual [and not the four times higher number used here, with an additional factor of two for an increase in the QF], these two buildings will need to be treated as restricted areas because of their potential for doses resulting from fault doses. The last of these ends in a field, and so the calculated DE falls below the permitted 160 mrem for a low-occupancy non-restricted area.

Another area of possible concern is the utility room with a wall in common with the third leg of case P-16, coming from the Transfer Line. The fault DE is 0.75 mrem, with the last leg providing attenuation to the outside world of 0.025 or 0.050, according to the model employed. This attenuation is lost when neutrons go from the second leg into the utility room. However, this is essentially made up by the attenuation of the neutrons going through the foot-thick concrete wall between the labyrinth and the utility room: 30 cm of concrete provides attenuation of 0.05 or 0.022 for 5 MeV and 2.5 MeV neutrons, respectively [NBS-63, figs 4B and 5B]. Thus the dose in the utility room is no worse than at the labyrinth exit, and falls below the applicable limit.

It is also worth noting that some of the regions around the personnel accesses or emergency exits are thinly shielded. Perhaps the worst example is at Equipment Areas 1A, 1C, 3A, and 3C. The cavity for the helium expansion loop has only eight feet of earth shielding shown on the drawing. In addition, in the direction of the door from the emergency exit, there is a spot with only ten feet of earth shielding in the radial direction. *These areas need to be looked at with some care*.

Calculated Fault Losses at Ventilation Ducts:

The two legged air shafts have poorer attenuation, with calculated exit doses of some tens of millirem up past two hundred millirem. The vents with the higher levels are shown below:

<u>Case</u>	Location	Calculated	Variance Factor
		Fault DE	
V-6	Eqt Area 1A, 1C, 3A, 3C	141 mrem	1.89
V-7	Magnet Encl Sextant 1	201	1.10
V-11	Tunnel bet. Eqt Areas 3A & 3B	222	1.06
V-17	Next to Open Area 4 O'clock	128	1.32
V-18	CW from Open Area to Support Bdlg	128	1.32
V-19	CCW from Open Area	128	1.32
V-22	Eqt Area Emgcy Exit 5A	235	1.58
V-23	Magnet Encl near Exit to Service Bdlg	140	1.23
V-26	West Injection Structure	227	1.23
V-29	MFH 8 o'clock to support bdlg	106	1.22

Four of these vents have calculated fault levels in excess of the 160 mrem permitted for an uncontrolled low access area. The calculations themselves represent the average dose rate over the pipe area at the point at which the pipe emerges from the ground. Since most of the neutrons streaming up the vent are moving approximately parallel to its axis, the dose over the top of the vent pipe will also be close to this value. The angular distribution of neutron velocities at the end of the second leg (taken from VO-75 figure 9) was used to determine the highest dose at the vertical sides of the pipe. This was found, at a level two to three feet above the ground, to be approximately one third of the number quoted above. If we consider the area of concern to be the closest readily accessible area - the side of the vertical duct pipe - then all the above numbers are reduced by a factor of three, and then all fall within the low occupancy unrestricted criterion of 160 mrem/fault.

In addition, these calculatons are based on an assumed RHIC intensity four times higher than that of the Design Manual, and include an additional factor of two to allow for a higher QF. These regions can thus be allowed to remain unfenced at the time of RHIC startup. There will then

be plenty of time to make measurements around the vent from the Transfer Line, case V-3, where measurable losses will occur on a routine basis, in order to validate the methodology used here. Even if the controlling location is taken to be the hot spot directly over the vent shaft, the results of those measurements can still be used to better determine which vents, if any, need to be fenced before the RHIC intensity approaches the basis used for this calculation.

The areas next to several of the ventilation ducts on the side away from the RHIC tunnel are very thinly shielded. These areas are the various A, B and C equipment areas. The presence of the vent which emerges from a point high on the enclosure wall (see Fig. 8) results in there being a small area which has only a few feet of earth in a line of sight to the magnets. The adequacy of the shielding at these points needs further checking.

Calculated Chronic losses in the Transfer Line:

As stated earlier, if the largest chronic loss of 0.05% occurred at the same location for a full year's operation of the Transfer Line, the resulting dose outside the shielding would be about 18 times greater than that resulting from the fault loss of two pulses of 2.4×10^{12} protons at 28 GeV/c. The resulting doses outside the four penetrations into the Transfer Line are:

<u>Case</u>	Location	<u>Calculated</u>	<u>Variance</u>
		Chronic DE	<u>Factor</u>
V-3	Injection line at AGS to RHIC transition	855 mrem/year	1.12
P-1	Injection line at AGS to RHIC transition	2.2	2.
P-2	Curved Entryway to Transfer Line	590	
P-16	Fork in U-line near Neutrino Tunnel	14	1.02

Two of these locations (V-3 vent and P-2 curved labyrinth) have chronic dose rates substantially greater than the 240 mrem/year permitted in low occupancy unrestricted locations. At a minimum, these areas should be monitored for their actual radiation levels. In addition, unless the actual percent Transfer Line losses turn out to be less than a third of the anticipated losses there, these locations will have to be protected in some way (shielding blocks, fences) when the current injected into RHIC becomes twice the Design Manual value.

VII. ACKNOWLEDGEMENT:

This work would not have been finished without the continued encouragement of Steve Musolino or the critical discussions, comments and assistance of Alan Stevens.

REFERENCES

- AR-69. T. W. Armstrong and R. G. Alsmiller, Jr. ORNL-TM-2498 (1969).
- BNL-90. RHIC Design Manual, Revision 0. Brookhaven National Laboratory, October 1990.
- CO-85. J.D. Cossairt, J. G. Couch, A. J. Elwyn, and W. S. Freeman, "Radiation Measurements in a Labyrinth Penetration at a High Energy Proton Accelerator", Health Physics <u>49</u> 907-917 (1985).
- DOE-92. U. S. Department of Energy Radiological Control Manual, Washington, D. C., USDOE Report No. N5486.6, June 1992.
- GE-68. "Variante du Programme ZEUS Applique a des Problemes de Tunnels", C. E. N. Fontenay-aux-roses, Note CEA-N-933 (1968).
- GO-71. Peter J. Gollon and M. A. Awschalom, "Design of Penetrations in Hadron Shields", IEEE Trans. Nucl. Sci. NS-18 741 (1971). Also appears in a longer form in Proc. Intl. Conf. Protection against Accel. and Space Radiation, CERN 71-16, pp. 697-713 (1971).
- GO-75. K. Goebel, G. R. Stevenson, J. T. Routti and H. G. Vogt, "Evaluating Dose Rates Due to Neutron Leakage Through the Access Tunnels of the SPS", CERN LABII-RA/Note/75-10 (1975).
- GO-76. Peter J. Gollon, "Dosimetry and Shielding Factors Relevant to the Design of Iron Beam Dumps", Fermilab TM-664 (1976).
- GO-78. Peter J. Gollon, "Electronics in the Isabelle Tunnel", BNL Isabelle Technical Note 82.
- GO-84. Peter J. Gollon and W. Robert Casey, "Isabelle Shielding Criteria and Design", Health Physics <u>46</u>, 123-132 (1984).
- HA-92. M. Harrison and A. J. Stevens, "Beam Loss Scenario at RHIC", AD/RHIC/RD-52, January 1993.
- NBS-63 "Protection Against Neutron Radiation up to 30 Million Electron Volts", U.S. N.B.S. Handbook 63, April 1967.
- RO-75. J. T. Routti and M. H. Van De Voorde, "Estimates of Neutron Leakage Through Penetrations of the CERN Intersecting Storage Rings by Monte Carlo Albedo Calculatons", Nucl. Eng. and Design <u>34</u> 293-305 (1975).
- ST-86. G. R. Stevenson, "Dose Equivalent per Star in Hadron Cascade Calculations", CERN Report TIS-RP/173, May 1986.
- ST-87. Alan J. Stevens, "Radioisotope Production in air and soil in RHIC", BNL AD/RHIC-29 (1987)

- ST-87b. G. R. Stevenson, "Neutron Attenuation in Labyrinths, Ducts and Penetrations at High-Energy Proton Accelerators", CERN TIS-RP/182/CF, 5 January 1987; paper presented to ANS Topical Conference on Theory and Practices in Radiation Shielding, Knoxville, TN, 22-24 April, 1987.
- ST-87c. Graham R. Stevenson and Alberto Fasso. "A Comparison of a MORSE Calculation of Attenuation in a Concrete-Lined Duct with Experimental Data from the CERN PS". CERN TIS-RP/185/CF (1987).
- ST-88. G. R. Steveson, "Dose Eqivalent Per Star in Hadron Cascade Calculations", CERN Report TIS-RP/173 (1988).
- ST-90. Alan J. Stevens, private communication.
- ST-92. Alan J. Stevens, "Analysis of Radiation Levels Associated with Operation of the RHIC Transfer Line", Draft Version 5, 9/28/92
- ST-92b. Alan J. Stevens, "Local Shielding Requirements for the STAR Detector", RHIC/DET Note 5, 1992.
- ST-94. Alan J. Stevens, "An Approximate Method for Evaluating Neutron Punch Through in Certain Classes of Shielding Penetrations", AD/RHIC/RD-65, January 1994. Note that Stevens discussion divides this component into two components according to the type of radiation they represent (high energy particles which would not have exited the shield if it had not been weakened by the penetration, and evaporation neutrons from the wall of the penetration), and does not directly address the radiation streaming down the penetration. Thus his components are not the same as those discussed here.
- TE-82. K. Tesch, "The Attenuation of the Neutron Dose Equivalent in a Labyrinth through an Accelerator Shield", *Particle Accelerators* 12, 169-175 (1982)
- VA-75. A. Van Ginneken, "CASIM: Program to Simulate Transport of Hadronic Cascades in Bulk Matter", Fermilab Report FN-72 (1975).
- VO-75. H. G. Vogt. "Monte Carlo Calculations of the Neutron Transmission Through the Access Ways of the Cern Super Proton Synchrotron", CERN 75-14 (1975).

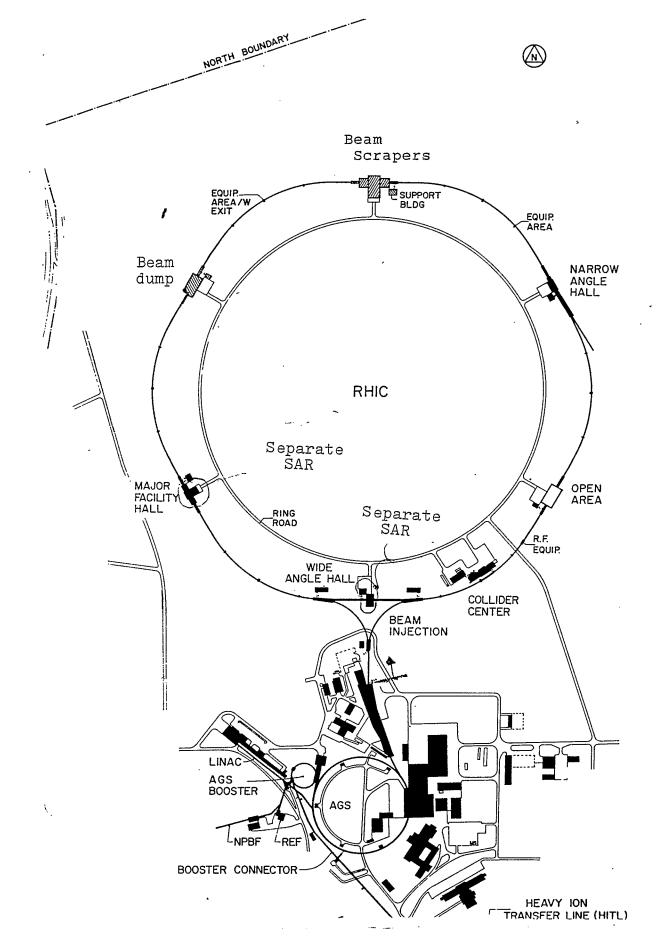


FIGURE 1. Layout of the RHIC Collider in relation to the AGS and transfer line.

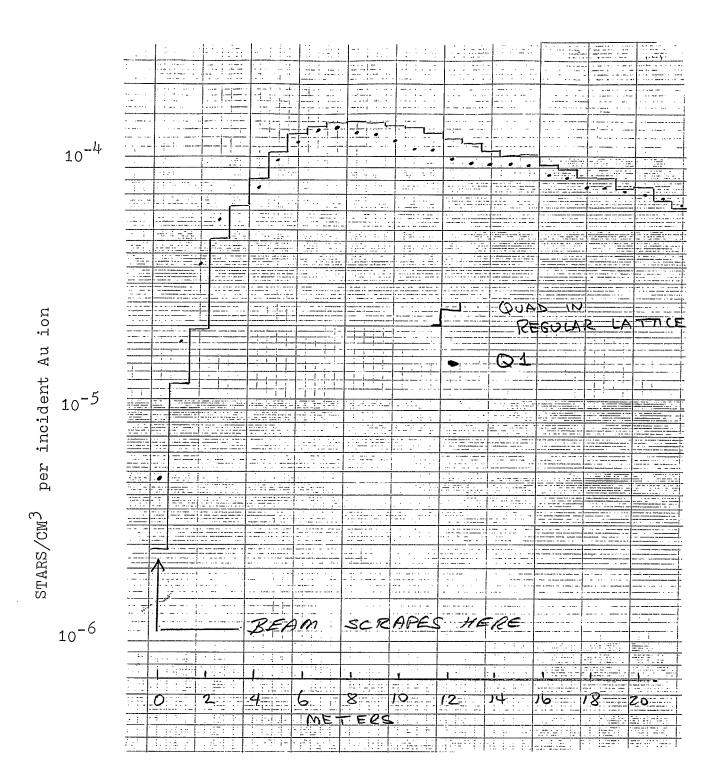
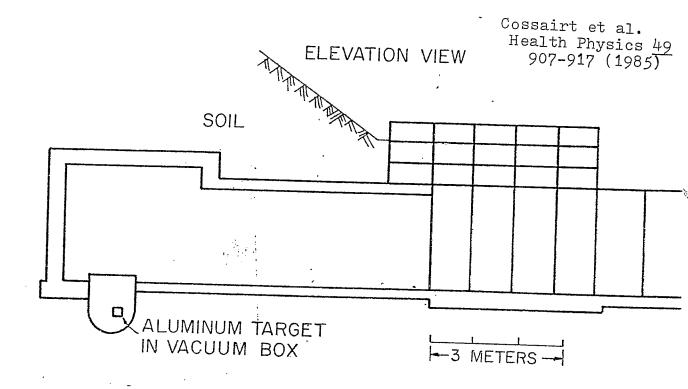



FIGURE 2. Star density at inside of magnet enclosure wall as a function of distance from loss point, according to a calculation by A. J. Stevens using CASIM. The incident beam was 100 GeV/u Au ions. The enclosure wall was taken to be soil at a radius of 2.5 meters.

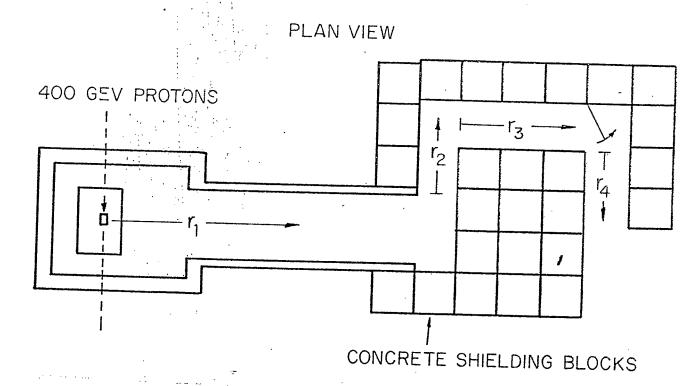


FIGURE 3 Geometry of absorbed dose measurements made by Cossairt et al. at Fermilab (Health Physics $\underline{49}$, 907-917 1985).

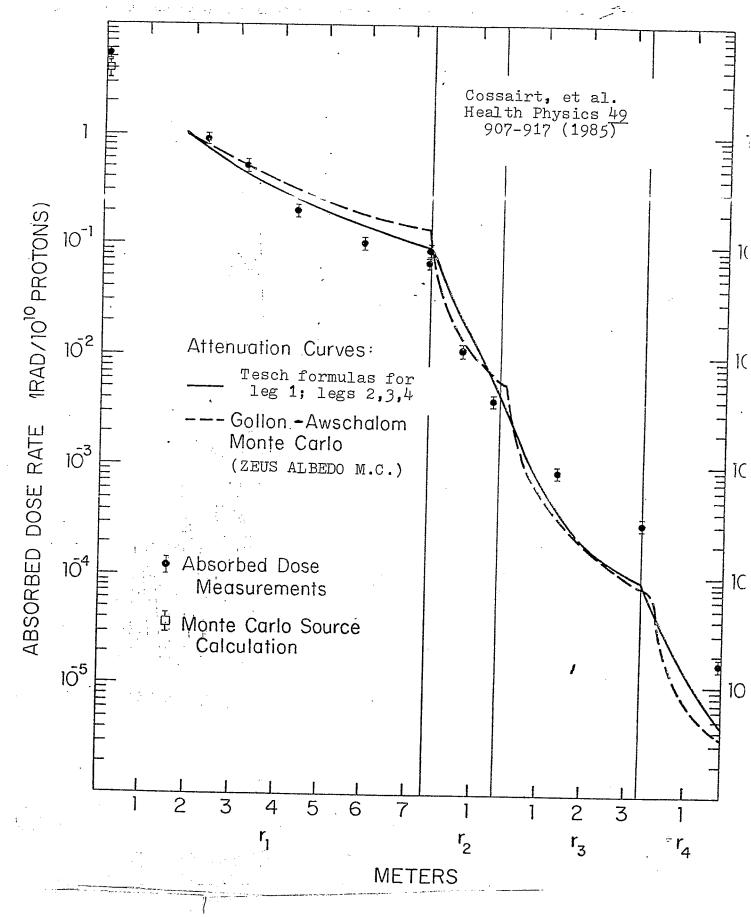
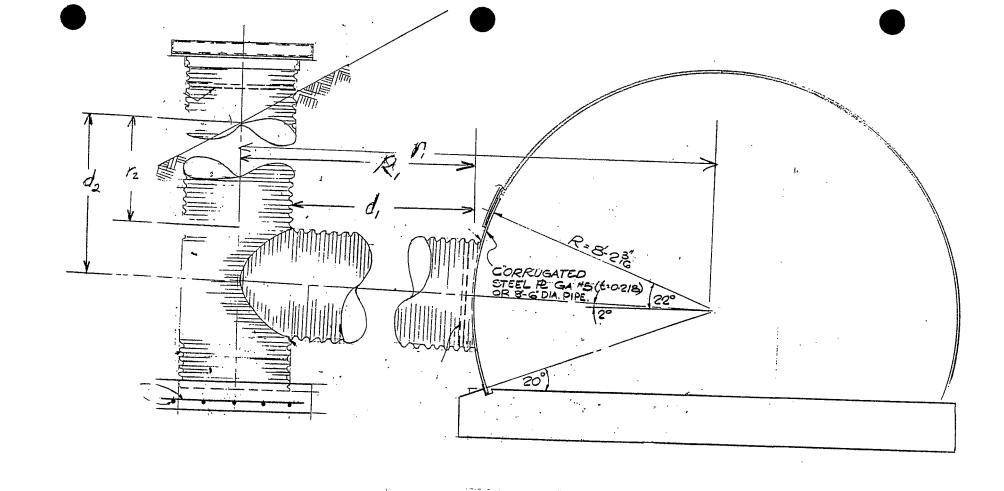
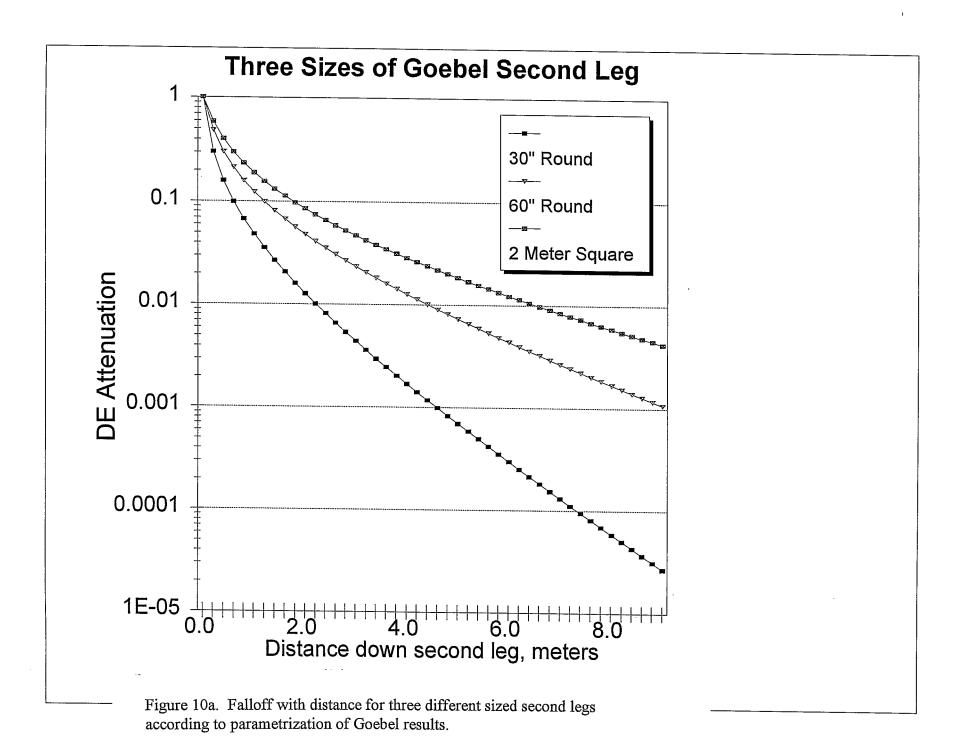
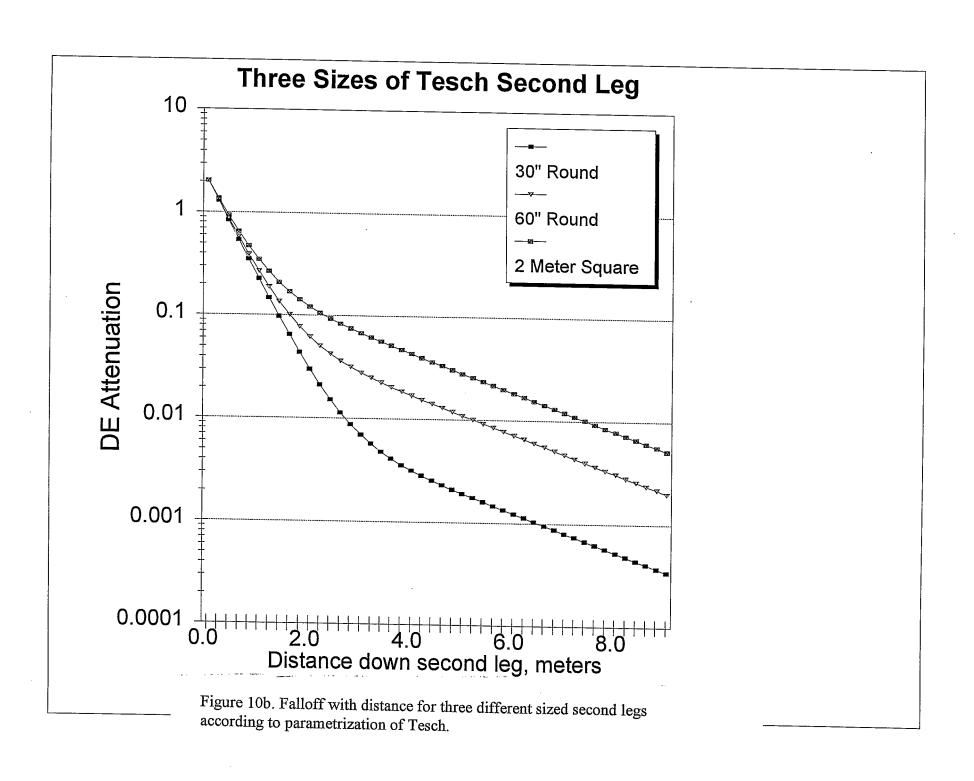
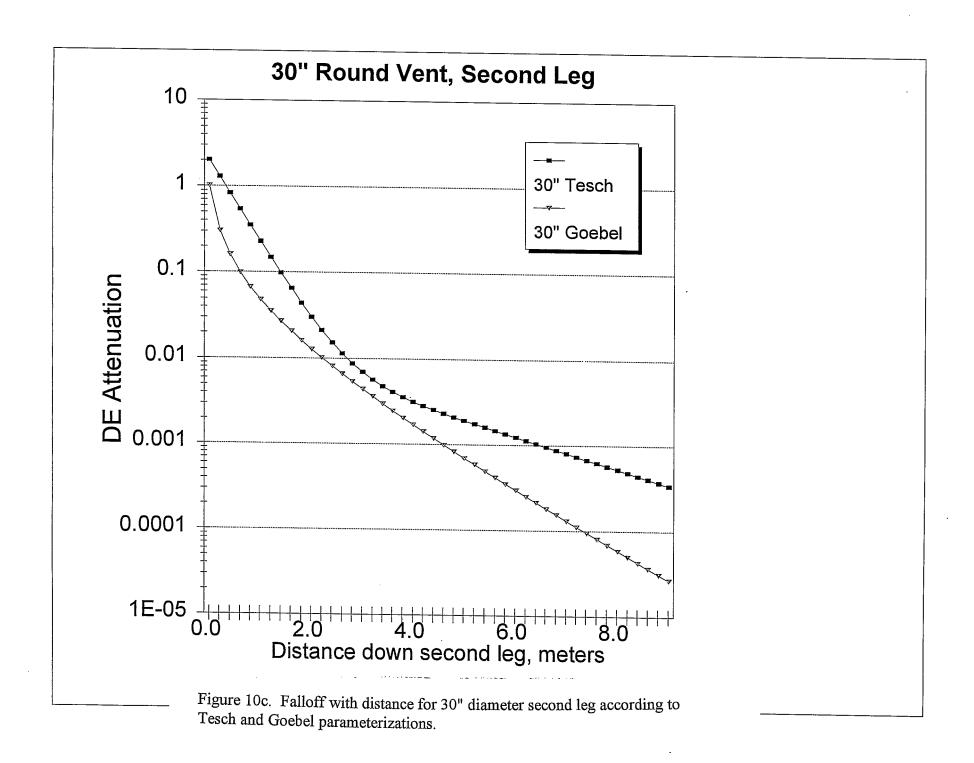
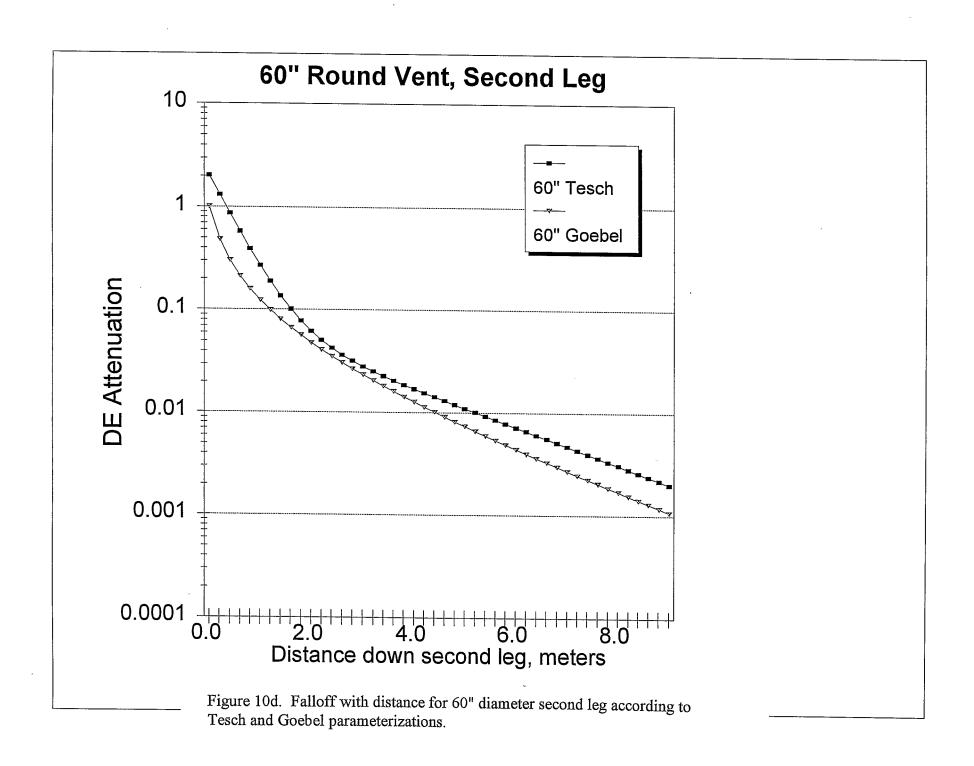
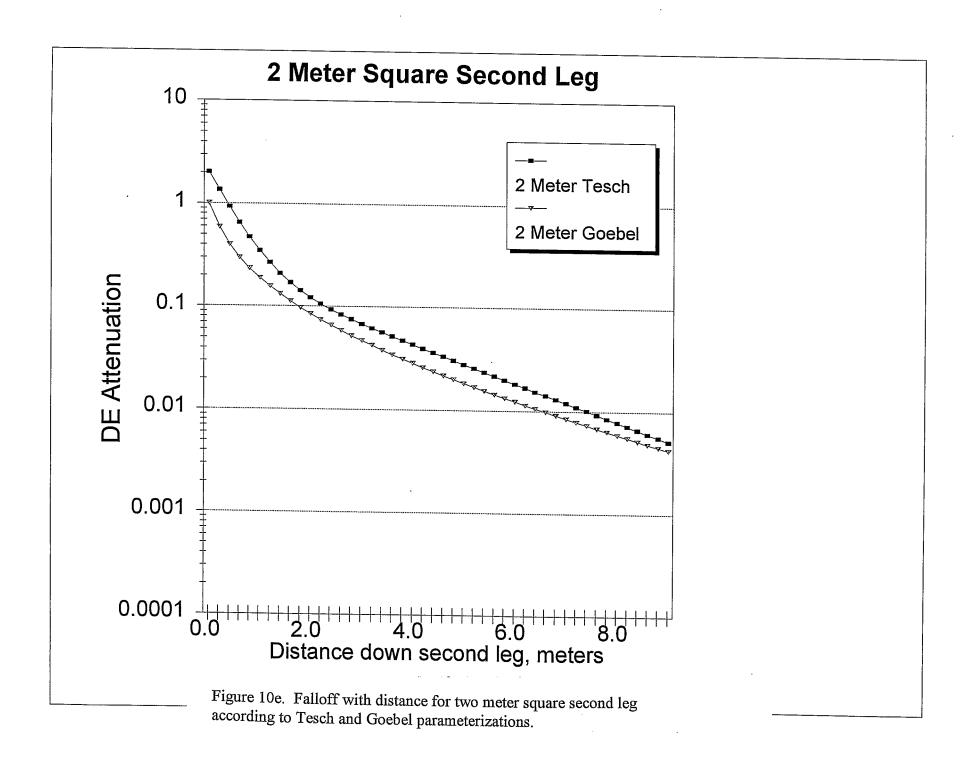


FIGURE 4. Results of absorbed dose measurements made by Cossairt et al., with comparison to Monte Carlo calculations of Awschalom and Gollon, and the parameterization of Tesch used in this Report.



FIGURE 5. Notation used in this report for tunnel radius and length of labyrinth legs.


FIGURE 6. A typical ventilation duct in a plate arch tunnel structure. The vent diameter is 42, 48, or 54 inches, depending on location. The distance d11, measured from the outside of the tunnel enclosure to the closest point of the vertical pipe, is always 6 feet. The "proper" length R11 of the first duct leg includes the tunnel wall thickness, important when the wall is concrete instead of plate arch. The "Tesch" length of the first leg, r11, is measured from the beamline to the centerline of the bend.

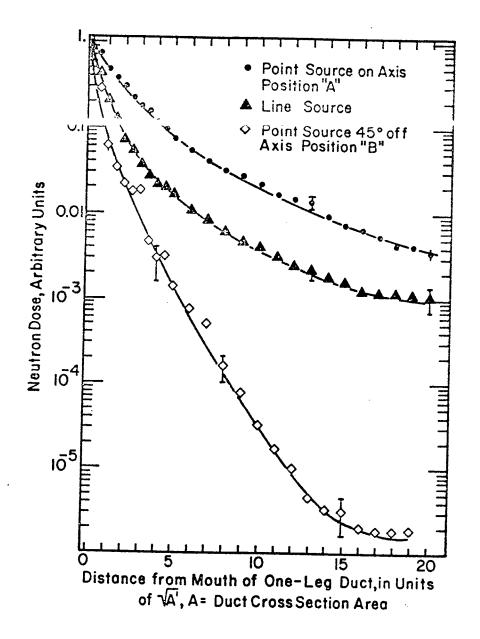


FIGURE 7. Calculated neutron dose in a straight penetration with a 2:1 aspect ratio for different neutron source locations. (Taken from Gollon and Awschalom, GO-71.) Note that different notation is used in this figure: distance down the first leg is measured in units of the square root of the cross secion area, starting from the point where the labyrinth joins the accelerator enclosure.

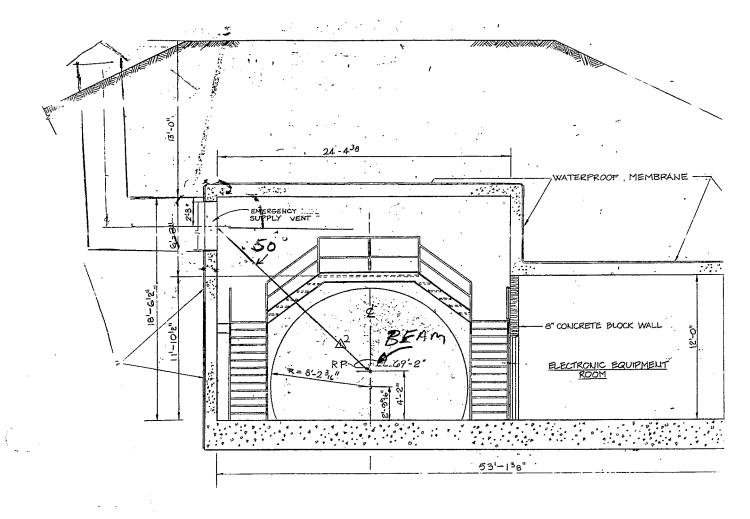


FIGURE 8. The ventilation duct at Equipment Area 7-B, showing the elevation of the duct above the beamline.

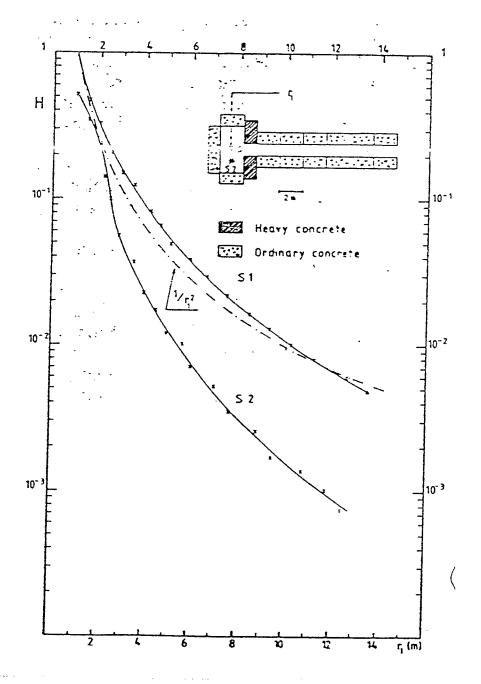


FIGURE 9. Neutron attenuation in the first leg of a duct for on-axis source position (S1) and off-axis source position (S2), as measured by Tesch [TE-82]

PERSONNEL ACCESS LABYRINTH SHIELDING

	Labyrinth Number:		2
	Location Dwg title:		3
	Bdlg No.		4 5
	Job #		6
	Dwg / Sheet No.		7
	Geometry Comments		8
			9
•		1	
	Calculation Comments	1	
	Calculation Comments	1:	2 THIS COLUMN TO SHOW FORMULAS !!!
		1.	
	,	1	
		10	
GEOMETRY		17	
INPUT	distance. to beam (ft)	18	_
	width (ft)	19	-
	height (ft) centerline length (ft)	20 21	
	cul-de-sac (ft)	22	- •
	ou. 45 545 (1.)		
METRIC	dist to beam (m)	24	
	width (m)	25	5 +F19*0.3048
	height (m)		5 +F20*0.3048
	Area, A (sq m)		+F25*F26
	centerline length (m) cul-de-sac (m)		5 +F21*0.3048
	curue-sac (III)	30	+F22*0.3048
LEG LENGT	нѕ	31	
	Leg opening to mid-bend, Ri (m)		+F28-E25/2
TESCH	R1 (measured from source) = $r1 + a$ (m)		+F28-E25/2
GOEBEL	di = Ri/Sqrt(A)		+F32/@SQRT(F27)
ATTENUATION	ON DETAIL O	35	
TESCH	leg atten	36	
120011	cul-de-sac atten	38	2*(@EXP(-F33/0.45)+0.022*F27^1.3*@EXP(-F33/2.35))/(1+0.022*F27^1.3) @MAX(0.5,1-0.5*F29/@SQRT(F27))
	Tesch labyrinth attenuation	39	@M/ V(0.3,1-0.3 1 23/@3Q1\1(1 21))
	Source Geometry Effect	40	
	Total labyrinth attenuation	41	
		42	
GOEBEL	leg atten		1/(1+2.8*F34*(1.57)^(F34+2))
	cul-de-sac atten		@MAX(0.5,1-0.5*F29/@SQRT(F27))
	Goebel labyrinth attenuation	45 46	
MEAN	Geometric Mean	47	
	"Variance" factor	48	
		49	
SOURCE TER		50	
	No. of ions lost Std star per cc/ion lost	51 52	
	Dose-Equiv per star	52 53	
	Low Energy Fraction	54	•
	Entrance Dose-Equiv (rem)	55	
	, , ,	56	
OVERALL RE		57	
	Exit Dose, Tesch (rem)	58	
	Exit Dose, Goebel (rem) Geometric Mean	59 60	
	Contento Meati	60 61	
PUNCHTHRO	UGH	62	
	punchthrough thickness	63	•
	cascade dilution	64	
	cascade absorption	65	
	punchthrough DR	66	
	geometric dilution	67	
	exit dose rate (rem)	68	

PERSONNEL ACCESS LABYRINTH SHIELDING

·	Labyrinth Number: Location Dwg title:	3	3 4
	Bdlg No. Job#	5	
	Dwg / Sheet No.	7	
	Geometry Comments	9	3
		10	
	Calculation Comments	11 12	THIS COLUMN TO SHOW FORMULAS !!!
		13	
		14	
		15 16	
GEOMETRY		17	g ·
INPUT	distance. to beam (ft) width (ft)	18 19	
	height (ft)	20	-
	centerline length (ft)	21	26
	cul-de-sac (ft)	22	
METRIC		24	
	width (m)		+G19*0.3048
	height (m) Area, A (sq m)		+G20*0.3048 +G25*G26
	centerline length (m)		+G21*0.3048
	cul-de-sac (m)		+G22*0.3048
LEG LENGTH	IS.	30 31	
	Leg opening to mid-bend, Ri (m)		+G28-F25/2
TESCH	(+G28-F25/2
GOEBEL	di = Ri/Sqrt(A)	34 35	+G32/@SQRT(G27)
ATTENUATIO	ON DETAILS	36	
TESCH	leg atten	37	(@EXP(-G33/0.45)+0.022*G27^1.3*@EXP(-G33/2.35))/(1+0.022*G27^1.3)
	cul-de-sac atten Tesch labyrinth attenuation	38 30	@MAX(0.5,1-0.5*G29/@SQRT(G27)) +E37*E38*F37*F38*G37*G38
	Source Geometry Effect	40	0.25
	Total labyrinth attenuation		+G39*G40
GOEBEL	leg atten	42 43	1/(1+2.8*G34*(1.57)^(G34+2))
	cul-de-sac atten		@MAX(0.5,1-0.5*G29/@SQRT(G27))
	Goebel labyrinth attenuation		+E43*E44*F43*F44*G43*G44
MEAN	Geometric Mean	46 47	@SQRT(G41*G45)
	"Variance" factor		@MAX(G41,G45)/G47-1
SOURCE TER	·M·	49 50	
	No. of ions lost	51	1.14E+11
	Std star per cc/ion lost	52	1.35E-04
	Dose-Equiv per star Low Energy Fraction	53 54	2.4E-05 0.85
	Entrance Dose-Equiv (rem)		+G51*G52*G53*G54*(2.55/E24)^2
OVERALL DE	OUR T.	56	·
OVERALL RE	Exit Dose, Tesch (rem)	57 58	+G55*G41
	Exit Dose, Goebel (rem)	59	
	Geometric Mean		@SQRT(G54*G58) @MAX(G59,G58)/G60-1
PUNCHTHRO		62	1E39 F35/3
	punchthrough thickness cascade dilution		+E28-F25/2 (E24/(E24+G63))^2
	cascade absorption		0.6*@EXP(-G63/0.67)
	punchthrough DR		+G55*G64*G65/G54
	geometric dilution exit dose rate (rem)		+G27/(4*@PI*(G32+F25)^2) +G66*G67
	• •		

	Labyrinth Number: Location Dwg title: Bdlg No. Job # Dwg / Sheet No. Geometry Comments	4 E 5 B 6 IS 7 S	P-0 Sample labyrinth Ejection/Injection Structure 81007-1 SA-12-1-467000-15 i-13 / 42 rst leg is at 70 deg. forward angle to beam
	Calculation Comments	11 12 T 13 14	HIS COLUMN TO SHOW FORMULAS !!!
		15 16	Column E
GEOMETRY INPUT	DATA: distance. to beam (ft) width (ft) height (ft) centerline length (ft) cul-de-sac (ft)	17 18 19 20 21 22	Leg 1 12 6 8.5 8 5
METRIC	dist to beam (m) width (m) height (m) Area, A (sq m) centerline length (m) cul-de-sac (m)	25 +E 26 +E 27 +E 28 +E	E18*0.3048 E19*0.3048 E20*0.3048 E25*E26 E21*0.3048 E22*0.3048
LEG LENGT	ıs	31	
NORMAL	Leg opening to mid-bend, Ri (m)	32 +E	E28
TESCH GOEBEL	R1 (measured from source) = r1 + a (m) di = Ri/Sqrt(A)		E28+E24 E32/@SQRT(E27)
ATTENUATIO	ON DETAILS	36	
TESCH	leg atten cul-de-sac atten Tesch labyrinth attenuation Source Geometry Effect Total labyrinth attenuation	-	24/E33)^2 MAX(0.5,1-0.5*E29/@SQRT(E27))
GOEBEL	leg atten cul-de-sac atten Goebel labyrinth attenuation	43 1/(1+2.5*@SQRT(E34)+0.17*E34^1.7+0.79*E34^3) MAX(0.5,1-0.5*E29/@SQRT(E27))
MEAN	Geometric Mean "Variance" factor	47 48 49	
SOURCE TER	rM:	49 50	
	No. of ions lost Std star per cc/ion lost Dose-Equiv per star Low Energy Fraction Entrance Dose-Equiv (rem)	51 52 53 54 55	
OVERALL RE	SULT:	56 57	
O V ZIO NEZ	Exit Dose, Tesch (rem) Exit Dose, Goebel (rem) Geometric Mean	58 59 60	
PUNCHTHRO	и с н	61 62	
	punchthrough thickness	63	
	cascade dilution	64	
	cascade absorption	65 66	
	punchthrough DR geometric dilution	66 67	
	exit dose rate (rem)	68	

P-1

Injection line exit at AGS to RHIC transition

Labyrinth Number:

Location

Dwg title:

Ejection/Injection Structure Bdig No. B1007-1 Job# ISA-12-1-467000-15 Dwg / Sheet No. S-13 / 42 **Geometry Comments** first leg is at 70 deg. forward angle to beam Calculation Comments Labyrinth squared off, entry alcove filled in. MC Tunnel radius = 1.5 m **GEOMETRY DATA:** Leg 1 Leg 2 Leg 3 **INPUT** distance. to beam (ft) 6.00 width (ft) 6.00 6.00 6.00 height (ft) 8.50 8.50 8.50 centerline length (ft) 14.00 24.00 26.00 cul-de-sac (ft) 5.00 5.00 METRIC dist to beam (m) 1.83 width (m) 1.83 1.83 1.83 height (m) 2.59 2.59 2.59 Area, A (sq m) 4.74 4.74 4.74 centerline length (m) 4.27 7.32 7.92 cul-de-sac (m) 1.52 1.52 **LEG LENGTHS** NORMAL Leg opening to mid-bend, Ri (m) 4.27 6.40 7.01 TESCH R1 (measured from source) = r1 + a (m 6.10 6.40 7.01 GOEBEL di = Ri/Sqrt(A) 1.96 2.94 3.22 **ATTENUATION DETAILS** TESCH leg atten 9.00E-02 1.87E-02 7.22E-03 cul-de-sac atten 0.65 0.65 Tesch labyrinth attenuation 5.13E-06 Source Geometry Effect 0.25 Total labyrinth attenuation 1.28E-06 GOEBEL leg atten 9.10E-02 1.29E-02 1.04E-02 cul-de-sac atten 0.65 0.65 Goebel labyrinth attenuation 5.17E-06 MEAN Geometric Mean 2.58E-06 "Variance" factor 2.01 **SOURCE TERM:** No. of ions lost Transfer Line -> 4.80E+12 Std star per cc/ion lost 7.40E-07 Dose-Equiv per star 2.40E-05 Low Energy Fraction 0.85 Entrance Dose-Equiv (rem) 4.87E+01 **OVERALL RESULT:** Exit Dose, Tesch (rem) 6.26E-05 Exit Dose, Goebel (rem) 2.52E-04 Geometric Mean 1.26E-04 2.01 **PUNCHTHROUGH** punchthrough thickness 3.35 cascade dilution 0.12 cascade absorption 4.03E-03 punchthrough DR 2.88E-02 geometric dilution 4.83E-03 exit dose rate (rem) 1.39E-04

Labyrinth Number: P-2

Location Injection line split

Dwg title: Ej'n-lnj. Str.: S. inj tunnel & trans

Bdlg No. B1007-1

Job # ISA-12-1-467000-15

Dwg / Sheet No. S-13 / 42

Geometry Comments Quarter Circle Labyrinth for eq't

Comes off backwards angle at r Y at injection line split. 31.5 ft C

Calculation Comments

GEOMETRY DATA:

INPUT distance. to beam (ft)

 width (ft)
 7.00

 height (ft)
 8.50

 centerline length (ft)
 49.48

cul-de-sac (ft)

METRIC dist to beam (m)

 width (m)
 2.13

 height (m)
 2.59

 Area (sq m)
 5.53

 centerline length (m)
 15.08

Tesch leg length (m) cul-de-sac (m)

LABYRINTH ATTEN DETAILS:

leg atten 1.25E-03

cul-de-sac atten

Tesch labyrinth attenuation

Source Geometry Effect 1.00
Total labyrinth attenuation 1.25E-03

SOURCE TERM:

No. of ions lost PROTONS 4.80E+12 Std star per cc/ion lost 2.64E-07

OVERALL RESULT:

Exit Dose (rem) 3,23E-02

	Labyrinth Number: Location Dwg title: Bdlg No. Job # Dwg / Sheet No. Geometry Comments	P-3 Equipment areas 1-B and Magnet Encl 1 & 3, Equip B1001, B1003 ISA-11-2-467000-4 A5/51 8" wall between leg 1 and Leg 3 is 102" dia pipe.	ment areas 1-B & 3-B ·	3
	Calculation Comments	Leg 1 taken to include ele Calculation based onequi Calculate to where it eme LEG2 lengths put in manu Rev. 7/29/94	valent area rectangula rges from ground.	
GEOMETRY	DATA:	Rev. 7/29/94 Leg 1	Leg 2	Leg 3
INPUT	distance. to beam (ft) width (ft) height (ft) centerline length (ft) cul-de-sac (ft)	11.00 19.00 12.00 22.00 4.00	6.00 8.00 15.00 3.00	7.53 7.53 36.00
	51. 11 tao ()	4.00	3.00	
METRIC	dist to beam (m) width (m) height (m) Area, A (sq m) centerline length (m) cul-de-sac (m)	3.35 5.79 3.66 21.18 6.71 1.22	1.83 2.44 4.46 4.57 0.91	2.30 2.30 5.27 10.97 0.00
LECTENOT	10			
TESCH	Leg opening to mid-bend, Ri (m) R1 (measured from source) = r1 + a (m di = Ri/Sqrt(A)	6.71 10.06 1.46	3.66 3.66 1.73	10.06 10.06 4.38
ATTENUATIO	N DETAILS			
TESCH	leg atten cul-de-sac atten Tesch labyrinth attenuation Source Geometry Effect Total labyrinth attenuation	1.11E-01 0.87	5.67E-02 0.78 >>	2.22E-03 9.50E-06 1.00 9.50E-06
GOEBEL	leg atten cul-de-sac atten Goebel labyrinth attenuation	1.47E-01 0.87	3.69E-02 0.78	4.56E-03 1.69E-05
MEAN	Geometric Mean "Variance" factor			1.27E-05 1.33
COURSE TES	N			
SOURCE TER	No. of ions lost Std star per cc/ion lost Dose-Equiv per star Low Energy Fraction Entrance Dose-Equiv (rem)			1.14E+11 1.35E-04 2.40E-05 0.85 1.82E+02
OVERALL RE	SIU T			
	Exit Dose, Tesch (rem) Exit Dose, Goebel (rem) Geometric Mean			1.73E-03 3.06E-03 2.30E-03 1.33
PUNCHTHRO	punchthrough thickness cascade dilution cascade absorption punchthrough DR geometric dilution exit dose rate (rem)		'	5.79 0.13 1.06E-04 3.04E-03 2.97E-03 9.02E-06

	Labyrinth Number: Location Dwg title: Bdlg No. Job # Dwg / Sheet No. Geometry Comments	P-4 Equipment areas 1A, 1C, Magnet encl. 1 & 3, eqt at B1001, B1003 ISA-11-2-467000-4 A4 / 51 and A5 / 52 Eqt area 5A on 11-1-4670 First leg is 19' of electrica (12' X 15'). Second leg is	reas 1A, 1C, 3A, 3C 000-2 S2/ 56 similar I room	
·	Calculation Comments	Emergency exits via hatch distance from center of sh "Infinite" cul-de-sac at end LEG2 lengths put in manu Rev. 7/29/94.	aft to outside of hut. I of second leg.	I LEG1 width.
GEOMETRY	DATA:	Leg 1	Leg 2	Leg 3
INPUT	distance. to beam (ft) width (ft) height (ft) centerline length (ft) cul-de-sac (ft)	10.00 15.00 12.00 19.00 0.00	3.50 3.50 20.00 6.00	3.00 3.00 3.00 0.00
METRIC	dist to beam (m) width (m) height (m) Area, A (sq m) centerline length (m) cul-de-sac (m)	3.05 4.57 3.66 16.72 5.79 0.00	1.07 1.07 1.14 6.10 1.83	0.91 0.91 0.84 0.91 0.00
LEG LENGTH	16			
NORMAL TESCH	Leg opening to mid-bend, Ri (m) R1 (measured from source) = r1 + a (m di = Ri/Sqrt(A)	5.79 8.84 1.42	4.27 4.27 4.00	0.38 0.38 0.42
ATTENUATIO	ON DETAILS			
TESCH	leg atten cul-de-sac atten Tesch labyrinth attenuation Source Geometry Effect Total labyrinth attenuation	1.19E-01 1.00	8.41E-03 0.50 >>	4.36E-01 2.18E-04 1.00 2.18E-04
GOEBEL	leg atten cul-de-sac atten Goebel labyrinth attenuation	1.53E-01 1.00	5.93E-03 0.50	2.24E-01 1.02E-04
MEAN	Geometric Mean "Variance" factor			1.49E-04 1.46
SOUDCE TER	38 <i>4</i> -			
SOURCE TER	No. of ions lost Std star per cc/ion lost Dose-Equiv per star Low Energy Fraction Entrance Dose-Equiv (rem)			1.14E+11 1.35E-04 2.40E-05 0.85 2.20E+02
OVERALL RE	ESULT: Exit Dose, Tesch (rem) Exit Dose, Goebel (rem) Geometric Mean			4.79E-02 2.23E-02 3.27 <i>E</i> -02
	Communication of the communica			3.27E-02 1.46
PUNCHTHRO	UGH			

PUNCHTHROUGH

punchthrough thickness cascade dilution cascade absorption punchthrough DR geometric dilution exit dose rate (rem)

	Labyrinth Number: Location Dwg title: Bdlg No. Job # Dwg / Sheet No. Geometry Comments Calculation Comments	P-5 Equipment area 7-B emerg Mag Encl. sextnt 5&7, Eqt ISA-11-467000-2 A5 / 51 Third leg is circular plate to Equivalent width of square First leg includes 15' of ele We ignore 45 degree bend Third leg measured to point ground. See also dwg S-1	unnel. tunnel = 7.53 ft ectrical room. upward in 3rd leg. t where it exits 0 sheet 64.	
		LEG2 lengths put in manua Rev. 7/29/94.	ally because of unusua	al LEG1 width.
GEOMETRY INPUT	DATA: distance. to beam (ft) width (ft) height (ft) centerline length (ft) cul-de-sac (ft)	Leg 1 11.00 19.00 8.00 11.00 4.00	Leg 2 4.00 8.00 13.50 3.00	Leg 3 7.53 7.53 24.00
METRIC	dist to beam (m) width (m) height (m) Area, A (sq m) centerline length (m) cul-de-sac (m)	3.35 5.79 2.44 14.12 3.35 1.22	1.22 2.44 2.97 4.11 0.91	2.30 2.30 5.27 7.32 0.00
TESCH	Leg opening to mid-bend, Ri (m) R1 (measured from source) = r1 + a (m di = Ri/Sqrt(A)	3.35 6.71 0.89	3.50 3.50 2.03	6.71 6.71 2.92
ATTENUATIO TESCH	DN DETAILS leg atten cul-de-sac atten Tesch labyrinth attenuation Source Geometry Effect Total labyrinth attenuation	2.50E-01 0.84	3.82E-02 0.73	9.24E-03 5.43E-05 0.25 1.36E-05
GOEBEL	leg atten cul-de-sac atten Goebel labyrinth attenuation	2.46E-01 0.84	2.77E-02 0.73	1.31E-02 5.50E-05
MEAN	Geometric Mean "Variance" factor			2.73E-05 2.01
SOURCE TER	RM: No. of ions lost Std star per cc/ion lost Dose-Equiv per star Low Energy Fraction Entrance Dose-Equiv (rem)			1.14E+11 1.35E-04 2.40E-05 0.85 1.82E+02
OVERALL RE	Exit Dose, Tesch (rem) Exit Dose, Goebel (rem) Geometric Mean			2.46E-03 9.99E-03 <i>4.96E-03</i> 2.01
	punchthrough thickness cascade dilution cascade absorption punchthrough DR geometric dilution exit dose rate (rem)			2.74 0.30 1.00E-02 6.46E-01 6.67E-03 4.31E-03

Labyrinth Number: Location

Dwg title:

P-6

Narrow angle hall to support bdig Narrow Angle Hall Floor Plan, part I

Bdlg No. B-1002

Job# ISA-13-3-467000-13 Dwg / Sheet No. A-3/8

Geometry Comments Labyrinth comes off plate arch enclosure that

extends from NAH proper.

Calculation Comments

0504550	DATA			
GEOMETRY INPUT	distance. to beam (ft)	Leg 1 13.00	Leg 2	Leg 3
0 .	width (ft)	5.00	5.00	5.00
	height (ft)	8.00	8.00	8.00
	centerline length (ft)	13.00	11.00	29.00
	cul-de-sac (ft)	0.00	0.00	
METRIC	dist to beam (m)	3.96		
	width (m)	1.52	1.52	1.52
	height (m)	2.44	2.44	2.44
	Area, A (sq m)	3.72	3.72	3.72
	centerline length (m) cul-de-sac (m)	3.96	3.35	8.84
	cul-ue-sac (III)	0.00	0.00	0.00
LEG LENGTH				
NORMAL TESCH	Leg opening to mid-bend, Ri (m)	3.96	2.59	8.08
	R1 (measured from source) = r1 + a (m di = Ri/Sqrt(A)	7.92 2.06	2.59	8.08
GOLDLE		2.06	1.34	4.19
ATTENUATIO				
TESCH	leg atten cul-de-sac atten	2.50E-01	7.74E-02	3.48E-03
	Tesch labyrinth attenuation	1.00	1.00	0.705.05
	Source Geometry Effect			6.73E-05 0.25
	Total labyrinth attenuation			1.68E-05
GOEBEL	•	8.32E-02	5.55E-02	5.20E-03
	cul-de-sac atten	1.00	1.00	
	Goebel labyrinth attenuation			2.40E-05
MEAN	Geometric Mean			2.01E-05
	"Variance" factor			1.19
SOURCE TER	RM:			
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction Entrance Dose-Equiv (rem)	•		0.85
	Entrance Dose-Equiv (rem)			1.30E+02
OVERALL RE				
	Exit Dose, Tesch (rem)			2.19E-03
	Exit Dose, Goebel (rem) Geometric Mean			3.12E-03
	Geometric Mean			<i>2.61E-03</i> 1.19
PUNCHTHRO				
	punchthrough thickness			3.20
	cascade dilution cascade absorption			0.31
	punchthrough DR			5.05E-03
	geometric dilution			2.37E-01 3.21E-03
	exit dose rate (rem)			7.59E-04
	,			1.00L 04

Labyrinth Number:

P-7

Location
Dwg title:
Bdlg No.

Open area 4 o'clock to support building Open area 4 o'clock partial plan No. 1

No. B-1004

Job# Dwg / Sheet No.

ISA-13-2-467000-10

A-2/7

Geometry Comments

Calculation Comments

GEOMETRY INPUT		Leg 1	Leg 2	Leg 3
INFUI	distance. to beam (ft)	10.00		
	width (ft)	5.00	5.00	5.00
	height (ft)	8.00	8.00	8.00
	centerline length (ft)	13.00	11.00	33.00
	cul-de-sac (ft)	0.00	0.00	0.00
METRIC	dist to beam (m)	3.05		
	width (m)	1.52	1.52	1.52
	height (m)	2.44	2.44	2.44
	Area, A (sq m)	3.72	3.72	3.72
	centerline length (m)	3.96	3.35	10.06
	cul-de-sac (m)	. 0.00	0.00	0.00
LEG LENGTH	_			
	Leg opening to mid-bend, Ri (m)	3.96	2.59	9.30
TESCH	R1 (measured from source) = r1 + a (m	7.01	2.59	9.30
GOEBEL	di = Ri/Sqrt(A)	2.06	1.34	4.82
ATTENUATIO				
TESCH	leg atten	1.89E-01	7.74E-02	2.07E-03
	cul-de-sac atten	1.00	1.00	
	Tesch labyrinth attenuation			3.03E-05
	Source Geometry Effect			0.25
	Total labyrinth attenuation			7.57E-06
GOEBEL	-5	8.32E-02	5.55E-02	3.40E-03
	cul-de-sac atten	1.00	1.00	
	Goebel labyrinth attenuation			1.57E-05
MEAN	Geometric Mean			1.09E-05
	"Variance" factor			1.44
SOURCE TER	RM:			
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
	Entrance Dose-Equiv (rem)			2.20E+02
OVERALL RE	SULT:			
	Exit Dose, Tesch (rem)			1.66E-03
	Exit Dose, Goebel (rem)			
	Geometric Mean			3.45E-03
	Geometric Mean			2.40E-03 1.44
PUNCHTHRO	UGH			
	punchthrough thickness			3.20
	cascade dilution			0.24
	cascade absorption			5.05E-03
	punchthrough DR			3.11E-01
	geometric dilution			2.53E-03
	exit dose rate (rem)			7.85E-04
	• •			

Labyrinth Number:

Location
Dwg title:

Bdlg No. Job#

Dwg / Sheet No. Geometry Comments P-8

Ring to Service Building

ISA Service Building Foundation Plan

B-1005S

ISA-15-2-467000-20

S-1 / 56

Calculation Comments

Attenuation calculated to point at which tunnel goes under Service Building floor.

GEOMETRY		Leg 1	Leg 2	Leg 3
INPUT	distance. to beam (ft)	8.00		_
	width (ft)	8.00	8.00	8.00
	height (ft)	8.00	8.00	8.00
	centerline length (ft)	26.00	24.00	24.00
	cul-de-sac (ft)		4.00	
METRIC	dist to beam (m)	2.44		
	width (m)	2.44	2.44	2.44
	height (m)	2.44	2.44	2.44
	Area, A (sq m)	5.95	5.95	5.95
	centerline length (m)	7.92	7.32	7.32
	cul-de-sac (m)	0.00	1.22	0.00
LEG LENGTH	ıs			
	Leg opening to mid-bend, Ri (m)	7.92	6.10	6.10
TESCH	R1 (measured from source) = r1 + a (m	10.36	6.10	6.10
GOEBEL	di = Ri/Sqrt(A)	3.25	2.50	2.50
	,	0.20	2.00	2.00
ATTENUATIO				
TESCH	leg atten	5.54E-02	2.73E-02	1.36E-02
	cul-de-sac atten	1.00	0.75	
	Tesch labyrinth attenuation			1.55E-05
	Source Geometry Effect			0.25
	Total labyrinth attenuation			3.86E-06
GOEBEL	leg atten	2.95E-02	1.84E-02	1.84E-02
	cul-de-sac atten	1.00	0.75	
	Goebel labyrinth attenuation			7.51E-06
MEAN	Geometric Mean			5 00 5 00
MEAN	"Variance" factor			5.39E-06 1.39
				1.00
SOURCE TER				
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
	Entrance Dose-Equiv (rem)			3.43E+02
OVERALL RE	SULT:			
	Exit Dose, Tesch (rem)			1.33E-03
	Exit Dose, Goebel (rem)			2.58E-03
	Geometric Mean			1.85E-03
DUMOUTUR				1.39
PUNCHTHRO				A = 1
	punchthrough thickness cascade dilution			6.71
	cascade dilution			0.07
	punchthrough DR			2.70E-05
	geometric dilution			7.76E-04 6.50E-03
	exit dose rate (rem)			5.04E-06
				J.U4L-00

P-9

Labyrinth Number:

	Labyrinth Number:	P-9		
	Location	Injection/Ejection Structure		
	Dwg title:	Ejection/Injection Structure		
	Bdlg No.	B1007-1		
	Job#	ISA-12-1-467000-15		
	Dwg / Sheet No.	A3 / 15 and S9 / 38		
	Geometry Comments	From concrete enclosure ne	ext to WAH to	
	•	West Ejection P.S. Bdlg. E		fical
		Walls of foot thick concrete		iloar.
			abovo ground.	
	Calculation Comments	Also calculated to where leg	3 emerges from	
		ground, leg3 = 27'		
GEOMETRY		Leg 1	Leg 2	Leg 3
INPUT	distance. to beam (ft)	10.00		
	width (ft)	5.00	5.00	5.00
	height (ft)	8.50	8.50	8.50
	centerline length (ft)	12.50	11.00	27.00
	cul-de-sac (ft)	0.00	0.00	0.00
METRIC	dist to been (m)	0.05		
METRIC	dist to beam (m) width (m)	3.05	4.50	
	height (m)	1.52	1.52	1.52
	Area, A (sq m)	2.59	2.59	2.59
	centerline length (m)	3.95 3.81	3.95	3.95
	cul-de-sac (m)	0.00	3.35	8.23
	our de sas (m)	0.00	0.00	0.00
LEG LENGTH	IS			
NORMAL	Leg opening to mid-bend, Ri (m)	3.81	2.59	7.47
TESCH	R1 (measured from source) = r1 + a (m	6.86	2.59	7.47
GOEBEL	di = Ri/Sqrt(A)	1.92	1.30	3.76
	,		1.00	0.70
ATTENUATIO	N DETAILS			
TESCH	leg atten	1.98E-01	8.26E-02	4.83E-03
	cul-de-sac atten	1.00	1.00	
	Tesch labyrinth attenuation			7.88E-05
	Source Geometry Effect			0.25
	Total labyrinth attenuation			1.97E-05
COEDEL	In matter.			
GOEBEL	-5	9.48E-02	5.81E-02	7.03E-03
	cul-de-sac atten	1.00	1.00	
	Goebel labyrinth attenuation			3.87E-05
MEAN	Geometric Mean			
MEAN	"Variance" factor			2.76E-05
	Variance factor			1.40
SOURCE TER	tM:			
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
•	Entrance Dose-Equiv (rem)			2.20E+02
	,		At en	nergence
OVERALL RE	SULT:	Full laby		ve ground:
	Exit Dose, Tesch (rem)	•	3.24E-04	4.33E-03
	Exit Dose, Goebel (rem)		1.18E-03	8.51E-03
	Geometric Mean		6.18E-04	6.07E-03
B11110110				1.40
PUNCHTHRO				
	punchthrough thickness			3.05
	cascade dilution			0.25
	cascade absorption			6.35E-03
	punchthrough DR geometric dilution			4.10E-01
	exit dose rate (rem)		7 405 04	3.89E-03
	CAR GOSE FARE (ICIII)		7.49E-04	1.59E-03

INPUT

geometric dilution

exit dose rate (rem)

PERSONNEL ACCESS LABYRINTH SHIELDING Labyrinth Number: P-10 Location 10 O'clock Base Exit Tunnel Dwg title: 10 Oclock Base Bid Floor Plan Part I Bdig No. Job# n/a Dwg / Sheet No. A-3 **Geometry Comments** Metal tunnel under berm **Calculation Comments** 8 ft dia equivalent to 7.1 ft square. **GEOMETRY DATA:** Leg 1 Leg 2 distance. to beam (ft) 13.00 width (ft) 7.10 7.10 height (ft) 7.10 7.10 centerline length (ft) 29.30 17.80 cul-de-sac (ft) 0.00 0.00

Leg 3

7.10

7.10

39.70

2.14E-03

1.81E-07

	cul-de-sac (ft)	0.00	0.00	00.70
	cul-de-sac (II)	0.00	0.00	0.00
METRIC	dist to beam (m)	3.96		
	width (m)	2.16	2.16	2.16
	height (m)	2.16	2.16	2.16
	Area, A (sq m)	4.68	4.68	4.68
	centerline length (m)	8.93	5.43	12.10
	cul-de-sac (m)	0.00	0.00	0.00
	. ,	5.55	0.00	0.00
LEG LENGT	HS			
NORMAL	Leg opening to mid-bend, Ri (m)	8.93	4.34	11.02
TESCH	R1 (measured from source) = r1 + a (m	12.89	4.34	11.02
GOEBEL	di = Ri/Sqrt(A)	4.13	2.01	5.09
	. , ,			0.00
ATTENUATIO	ON DETAILS			
TESCH	leg atten	9.45E-02	4.44E-02	1.29E-03
	cul-de-sac atten	1.00	1.00	
	Tesch labyrinth attenuation			5.43E-06
	Source Geometry Effect			0.25
	Total labyrinth attenuation			1.36E-06
	•			1.002 00
GOEBEL	leg atten	1.58E-02	2.84E-02	2.85E-03
	cul-de-sac atten	1.00	1.00	
	Goebel labyrinth attenuation			1.28E-06
	·			
MEAN	Geometric Mean			1.32E-06
	"Variance" factor			1.03
SOURCE TER	RM:			
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
	Entrance Dose-Equiv (rem)			1.30E+02
OVERALL RE	SULT:			

OVERALL RESULT: Exit Dose, Tesch (rem) 1.77E-04 Exit Dose, Goebel (rem) 1.66E-04 Geometric Mean 1.71E-04 1.03 **PUNCHTHROUGH** punchthrough thickness 7.85 cascade dilution 0.11 cascade absorption 4.91E-06 punchthrough DR 8.45E-05

P-11

Labyrinth Number: Location 10 O'clock Base Tunnel to Support Bdlg Dwg title: 10 Oclock Base Bid Floor Plan Part I

Bdlg No. n/a Job# n/a Dwg / Sheet No. A-3

Geometry Comments Concrete tunnel to support bdlg

TWO LEGS ONLY!

Calculation Comments

GEOMETR		Leg 1	Leg 2
INPUT	distance. to beam (ft)	13.00	4.50
	width (ft) height (ft)	10.00 8.50	4.50 8.50
	centerline length (ft)	52.00	18.00
	cul-de-sac (ft)	0.00	0.00
			5.55
METRI	C dist to beam (m)	3.96	
	width (m)	3.05	1.37
	height (m)	2.59	2.59
	Area, A (sq m)	7.90	3.55
	centerline length (m) cul-de-sac (m)	15.85 0.00	5.49
	cui-de-sac (III)	0.00	
LEG LENG	тнз		
	Leg opening to mid-bend, Ri (m)	15.85	3.96
TESCH	R1 (measured from source) = r1 + a (m)	19.81	3.96
GOEBE	L di = Ri/Sqrt(A)	5.64	2.10
ATTENHAT	ION DETAILS		
	leg atten	4.00E-02	3.83E-02
, 200, 1	cul-de-sac atten	1.00	0.00L-02
	Tesch labyrinth attenuation		1.53E-03
	Source Geometry Effect		0.25
	Total labyrinth attenuation		3.83E-04
00505			
GOEBE	Lieg atten	6.58E-03	2.60E-02
	cul-de-sac atten Goebel labyrinth attenuation	1.00	1.71E-04
	Coeper labyillian attendation		1.716-04
MEAN	Geometric Mean		2.56E-04
	"Variance" factor		1.50
SOURCE TE			4.445.44
	No. of ions lost Std star per cc/ion lost		1.14E+11
	Dose-Equiv per star		1.35E-04 2.40E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		1.30E+02
OVERALL R			
	Exit Dose, Tesch (rem)		4.98E-02
	Exit Dose, Goebel (rem)		2.23E-02
	Geometric Mean		<i>3.33E-02</i> 1.50
			1.50

Labyrinth Number:

Location

Dwg title:

Bdlg No.

Job #

Dwg / Sheet No.

Geometry Comments

P-12

12 O'clock exit tunnel

12 O'clock base bid floor plan part I

n/a

n/a

A-12

Metal tunnel under berm

Calculation Comments

8 ft dia equivalent to 7.1 ft square.

				•
GEOMETRY INPUT	DATA: distance. to beam (ft)	Leg 1 14.00	Leg 2	Leg 3
	width (ft)	7.10	7.10	7.10
	height (ft)	7.10	7.10	7.10
	centerline length (ft)	33.00	16.00	34.00
	cul-de-sac (ft)	0.00	0.00	0.00
METRIC	dist to beam (m)	4.27		
	width (m)	2.16	2.16	2.16
	height (m)	2.16	2.16	2.16
	Area, A (sq m)	4.68	4.68	4.68
	centerline length (m)	10.06	4.88	10.36
	cul-de-sac (m)	0.00	0.00	0.00
LEG LENGTH				
	Leg opening to mid-bend, Ri (m)	10.06	3.79	9.28
TESCH	R1 (measured from source) = r1 + a (m	14.33	3.79	9.28
GOEBEL	di = Ri/Sqrt(A)	4.65	1.75	4.29
ATTENUATIO				
TESCH	leg atten	8.87E-02	5.64E-02	2.71E-03
	cul-de-sac atten	1.00	1.00	
	Tesch labyrinth attenuation			1.36E-05
	Source Geometry Effect			0.25
	Total labyrinth attenuation			3.39E-06
GOEBEL	leg atten	1.14E-02	3.61E-02	4.86E-03
	cul-de-sac atten	1.00	1.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Goebel labyrinth attenuation			1.99E-06
MEAN	Geometric Mean "Variance" factor			2.60E-06 1.30
SOURCE TER	RM:			
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
	Entrance Dose-Equiv (rem)			1.12E+02
OVERALL RE				
	Exit Dose, Tesch (rem)			3.80E-04
	Exit Dose, Goebel (rem)			2.23E-04
	Geometric Mean			2.91E-04
PUNCHTHRO				1.30
	punchthrough thickness			8.98
	cascade dilution			0.10
	cascade absorption			9.11E-07
	punchthrough DR			1.25E-05
	geometric dilution			2.85E-03
	exit dose rate (rem)			3.55E-08

Labyrinth Number: Location

P-13

12 O'clock tunnel to support bdlg 12 O'clock base bid floor plan part II

Dwg title: Bdlg No. Job#

12 O'clock base bid fle n/a n/a

Dwg / Sheet No. Geometry Comments

A-13 Metal tunnel under berm Concrete tunnel, two legs only.

Calculation Comments

GEOMETR	Y DATA:	Leg 1	Leg 2
INPUT	distance. to beam (ft)	16.00	J
	width (ft)	6.00	6.00
	height (ft)	8.50	8.50
	centerline length (ft)	52.00	11.00
	cul-de-sac (ft)	0.00	0.00
METRIC	C dist to beam (m)	4.88	
	width (m)	1.83	1.83
	height (m)	2.59	2.59
	Area, A (sq m)	4.74	4.74
	centerline length (m)	15.85	3.35
	cul-de-sac (m)	0.00	
LEG LENG	тнѕ		
	Leg opening to mid-bend, Ri (m)	15.85	2.44
	R1 (measured from source) = r1 + a (m)	20.73	2.44
GOEBE	L di = Ri/Sqrt(A)	7.28	1.12
ATTENUAT	ION DETAILS		
TESCH	leg atten	5.54E-02	1.09E-01
	cul-de-sac atten	1.00	
	Tesch labyrinth attenuation		6.01E-03
	Source Geometry Effect		0.25
	Total labyrinth attenuation		1.50E-03
GOEBEI	L leg atten	3.15E-03	7.24E-02
	cul-de-sac atten	1.00	
	Goebel labyrinth attenuation		2.28E-04
MEAN	Geometric Mean		5.85E-04
	"Variance" factor		2.57
SOURCE TE	RM:		
	No. of ions lost		1.14E+11
	Std star per cc/ion lost		1.35E-04
	Dose-Equiv per star		2.40E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		8.58E+01
OVERALL R	ESULT:		
	Exit Dose, Tesch (rem)		1.29E-01
	Exit Dose, Goebel (rem)		1.96E-02
	Geometric Mean		5.02E-02
			2.57

Not Built

Labyrinth Number:

P-14

As Built

Location

Dwg title:

Bdlg No. Job# Dwg / Sheet No.

Geometry Comments

12 O'clock exit tunnel

12 O'clock alternate floor plan part I

n/a A-3A

Concrete tunnel under berm

Calculation Comments

0504570)/	D.A.W.A.			
GEOMETRY INPUT	distance. to beam (ft)	Leg 1 14.00	Leg 2	Leg 3
01	width (ft)	5.50	5.50	5.50
	height (ft)	8.50	8.50	8.50
	centerline length (ft)	33.00	24.00	13.00
	cul-de-sac (ft)	0.00	0.00	0.00
METRIC	allow to the course (see)			
METRIC	dist to beam (m) width (m)	4.27 1.68	4.00	4.00
	height (m)	2.59	1.68 2.59	1.68
	Area, A (sq m)	4.34	4.34	2.59 4.34
	centerline length (m)	10.06	7.32	3.96
	cul-de-sac (m)	0.00	0.00	0.00
LECTENCT	ie.			
LEG LENGTH	Leg opening to mid-bend, Ri (m)	10.06	6.49	2.40
TESCH	R1 (measured from source) = r1 + a (m	14.33	6.48 6.48	3.12 3.12
	di = Ri/Sqrt(A)	4.83	3.11	1.50
	, , ,		0.11	1.00
ATTENUATIO				
TESCH	leg atten cul-de-sac atten	8.87E-02	1.64E-02	3.50E-02
	Tesch labyrinth attenuation	1.00	1.00	E 44E 0E
	Source Geometry Effect			5.11E-05 0.25
	Total labyrinth attenuation			1.28E-05
	•			202 00
GOEBEL	•	1.02E-02	1.13E-02	4.68E-02
	cul-de-sac atten	1.00	1.00	
	Goebel labyrinth attenuation			5.44E-06
MEAN	Geometric Mean			8.33E-06
	"Variance" factor			1.53
SOURCE TER	DRA.			
SOURCE TER	เพ: No. of ions lost			4.445.44
	Std star per cc/ion lost			1.14E+11 1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
	Entrance Dose-Equiv (rem)			1.12E+02
OVERALL DE	OLU T			
OVERALL RE	Exit Dose, Tesch (rem)			4 405 00
	Exit Dose, Tesch (Tem)			1.43E-03
	Geometric Mean			6.09E-04 9. <i>34E-04</i>
	- Company Mount			9.54 <u>L</u> -64 1.53
PUNCHTHRO				
	punchthrough thickness			9.22
	cascade dilution			0.10
	cascade absorption punchthrough DR			6.33E-07
	geometric dilution			8.36E-06
	exit dose rate (rem)			1.50E-02 <i>1.25E-07</i>
	,			7.202-07

Labyrinth Number:

Location

Major Facility Hall 8 o'clock to support bdlg

Dwg title:

MFH 8 o'clock partial floor plan

Bdlg No.

B-1008

Job #

ISA-13-4-467000-18

Dwg / Sheet No.

Geometry Comments

Labyrinth comes off plate arch enclosure that extends from MFH proper.

Calculation Comments

GEOMETRY INPUT	DATA: distance. to beam (ft)	Leg 1 10.00	Leg 2	Leg 3
01	width (ft)	5.00	5.00	5.00
	height (ft)	8.00	5.00 8.00	5.00
	centerline length (ft)	16.00	8.00 11.00	8.00
	cul-de-sac (ft)	0.00		28.00
	our do são (it)	0.00	0.00	
METRIC	dist to beam (m)	3.05		
	width (m)	1.52	1.52	1.52
	height (m)	2.44	2.44	2.44
	Area, A (sq m)	3.72	3.72	3.72
	centerline length (m)	4.88	3.35	8.53
	cul-de-sac (m)	0.00	0.00	0.00
LEG LENGT	Je			
		4.00		
TESCH	Leg opening to mid-bend, Ri (m)	4.88	2.59	7.77
	R1 (measured from source) = r1 + a (m	7.92	2.59	7.77
GOEDEL	di = Ri/Sqrt(A)	2.53	1.34	4.03
ATTENUATIO	ON DETAILS			
TESCH	leg atten	1.48E-01	7.74E-02	3.96E-03
	cul-de-sac atten	1.00	1.00	
	Tesch labyrinth attenuation			4.53E-05
	Source Geometry Effect			0.25
	Total labyrinth attenuation			1.13E-05
GOEBEL	leg atten	5.38E-02	5.55E-02	5.80E-03
	cul-de-sac atten	1.00	1.00	
	Goebel labyrinth attenuation			1.73E-05
MEAN	Geometric Mean			1.40E-05
	"Variance" factor			1.40E-05 1.24
	14.14.14.14.14.14.14.14.14.14.14.14.14.1			1.24
SOURCE TER	RM:			
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
	Entrance Dose-Equiv (rem)			2.20E+02
	. ,			2.252 02
OVERALL RE				
	Exit Dose, Tesch (rem)			2.49E-03
	Exit Dose, Goebel (rem)			3.80E-03
	Geometric Mean			3.08E-03
PUNCHTHRO	NIGH			1.24
. Gradiiiiko	punchthrough thickness			4 4 4
	cascade dilution			4.11
	cascade absorption			0.18
	punchthrough DR			1.29E-03
	geometric dilution			6.04E-02
	exit dose rate (rem)			3.42E-03
	exit dose rate (reiii)			2.07E-04

INPUT

PERSONNEL ACCESS LABYRINTH SHIELDING Labyrinth Number: P-16 Location Fork in U-line near Neutrino Train Dwg title: North Exp. Area .. FEB Transport Bdlg No. Job# n/a Dwg / Sheet No. D14-1192 A-6 Rev A-1 **Geometry Comments** Dimensions scaled, probably not accurate. Calculation Comments Dose rate in utility room is 0.75 mrem also. **GEOMETRY DATA:** Leg 1 Leg 2 Leg 3 distance. to beam (ft) 16.00 width (ft) 8.50 2.50 3.50 height (ft) 8.00 8.00 8.00 centerline length (ft) 28.00 12.00 10.00 cul-de-sac (ft) 0.00 0.00 0.00 METRIC dist to beam (m) 4.88 width (m) 2.59 0.76 1.07 height (m) 2.44 2.44 2.44 Area, A (sq m) 6.32 1.86 2.60 centerline length (m) 8.53 3.66 3.05 cul-de-sac (m) 0.00 0.00 0.00 **LEG LENGTHS** NORMAL Leg opening to mid-bend, Ri (m) 8.53 2.36 2.67 R1 (measured from source) = r1 + a (m 13.41 2.36 2.67 GOEBEL di = Ri/Sqrt(A) 3.40 1.73 1.65

	, , ,		0	1.00
ATTENUATION	ON DETAILS		•	
TESCH	leg atten	1.32E-01	4.44E-02	2.52E-02
	cul-de-sac atten	1.00	1.00	2.022 02
	Tesch labyrinth attenuation			1.48E-04
	Source Geometry Effect			0.25
	Total labyrinth attenuation			3.70E-05
				3.1. JE 33
GOEBEL	leg atten	2.64E-02	3.69E-02	3.99E-02
	cul-de-sac atten	1.00	1.00	************
	Goebel labyrinth attenuation			3.88E-05
MEAN	Geometric Mean			3.79E-05
	"Variance" factor			1.02
SOURCE TER	ew.			
OCOROL ILI	No. of ions lost	Tron	ofor line musta	4.005.40
	Std star per cc/ion lost	Han	sfer line, proto	4.80E+12
	Dose-Equiv per star		/	7.40E-07 2.40E-05
	Low Energy Fraction			
	Entrance Dose-Equiv (rem)			0.85
				1.98E+01
OVERALL RE	SULT:			
	Exit Dose, Tesch (rem)			7 225 04

Ext bose, result (letti)	7.33E-04
Exit Dose, Goebel (rem)	7.69E-04
Geometric Mean	7.51 <i>E</i> -04
PUNCHTUPOLICIA	1.02
PUNCHTHROUGH	
punchthrough thickness	8 15

punchthrough thickness	8.15
cascade dilution	0.14
cascade absorption	3.11E-06
punchthrough ,DR	1.02E-05
geometric dilution	1.76E-02
exit dose rate (rem)	1.79E-07

Labyrinth Number:

P-17

Location Dwg title: Bdlg No.

Wide Angle Hall Ejection/Injection Structure

B1007-1

Job# ISA-12-1-467000-15

Dwg / Sheet No. A3 / 15

Geometry Comments Labyrinth extends from wider concrete tunnel

which abuts Wide Angle Hall, to WAH support

building.

Calculation Comments

GEOMETRY INPUT	DATA: distance. to beam (ft)	Leg 1 10.00	Leg 2	Leg 3
	width (ft)	5.00	5.00	5.00
	height (ft)	8.50	8.50	8.50
	centerline length (ft)	12.70	11.00	30.50
	cul-de-sac (ft)			33.33
METRIC	dist to beam (m)	3.05		
	width (m) height (m)	1.52	1.52	1.52
	Area, A (sq m)	2.59	2.59	2.59
	centerline length (m)	3.95 3.87	3.95	3.95
	cul-de-sac (m)	0.00	3.35 0.00	9.30
		0.00	0.00	
LEG LENGTH				
	Leg opening to mid-bend, Ri (m)	3.87	2.59	8.53
TESCH	R1 (measured from source) = r1 + a (m	6.92	2.59	8.53
GOEBEL	di = Ri/Sqrt(A)	1.95	1.30	4.30
ATTENUATIO				
TESCH	leg atten	1.94E-01	8.26E-02	3.07E-03
	cul-de-sac atten	1.00	1.00	
	Tesch labyrinth attenuation			4.92E-05
	Source Geometry Effect			0.25
	Total labyrinth attenuation			1.23E-05
GOEBEL	leg atten	9.21E-02	5.81E-02	4.84E-03
	cul-de-sac atten	1.00	1.00	
	Goebel labyrinth attenuation			2.59E-05
MEAN	Geometric Mean			
IVILAIN	"Variance" factor			1.78E-05
	variation label			1.45
SOURCE TER	RM:			•
	No. of ions lost			1.14E+11
	Std star per cc/ion lost			1.35E-04
	Dose-Equiv per star			2.40E-05
	Low Energy Fraction			0.85
	Entrance Dose-Equiv (rem)			2.20E+02
OVERALL RE	SULT:			
	Exit Dose, Tesch (rem)			2.70E-03
	Exit Dose, Goebel (rem)			5.69E-03
	Geometric Mean			3.92E-03
DIMAGE				1.45
PUNCHTHRO				
	punchthrough thickness cascade dilution			3.11
	cascade absorption			0.25
	punchthrough DR			5.79E-03
	geometric dilution			3.67E-01 3.11E-03
	exit dose rate (rem)			1.14E-03
	` '			1.17L-03

Labyrinth Number: P-18

Location Wide Angle Hall

Dwg title: Ejection/Injection Structure

Bdlg No. B1007-1

Job# ISA-12-1-467000-15

Dwg / Sheet No. A3 / 15

Geometry Comments Labyrinth extends from front corner of Hall

to WAH support bdlg. VERY short labyrinth

intended to pass around shield wall.

TWO LEGS ONLY!!

Calculation Comments

0504570	V 2.44		
GEOMETR		Leg 1	Leg 2
INPUT		40.00	
	width (ft)	4.50	3.00
	height (ft)	8.00	8.00
	centerline length (ft) cul-de-sac (ft)	6.00	12.00
	cul-de-sac (it)	3.00	0.00
METRIC	dist to beam (m)	12.19	
	width (m)	1.37	0.91
	height (m)	2.44	2.44
	Area, A (sq m)	3.34	2.23
	centerline length (m)	1.83	3.66
	cul-de-sac (m)	0.91	
LEG LENG	rhs ·		
	Leg opening to mid-bend, Ri (m)	1.83	2.97
	R1 (measured from source) = r1 + a (m	14.02	2.97 2.97
	di = Ri/Sqrt(A)	1.00	2.97 1.99
00252	a. Twoqray	1.00	1.99
ATTENUAT	ION DETAILS		
TESCH	leg atten	7.56E-01	3.57E-02
	cul-de-sac atten	0.75	
	Tesch labyrinth attenuation		2.03E-02
	Source Geometry Effect		0.25
	Total labyrinth attenuation		5.06E-03
GOEBE	leg atten	2.24E-01	2.88E-02
	cul-de-sac atten	0.75	
	Goebel labyrinth attenuation		4.84E-03
MEAN	Geometric Mean		4.95E-03
	"Variance" factor		1.02
SOURCE TE			
	No. of ions lost		1.14E+11
	Std star per cc/ion lost		1.35E-04
	Dose-Equiv per star		2.40E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		1.37E+01

OVERALL RESULT:

Exit Dose, Tesch (rem) Exit Dose, Goebel (rem)

Geometric Mean

Experimental Hall

Labyrinth Number:

Location

exit dose rate (rem)

Escape shaft near Bdlg 1005, near Cryo Support Dwg title: A. Stevens sketch, 6/94 Bdla No. Job# Dwg / Sheet No. **Geometry Comments** First leg adjoins alcove in tunnel. 45 degree upward bend at leg 3. Calculation Comments Wall between leg 1 and alcove ignored. Leg 3 calculated to exit from berm; wall thickness and forward directionality of neutron stream ignored. LEG2 lengths put in manually because of unusual LEG1 width. **GEOMETRY DATA:** Leg 1 Leg 2 Leg 3 INPUT distance. to beam (ft) 9.00 width (ft) 21.50 6.00 6.00 height (ft) 12.50 8.00 8.00 centerline length (ft) 25.00 15.00 14.00 cul-de-sac (ft) 0.00 0.00 METRIC dist to beam (m) 2.74 width (m) 6.55 1.83 1.83 height (m) 3.81 2.44 2.44 Area, A (sq m) 24.97 4.46 4.46 centerline length (m) 7.62 4.57 4.27 cul-de-sac (m) 0.00 0.00 0.00 **LEG LENGTHS** NORMAL Leg opening to mid-bend, Ri (m) 7.62 3.66 3.35 TESCH R1 (measured from source) = r1 + a (m 10.36 3.66 3.35 GOEBEL di = Ri/Sqrt(A)1.52 1.73 1.59 **ATTENUATION DETAILS** TESCH leg atten 7.01E-02 5.67E-02 3.25E-02 cul-de-sac atten 1.00 1.00 Tesch labyrinth attenuation 1.29E-04 Source Geometry Effect --->> 1.00 Total labyrinth attenuation 1.29E-04 GOEBEL leg atten 1.38E-01 3.69E-02 4.27E-02 cul-de-sac atten 1.00 1.00 Goebel labyrinth attenuation 2.18E-04 MEAN Geometric Mean 1.68E-04 "Variance" factor 1.30 SOURCE TERM: No. of ions lost 1.14E+11 Std star per cc/ion lost 1.35E-04 Dose-Equiv per star 2.40E-05 Low Energy Fraction 0.85 Entrance Dose-Equiv (rem) 2.71E+02 **OVERALL RESULT:** Exit Dose, Tesch (rem) 3.50E-02 Exit Dose, Goebel (rem) 5.90E-02 Geometric Mean 4.55E-02 1.30 PUNCHTHROUGH punchthrough thickness 6.71 cascade dilution 0.08 cascade absorption 2.70E-05 punchthrough DR 7.27E-04 geometric dilution 1.32E-02

9.60E-06

P-19

Vent Case	V-00
Location	
Dwg Title	dummy
Bdlg No.	for
Job No.	formulas
Dwg / Sheet No.	only
Geometry Comments	-

DUMMY FOR FORMULAS ONLY

		ROW#	± :	COLUMN "C"	
GEOMETRY	/ DATA:	15			Leg 1
INPUT	dist to Beam (ft)	16		8	Leg .
• .	pipe dia (in)	17		48	
	horiz. pipe length, d1 (ft)	18		6	
	vertical CL length, d2 (ft)	19			
METRIC	distance to beam, a (m)	21	+E16*0.3048		
	horiz. pipe length, d1 (m)		+E18*0.3048		
	vertical CL pipe length, d2 (m)	23		•	
	pipe dia (m)		+E17/39.37		
	pipe area, A (sq m)	25	0.25*3.14*E24^2		
LEG LENGT	HS (meters):				
TEOOLI	Leg 1 length to mid-bend, R1 (m)		+E22+F24/2		
	Leg 1: Source to mid-bend, r1 = R1 + a		+E29+E21		
TESCH		31	034/@0		
GUEBEL	Leg length, Ri/Sqrt(A)	32 33	C31/@Sqrt(C30)		
ATTENHATI	ON DETAILS:	34			
TESCH	Tesch leg atten	43	(E21/E30)^2		
	Tesch vent attenuation:	45	(221,200) 2		
	Angle, source to leg 1 axis (deg)	46			
	Source Geometry Effect	47			
	Total Tesch Vent Attenuation	48			
		49			
GOEBEL	Goebel leg atten	50	1/(1+2.5*@SQRT(E32)+0.17*E32^1.7+0).79*E32^3)
	Total Goebel Vent Attenuation	51			
		52			
MEAN	Geometric Mean Vent Attenuation	53			
	"Variance" factor:	54			
		55			
SOURCE TE	RM:	59			
	No. of ions lost	60			
	Std star per cc/ion lost	61			
	Dose-Equiv (rem) per star	62			•
	Low Energy Fraction	63			
	Entrance Dose-Equiv (rem)	64			
		65			
OVERALL RE	ESULT:	67			
	Exit Dose (rem) [Tesch]	68			
	Exit Dose (rem) [Goebel] Geometric Mean	69			
	Geometric Mean				

Vent Case

Location Dwg Title Bdlg No. Job No.

Dwg / Sheet No. Geometry Comments

		ROW#	#: COLUMN "D"
GEOMETRY	DATA:	15	Leg 2
INPUT	dist to Beam (ft)	16	
	pipe dia (in)	17	
	horiz. pipe length, d1 (ft)	18	
	vertical CL length, d2 (ft)	19	13
METRIC	distance to beam, a (m)	21	
	horiz. pipe length, d1 (m)	22	
	vertical CL pipe length, d2 (m)		+F19*0.3048
	pipe dia (m)		+F17/39.37
	pipe area, A (sq m)	25	0.25*3.14*F24^2
LEG LENGT	HS (meters):		
	Leg 1 length to mid-bend, R1 (m)	29	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	30	
TESCH	Leg 2, length from leg 1 pipe, R2	31	
GOEBEL	Leg length, Ri/Sqrt(A)	32	
ATTENHATI	ON DETAILS:	33	formula below fills two cells: {2*(@EXP(-D35/0.45)+0.022*D32^1.3*
TESCH	Tesch leg atten	43	
	Tesch vent attenuation:		+E43*F34
	Angle, source to leg 1 axis (deg)		typically 0 to 50
	Source Geometry Effect		0.25, 0.15, or 0.1
	Total Tesch Vent Attenuation		+F45*F47
COEDEL	Cook allow attent	49	4//4+0-0***********************************
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	50 51	1/(1+2.8*F32*(1.57)^(F32+2)) +E50*F50
	Total Goeder Vent Attendation	52	+E30 F30
MEAN	Geometric Mean Vent Attenuation		@SQRT(D51*D54)
	"Variance" factor:	54	@MAX(D51,D54)/D56
		55	
SOURCE TE		59	
	No. of ions lost	60	1.00E+10
	Std star per cc/ion lost	61 62	1.40E-04
	Dose-Equiv (rem) per star Low Energy Fraction	63	53.28*2*2.5E-07 +LOWENFRAC
	Entrance Dose-Equiv (rem)	64	+F60*F61*F62*F63*(2.55/E21)^2
		65	
OVERALL RE	ESULT: Exit Dose (rem) [Tesch]	67 68	+F64*F48
	Exit Dose (rem) [Tescri] Exit Dose (rem) [Goebel]		+F64*F51
	Geometric Mean	03	@SQRT(D69*D70)
			<u> </u>

Vent Case

V-2

Location Dwg Title Bdlg No.

OVERALL RESULT:

Exit Dose (rem) [Tesch]

Geometric Mean

Exit Dose (rem) [Goebel]

Job No. Dwg / Sheet No. X & Y arcs, switchyard to RHIC Jack Feldman sketch

2.77E-02

1.20E-02

1.82E-02

Geometry Comments

GEOMETRY	DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft)	6.66	J
	pipe dia (in)	36.00	36.00
	horiz. pipe length, d1 (ft)	6.00	
	vertical CL length, d2 (ft)		16.00
METRIC		2.03	
	horiz. pipe length, d1 (m)	1.83	
	vertical CL pipe length, d2 (m)		4.88
	pipe dia (m)	0.91	0.91
	pipe area, A (sq m)	0.66	0.66
LEG LENGT	HS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.29	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	4.32	
TESCH	Leg 2, length from leg 1 pipe, R2		4.42
GOEBEL	Leg length, Ri/Sqrt(A)	2.82	5.46
	ON DETAILS:		
TESCH	Tesch leg atten	2.21E-01	3.94E-03
	Tesch vent attenuation:		8.72E-04
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		2.18E-04
GOEBEL	Goebel leg atten	4.18E-02	2.26E-03
	Total Goebel Vent Attenuation		9.45E-05

MEAN	Geometric Mean Vent Attenuation		1.43E-04
	"Variance" factor:		1.52
SOURCE TE	RM:		
	No. of ions lost	protons>	4.80E+12
	Std star per cc/ion lost	-	7.40E-07
	Dose-Equiv (rem) per star		2.66E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		1.27E+02
01/25411			

Vent Case V- 3 Location Injection line exit at AGS to RHIC transition Injection/Ejection Structure **Dwg Title** Bdlg No. B1007-1 Job No. ISA-12-1-467000-15 Dwg / Sheet No. S13 / 42 & S-16 **Geometry Comments** 36" DIA FAN DUCT two AGS pulses lost in Transfer Line Fault loss 4.8E12 protons at 28 GeV. Tunnel radius = 1.5 meters

GEOMET	RY DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft)	3.50	
	pipe dia (in)	36.00	36.00
	horiz. pipe length, d1 (ft)	6.00	
	vertical CL length, d2 (ft)		11.00
METOL	O distance to because of (m)		
WIETKI	C distance to beam, a (m) horiz. pipe length, d1 (m)	1.07 1.83	
	vertical CL pipe length, d2 (m)	1.63	3.35
	pipe dia (m)	0.91	0.91
	pipe area, A (sq m)	0.66	0.66
	[-] (0.00
LEG LEN	GTHS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.29	
	Leg 1: Source to mid-bend, r1 = R1 + a	3.35	
	Leg 2, length from leg 1 pipe, R2		2.90
GOEBE	EL Leg length, Ri/Sqrt(A)	2.82	3.57
ATTENUA	TION DETAILS:		
	Tesch leg atten	1.01E-01	1.05E-02
	Tesch vent attenuation:		1.06E-03
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		2.66E-04
COEDE	T. O. de Herri	4.400.00	
GOEBE	L Goebel leg atten Total Goebel Vent Attenuation	4.18E-02	8.02E-03
	lotal Goedel Vent Attenuation		3.35E-04
MEAN	Geometric Mean Vent Attenuation		2.98E-04
	"Variance" factor:		1.12
SOURCE 1	TERM:	Transfer Line	
	No. of ions lost	Protons	4.80E+12
	Std star per cc/ion lost		7.40E-07
	Dose-Equiv (rem) per star		2.66E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		1.59E+02
OVERALL	RESULT:		
	Exit Dose (rem) [Tesch]		4.23E-02
	Full Danie (no.) ro. 1 th		E 00 E 00

5.33E-02

4.75E-02

Exit Dose (rem) [Goebel]

Geometric Mean

Vent Case

Location Dwg Title Bdlg No.

Job No.

	Job No. Dwg / Sheet No. Geometry Comments	ISA-11-2-467000-4 A4 / 51 48" emergency ventilation ductw dist to beam 17' at 45 deg angle leg2 = 12' measured from dwg.	
GEOMETR	Y DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in)	17.00 48.00	48.00
	horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	7.00	12.00
METRIC	distance to beam, a (m)	5.18	
	horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m)	2.13	3.66
	pipe dia (m)	1.22	1.22
	pipe area, A (sq m)	1.17	1.17
LEG LENG	THS (meters): Leg 1 length to mid-bend, R1 (m)	2.74	
	Leg 1: Source to mid-bend, r1 = R1 + a	7.92	
	Leg 2, length from leg 1 pipe, R2 Leg length, Ri/Sqrt(A)	2.54	3.05 2.82
	TION DETAILS: Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	4.28E-01	1.65E-02 7.07E-03 50 0.100 7.07E-04
GOEBE	Goebel leg atten Total Goebel Vent Attenuation	5.33E-02	1.42E-02 7.56E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		7.31E-04 1.03
SOURCE TI	ERM:		
	No. of ions lost Std star per cc/ion lost		1.14E+11 1.35E-04
	Dose-Equiv (rem) per star		2.66E-05
	Low Energy Fraction Entrance Dose-Equiv (rem)		0.85 8.44E+01
OVERALL F	RESULT:		
	Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel]		5.97E-02 6.38E-02
	Geometric Mean		6.17E-02

V- 4

B1001 (and B1003) ISA-11-2-467000-4

Equipment areas 1-B (and 3-B) Magnet Encl 1 & 3, Equip. areas 1-B and 3-B

Vent Case

Location

Dwg Title

Bdlg No.

Job No.

Dwg / Sheet No. Geometry Comments		ISA-11-2-46/000-4 A4 / 51 & S6 / 61 48" emergency ventilation ductwork 17 ft to beam at 45 degree angle to horizontal leg2 measured to be 12' vertically on dwg POSSIBLE WEAK AREA NEAR VENT!	
GEOMETR		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in) horiz. pipe length, d1 (ft)	17.00 48.00	48.00
	vertical CL length, d2 (ft)	7.00	12.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m) pipe dia (m)	5.18 2.13 1.22	3.66 1.22
LECLENC	pipe area, A (sq m)	1.17	1.17
TESCH	THS (meters): Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a Leg 2, length from leg 1 pipe, R2	2.74 7.92	3.05
	Leg length, Ri/Sqrt(A)	2.54	2.82
	TION DETAILS: Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	4.28E-01	1.65E-02 7.07E-03 50 0.100 7.07E-04
GOEBE	Goebel leg atten Total Goebel Vent Attenuation	5.33E-02	1.42E-02 7.56E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		7.31E-04 1.03
SOURCE T	······•	m	
	No. of ions lost Std star per cc/ion lost Dose-Equiv (rem) per star Low Energy Fraction Entrance Dose-Equiv (rem)	RHIC	1.14E+11 1.35E-04 2.66E-05 0.85 8.44E+01
OVERALL F	RESULT: Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		5.97E-02 6.38E-02 6.17E-02

V- 5

Equipment areas 3-B (and 1-B)

B1003 (and B1001)

ISA-11-2-467000-4

Magnet Encl 1 & 3, Equip. areas 1-B and 3-B

Vent Case

Location

Dwg Title

Bdlg No. Job No.

	Dwg / Sheet No. Geometry Comments	A5 / 52 42 " emergency exhaust fan, 9.5 17' diagonal distance to beamlir	
GEOMETRY	/ DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in) horiz. pipe length, d1 (ft)	17.00 42 .00 7.00	42.00
	vertical CL length, d2 (ft)	7.00	9.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m)	5.18 2.13	
	vertical CL pipe length, d2 (m) pipe dia (m)	1.07	2.74 1.07
	pipe area, A (sq m)	0.89	0.89
LEG LENGT	THS (meters): Leg 1 length to mid-bend, R1 (m)	2.67	
TESCH TESCH	Leg 1: Source to mid-bend, r1 = R1 + a Leg 2, length from leg 1 pipe, R2	7.85	2.21
	Leg length, Ri/Sqrt(A)	2.82	2.34
TESCH	ON DETAILS: Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	4.36E-01	2.90E-02 1.26E-02 15 0.250 3.16E-03
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	4.18E-02	2.11E-02 8.83E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		1.67E-03 1.89
SOURCE TE	PM·		
SOURCE TE	No. of ions lost Std star per cc/ion lost Dose-Equiv (rem) per star Low Energy Fraction Entrance Dose-Equiv (rem)		1.14E+11 1.35E-04 2.66E-05 0.85 8.44E+01
OVERALL R			
	Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		2.67E-01 7.45E-02 <i>1.41E-01</i>

V- 6

Equipment areas 1A, 1C 3A, 3C

B1003 (and B1001)

ISA-11-2-467000-4

Magnet encl. 1 & 3, eqt areas 1A, 1C, 3A, 3C

Vent Case

Dwg / Sheet No.

Geometry Comments

Location

Dwg Title

Bdlg No.

Job No.

GEOMETR'		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in) horiz. pipe length, d1 (ft)	7.50 48.00 6.00	48.00
	vertical CL length, d2 (ft)		16.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m)	2.29 1.83	4.88
	pipe dia (m) pipe area, A (sq m)	1.22 1.17	1.22 1.17
LEG LENG	ГНS (meters):		
TESCH TESCH	Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a Leg 2, length from leg 1 pipe, R2	2.44 4.72	4.27
	Leg length, Ri/Sqrt(A)	2.26	3.95
ATTENUATI TESCH	ION DETAILS:	2.245.04	0.675.00
IESUN	Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect	2.34E-01	8.67E-03 2.03E-03 0 0.250
	Total Tesch Vent Attenuation		5.07E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	6.89E-02	6.14E-03 4.23E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		4.63E-04 1.10
SOURCE TE	RM:		
	No. of ions lost Std star per cc/ion lost		1.14E+11 1.35E-04
	Dose-Equiv (rem) per star Low Energy Fraction		2.66E-05 0.85
	Entrance Dose-Equiv (rem)		4.34E+02
OVERALL R	ESULT:		
	Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		2.20E-01 1.83E-01 2.01E-01

V- 7

B1001

Magnet Encl. Sextant 1

ISA-11-2-467000-4

in plate arch structure.

Magnet Encl. Sext. 1 & 3, Sext. 1 Part III

48" DIA ventilator duct on inside of ring

S3 / 58; see also V-11 on S6 / 62

Vent Case

Location

Dwg Title

Bdlg No.

	Job No. Dwg / Sheet No. Geometry Comments	ISA-11-2-467000-4 S5 / 60; see also V-10 on S6 / 61 42" air duct in plate arch tunnel on inside of ring at spectrometer tunnel branch point.	
GEOMETR		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in)	8.00 42.00	42.00
	horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	6.00	16.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m) pipe dia (m) pipe area, A (sq m)	2.44 1.83 1.07 0.89	4.88 1.07 0.89
LEG LENGT	THS (meters):	0.00	
TESCH	,	2.36 4.80	
TESCH GOEBEL	Leg 2, length from leg 1 pipe, R2 Leg length, Ri/Sqrt(A)	2.50	4.34 4.60
ATTENUATI TESCH	ON DETAILS: Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	2.58E-01	6.00E-03 1.55E-03 0 0.250 3.87E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	5.53E-02	3.95E-03 2.18E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		2.91E-04 1.33
SOURCE TE	RM:		
	No. of ions lost Std star per cc/ion lost Dose-Equiv (rem) per star Low Energy Fraction Entrance Dose-Equiv (rem)		1.14E+11 1.35E-04 2.66E-05 0.85 3.81E+02
OVERALL R	ESULT: Exit Dose (rem) [Tesch]		1.48E-01
	Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		8.33E-02 1.11E-01

V- 8

B1003

Sextant 3 Plan, Part I

Mag.t Encl. Sext. 3 at Spectr. Tunnel Fork

Vent Case

Dwg / Sheet No.

Location

Dwg Title

Bdlg No.

Job No.

	Dwg / Sneet No. Geometry Comments	S6 / 61 30" DIA ventilator duct at end o tunnel NO SERIOUS FLUX IN SPECTUNNEL. BERM HT UNKNOV ASSUMED 8 FT ONLY	ROMETER
GEOMETRY		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in)	6.00 30.00	30.00
	horiz. pipe length, d1 (ft)	6.00	30.00
	vertical CL length, d2 (ft)		11.00
METRIC		1.83	
	horiz. pipe length, d1 (m)	1.83	
	vertical CL pipe length, d2 (m) pipe dia (m)	0.76	3.35 0.76
	pipe area, A (sq m)	0.46	0.46
I EG I ENGT	'HS (meters):		
LLO LLIVO	Leg 1 length to mid-bend, R1 (m)	2.21	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	4.04	
TESCH	Leg 2, length from leg 1 pipe, R2 Leg length, Ri/Sqrt(A)	3.27	2.97 4.40
		5.21	4.40
ATTENUATI TESCH	ON DETAILS: Tesch leg atten	2.05E-01	7 125 02
120011	Tesch vent attenuation:	2.05E-01	7.13E-03 1.46E-03
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect Total Tesch Vent Attenuation		0.250
	Total Testif Vent Attenuation		3.65E-04
GOEBEL	Goebel leg atten	2.90E-02	4.50E-03
	Total Goebel Vent Attenuation		1.30E-04
MEAN	Geometric Mean Vent Attenuation		2.18E-04
	"Variance" factor:		1.67
SOURCE TE	RM: No. of ions lost	RHIC/1000	4.445.00
	Std star per cc/ion lost	RHIC/1000	1.14E+08 1.35E-04
	Dose-Equiv (rem) per star		2.66E-05
	Low Energy Fraction Entrance Dose-Equiv (rem)		0.85
	Linualioe Dose-Equiv (IGIII)		6.78E-01
OVERALL RI	=9111 T·		
	ESULT: Exit Dose (rem) [Tesch]		2.48E-04
	Exit Dose (rem) [Goebel]		8.84E-05
	Geometric Mean		1.48E-04
			•

V- 9

B1003

S6 / 61

Equipment Area 3B

ISA-11-2-467000-4

Mag. Encl. Sext. 1 & 3, Sext. 3 Plan Part III

Vent CaseV-10LocationMagnet Enclosure Sext 3 CCW of Eqt Area 3ADwg TitleMag. Encl. Sext. 1 & 3, Sext. 3 Plan Part IBdlg No.B1003Job No.ISA-11-2-467000-4Dwg / Sheet No.S6 / 61; see also V-8 on S5 / 60.Geometry Comments42" dia duct in plate arch tunnel

GEOMETR		Leg 1	Leg 2
INPUT	dist to Beam (ft)	9.50	_
	pipe dia (in) horiz. pipe length, d1 (ft)	42.00 6.00	42.00
	vertical CL length, d2 (ft)	6.00	16.00
METRIC	E-former A. I		
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m)	2.90 1.83	
	vertical CL pipe length, d2 (m)	1.03	4.88
	pipe dia (m)	1.07	1.07
	pipe area, Á (sq m)	0.89	0.89
LEG LENG	THS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.36	
TESCH	7	5.26	
TESCH	0 / 0 11 / -		4.34
GOEDEL	. Leg length, Ri/Sqrt(A)	2.50	4.60
	ION DETAILS:		
TESCH	Tesch leg atten	3.03E-01	6.00E-03
	Tesch vent attenuation: Angle, source to leg 1 axis (deg)		1.82E-03
	Source Geometry Effect		0 0.250
	Total Tesch Vent Attenuation		4.55E-04
GOEREI	Goebel leg atten	5.53E-02	3.95E-03
002522	Total Goebel Vent Attenuation	3.33 <u>L</u> -02	2.18E-04
3.4F 0.51	On any trie Many Mark Miller C		
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		3.15E-04 1.44
	variance lactor.		1.44
SOURCE TE	-PM-		
000110111	No. of ions lost		1.14E+11
	Std star per cc/ion lost		1.35E-04
	Dose-Equiv (rem) per star		2.66E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		2.70E+02
OVERALL R	FSULT:		
J E LIMEL N	Exit Dose (rem) [Tesch]		1.23E-01
	Exit Dose (rem) [Goebel]		5.90E-02
	Coometrie Moon		0 505 00

8.52E-02

Geometric Mean

Vent Case

Location

Dwg Title

Bdlg No. Job No.

	Dwg / Sheet No. Geometry Comments	ISA-11-2-467000-4 S6 / 61; see also V-7 on S3 / 58. 48" dia ventilator duct	
GEOMETR'	V DATA.	Lond	lan 9
INPUT	dist to Beam (ft)	Leg 1 7.00	Leg 2
01	pipe dia (in)	48.00	48.00
	horiz. pipe length, d1 (ft)	6.00	
	vertical CL length, d2 (ft)		16.00
METRIC	distance to beam, a (m)	2.13	
	horiz. pipe length, d1 (m)	1.83	
	vertical CL pipe length, d2 (m)	4.00	4.88
	pipe dia (m) pipe area, A (sq m)	1.22 1.17	1.22 1.17
	, , ,		1.17
LEG LENG	rHS (meters):	0.44	
TESCH	Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a	2.44 4.57	
	Leg 2, length from leg 1 pipe, R2	4.51	4.27
GOEBEL	Leg length, Ri/Sqrt(A)	2.26	3.95
ATTENUAT	ION DETAILS: Tesch leg atten	2.18E-01	8.67E-03
120011	Tesch vent attenuation:	2.102-01	1.89E-03
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect Total Tesch Vent Attenuation		0.250
	Total Tesch Vent Attenuation		4.72E-04
GOEBEL	Goebel leg atten	6.89E-02	6.14E-03
	Total Goebel Vent Attenuation		4.23E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		4.47E-04 1.06
SOURCE TE	RM:		
	No. of ions lost		1.14E+11
	Std star per cc/ion lost Dose-Equiv (rem) per star		1.35E-04 2.66E-05
	Low Energy Fraction		2.00E-05 0.85
	Entrance Dose-Equiv (rem)		4.98E+02
OVERALL R	ESULT:		
	Exit Dose (rem) [Tesch]		2.35E-01
	Exit Dose (rem) [Goebel]		2.10E-01
	Geometric Mean		2.22E-01

V-11

ISA-11-2-467000-4

Tunnel between Equipment Area 3A and 3B

Mag_Encl. Sext. 1 & 3, Sext. 3 Plan Part II B1003

Vent Case V-12 Location Narrow Angle Hall CW transition structure Dwa Title Narrow Angle Hall, Elevation & Sections Bdlg No. B1002 Job No. ISA-13-3-467000-13 Dwg / Sheet No. A3 / 8 & A6 / 11 **Geometry Comments** clockwise from NAH 27' to berm top, less slope falloff 2 vents on outside of ring, plate arch. opposite machine support bdlg. **GEOMETRY DATA:** Leg 1 Leg 2 dist to Beam (ft) 10.00 pipe dia (in) 42.00 42.00 horiz. pipe length, d1 (ft) 6.00 vertical CL length, d2 (ft) 23.00 METRIC distance to beam, a (m) 3.05 horiz. pipe length, d1 (m) 1.83 vertical CL pipe length, d2 (m) 7.01 pipe dia (m) 1.07 1.07 pipe area, A (sq m) 0.89 0.89 LEG LENGTHS (meters): Leg 1 length to mid-bend, R1 (m) 2.36 Leg 1: Source to mid-bend, r1 = R1 + a 5.41 TESCH Leg 2, length from leg 1 pipe, R2 6.48 GOEBEL Leg length, Ri/Sqrt(A) 2.50 6.85 **ATTENUATION DETAILS:** Tesch leg atten 3.17E-01 2.37E-03 Tesch vent attenuation: 7.52E-04 Angle, source to leg 1 axis (deg) Source Geometry Effect 0.250 **Total Tesch Vent Attenuation** 1.88E-04 GOEBEL Goebel leg atten 5.53E-02 9.60E-04 **Total Goebel Vent Attenuation** 5.31E-05 Geometric Mean Vent Attenuation 9.99E-05 "Variance" factor: 1.88

SOURCE TERM:

MEAN

INPUT

TESCH

TESCH

No. of ions lost	1.14E+11
Std star per cc/ion lost	1.35E-04
Dose-Equiv (rem) per star	2.66E-05
Low Energy Fraction	0.85
Entrance Dose-Equiv (rem)	2.44E+02

OVERALL RESULT:

Exit Dose (rem) [Tesch]	4.59E-02
Exit Dose (rem) [Goebel]	1.29E-02
Geometric Mean	2.44E-02

Vent Case	V-13a
Location	Narrow Angle Hall
Dwg Title	Floor Plan Part I, Elevation & Sections
Bdlg No.	B1002
Job No.	ISA-13-3-467000-13
Dwg / Sheet No.	A3 / 8 & A6 / 11
Geometry Comments	LOWER of TWO (!) 48" horizontal ducts
	feeding into same vertical 54" pipe.
	26' to berm top, less slope down.
	slope down = $0.5(6 = 4/2) = 4$
	See V-13b for combined effect both ducts.

GEOMETRY		Leg 1	_
INPUT	dist to Beam (ft) pipe dia (in)	20.00 48.00	
	horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	8.00	22.00
METRIC	distance to beam, a (m)	6.10	
	horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m)	2.44	
	pipe dia (m)	1.22	6.71 1.22
	pipe area, A (sq m)	1.17	
LEG LENGT	'HS (meters):		
	Leg 1 length to mid-bend, R1 (m)	3.05	
	Leg 1: Source to mid-bend, r1 = R1 + a	9.14	
	Leg 2, length from leg 1 pipe, R2		6.10
GOEBEL	Leg length, Ri/Sqrt(A)	2.82	5.64
ATTENUATI	ON DETAILS:		
TESCH	Tesch leg atten	4.44E-01	3.92E-03
	Tesch vent attenuation:		1.74E-03
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect Total Tesch Vent Attenuation		0.250
	Total Tesch Vent Attenuation	LOWER vent only	4.35E-04
GOEBEL	Goebel leg atten	4.18E-02	2.01E-03
	Total Goebel Vent Attenuation		8.39E-05
MEAN	Geometric Mean Vent Attenuation		1.91E-04
	"Variance" factor:		2.28
			Large dist to source.

SOURCE TERM:

No. of ions lost	1.14E+11
Std star per cc/ion lost	1.35E-04
Dose-Equiv (rem) per star	2.66E-05
Low Energy Fraction	0.85
Entrance Dose-Equiv (rem)	6.10E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean Exp Hall

Vent Case	V-13b
Location	Narrow Angle Hall
Dwg Title	Floor Plan Part I, Elevation & Sections
Bdlg No.	B1002
Job No.	ISA-13-3-467000-13
Dwg / Sheet No.	A3 / 8 & A6 / 11
Geometry Comments	UPPER of TWO (!) 48" horizontal ducts
	feeding into same vertical 54" pipe.
	13' to berm top, less slope down.
	slope down = $0.5(6 = 4/2) = 4$
	Combined effects of both duct mouths.

GEOMETRY		Leg 1	Leg 2
INPUT	dist to Beam (ft)	20.00	
	pipe dia (in)	48.00	
	horiz. pipe length, d1 (ft)	8.00	
	vertical CL length, d2 (ft)		9.00
METRIC	distance to beam, a (m)	6,10	
	horiz. pipe length, d1 (m)	2.44	
	vertical CL pipe length, d2 (m)		2.74
	pipe dia (m)	1.22	1.22
	pipe area, A (sq m)	1.17	1.17
LEG LENGT	HS (meters):		
	Leg 1 length to mid-bend, R1 (m)	3.05	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	9.14	
TESCH	Leg 2, length from leg 1 pipe, R2		2.13
GOEBEL	Leg length, Ri/Sqrt(A)	2.82	1.98
ATTENUATI	ON DETAILS:		
TESCH	Tesch leg atten	4.44E-01	3.81E-02
	Tesch vent attenuation:		1.69E-02
	Angle, source to leg 1 axis (deg)		28
	Source Geometry Effect		0.150
	Total Tesch Vent Attenuation		2.54E-03
		UPPER vent only:	
GOEBEL	Goebel leg atten	4.18E-02	2.92E-02
	Total Goebel Vent Attenuation		1.22E-03
MEAN	Geometric Mean Vent Attenuation		1.76E-03
	"Variance" factor:		1.44
			Large dist to source.
		UPPER+LOWER, Tesch	2.98E-03
		UPPER+LOWER, Goebel	1.30E-03
		GEOMETRIC MEAN:	1.97E-03
SOURCE TE			
	No. of ions lost		1.14E+11
	Std star per cc/ion lost		1.35E-04
	Dose-Equiv (rem) per star		2.66E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		6.10E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch]
Exit Dose (rem) [Goebel]
Geometric Mean

Exp Hall

Vent Case

Exit Dose (rem) [Tesch]
Exit Dose (rem) [Goebel]

Geometric Mean

	Location Dwg Title Bdlg No. Job No. Dwg / Sheet No. Geometry Comments	CW From Narrow Angle Hall, He loop structure Narrow Angle Hall, Elevation & Sections B1002 ISA-13-3-467000-13 A6 / 11 30" aluminum pipe from helium loop structure 17' less falloff to berm top	
GEOMETR	Y DATA:	Leg 1	1 Leg 2
INPUT	dist to Beam (ft)	10.00	
	pipe dia (in)	30.00	
	horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	7.00) 13.50
METRIC	distance to beam, a (m)	3.05	;
	horiz. pipe length, d1 (m)	2.13	
	vertical CL pipe length, d2 (m)		4.11
	pipe dia (m)	0.76	
	pipe area, A (sq m)	0.46	0.46
LEG LENG	ΓHS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.51	
TESCH		5.56	
TESCH	Leg 2, length from leg 1 pipe, R2		3.73
GOEBEL	Leg length, Ri/Sqrt(A)	3.72	5.53
ATTENHIAT	ION DETAILS:		
TESCH	Tesch leg atten	3.00E-01	3.70E-03
	Tesch vent attenuation:	3.00 <u>L</u> -01	1.11E-03
	Angle, source to leg 1 axis (deg)		28
	Source Geometry Effect		0.150
	Total Tesch Vent Attenuation		1.67E-04
COEREI	Goebel leg atten	2.07E-02	2.40=.02
OOLDEL	Total Goebel Vent Attenuation	2.07 ⊑-02 preferred>	2.16E-03 <i>4.47E-05</i>
	rota. Good. Cont. Monagon	prototted	4.41 L-03
MEAN	Geometric Mean Vent Attenuation		8.64E-05
	"Variance" factor:		1.93
			Small pipe diameter
			Goebel result preferred.
SOURCE TE			
	No. of ions lost		1.14E+11
	Std star per cc/ion lost		1.35E-04
	Dose-Equiv (rem) per star Low Energy Fraction		2.66E-05 0.85
	Entrance Dose-Equiv (rem)		0.85 2.44E+02
			2.772 . 02
OVERALL R	ESULT: Evit Doog (rom) (Toogh)		4.075.00
	WIT I IOOO (FORM) I LOOON!		

4.07E-02

1.09E-02

2.11E-02

Preferred--->

V-14

Vent CaseV-15LocationNarrow Angle HallDwg TitleNarrow Angle Hall, Elevation & SectionsBdlg No.B1002Job No.ISA-13-3-467000-13Dwg / Sheet No.A3 / 8 & A6 / 11Geometry Comments30" dia aluminum pipe, 13' CL to berm top less
slope down

GEOMETRY		Leg 1	Leg 2
INPUT	dist to Beam (ft)	20.00	
	pipe dia (in)	30.00	30.00
	horiz. pipe length, d1 (ft)	8.00	
	vertical CL length, d2 (ft)		9.50
METRIC	distance to beam, a (m)	6.10	
	horiz, pipe length, d1 (m)	2.44	
	vertical CL pipe length, d2 (m)	2.44	2.90
	pipe dia (m)	0.76	
	• • • • •		0.76
	pipe area, A (sq m)	0.46 ·	0.46
LEG LENGT	THS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.82	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	8.92	
TESCH	Leg 2, length from leg 1 pipe, R2	0.02	2.51
	Leg length, Ri/Sqrt(A)	4.18	3.72
COLDEL	Leg length, Miodit(A)	4.10	3.72
ATTENUATI	ON DETAILS:		
TESCH	Tesch leg atten	4.68E-01	1.28E-02
	Tesch vent attenuation:		5.99E-03
	Angle, source to leg 1 axis (deg)		0.552-05
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		
	Total Tesch Vent Attendation		1.50E-03
GOEBEL	Goebel leg atten	1.52E-02	7.20E-03
	Total Goebel Vent Attenuation	Preferred>	1.10E-04
	Total Cooper Contraction	Troicincu	1.102-07
MEAN	Geometric Mean Vent Attenuation		4.06E-04
	"Variance" factor:		3.69
			Large dist to beam
			Small dia. pipe.
			oman dia, pipe.

SOURCE TERM:

 No. of ions lost
 1.14E+11

 Std star per cc/ion lost
 1.35E-04

 Dose-Equiv (rem) per star
 2.66E-05

 Low Energy Fraction
 0.85

 Entrance Dose-Equiv (rem)
 6.10E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean

Vent Case	V-16
Location	Narrow Angle Hall CCW transition structure
Dwg Title	Narrow Angle Hall, Elevation & Sections
Bdlg No.	B1002
Job No.	ISA-13-3-467000-13
Dwg / Sheet No.	A3 / 8 & A6 / 11
Geometry Comments	counterclockwise from NAH
	26' to berm top, less slope falloff
	48" dia, 2 vents, 1 on each side of plate arch structure
	East Injection Structure assumed similar.
	•

GEOMETR'	Y DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft)	10.00	•
	pipe dia (in)	48.00	48.00
	horiz. pipe length, d1 (ft)	6.00	
	vertical CL length, d2 (ft)		22.00
METRIC	distance to beam a (m)	2.05	
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m)	3.05	
	vertical CL pipe length, d2 (m)	1.83	0.74
	pipe dia (m)	1.22	6.71 1.22
	pipe area, A (sq m)	1.17	1.17
	pipo aroa, / (eq m)	1.17	1.17
LEG LENGT	THS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.44	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	5.49	
TESCH	Leg 2, length from leg 1 pipe, R2		6.10
GOEBEL	Leg length, Ri/Sqrt(A)	2.26	5.64
A *F*******	ON BETALL O		
	ON DETAILS:		
TESCH	Tesch leg atten Tesch vent attenuation:	3.09E-01	3.92E-03
			1.21E-03
	Angle, source to leg 1 axis (deg) Source Geometry Effect		0
	Total Tesch Vent Attenuation		0.250
	rotal result vent Attendation	•	3.02E-04
GOEBEL	Goebel leg atten	6.89E-02	2.01E-03
	Total Goebel Vent Attenuation	0.002 02	1.38E-04
MEAN	Geometric Mean Vent Attenuation		2.04E-04
	"Variance" factor:		1.48
	·		
SOURCE TE	DM.		
SCORCE IE	No. of ions lost		4.44
	Std star per cc/ion lost		1.14E+11 1.35E-04
	Dose-Equiv (rem) per star		1.55E-04 2.66E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		2.44E+02
			M, 11L · VL
OVERALL RI			
	Exit Dose (rem) [Tesch]		7.37E-02
	Exit Dose (rem) [Goebel]		3.38E-02
	Geometric Mean		4.99E-02

Vent Case

Dwg / Sheet No.

Location

Dwg Title

Bdlg No. Job No.

	Dwg / Sneet No. Geometry Comments	S1 / 55 48" dia air duct in plate arch VENT AS CONSTRUCTED DO THIS DWG. AS-BUILT VENT S CASE V-18.	
GEOMETR'	Y DATA: dist to Beam (ft)	Leg 1 10.00	Leg 2
	pipe dia (in) horiz. pipe length, d1 (ft)	48.00 7.00	48.00
	vertical CL length, d2 (ft)		15.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m)	3.05 2.13	4.57
	pipe dia (m) pipe area, A (sq m)	1.22 1.17	1.22 1.17
LEG LENGT	THS (meters):		
TESCH	Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a	2.74 5.79	
TESCH GOEBEL	Leg 2, length from leg 1 pipe, R2 Leg length, Ri/Sqrt(A)	2.54	3.96 3.67
ATTENUATI TESCH	ON DETAILS: Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	2.77E-01	9.99E-03 2.77E-03 15 0.250 6.92E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	5.33E-02	7.49E-03 4.00E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		5.26E-04 1.32
SOURCE TE			
	No. of ions lost Std star per cc/ion lost Dose-Equiv (rem) per star Low Energy Fraction Entrance Dose-Equiv (rem)		1.14E+11 1.35E-04 2.66E-05 0.85 2.44E+02
	ESULT: Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		1.69E-01 9.75E-02 1.28E-01

V-17

S1 / 55

Next to Open Area at 4 o'clock

ISA-11-1-467000-2

Mag. Encl. Sext 5 & 7, Sext. 5 Plan, Part II

Vent Case

Exit Dose (rem) [Goebel]

Geometric Mean

	Location Dwg Title Bdlg No. Job No. Dwg / Sheet No. Geometry Comments	CW From Open area 4 o'clock to su Open area 4 o'clock partial plan No B1004 ISA-13-2-467000-10 A2 / 7; same as V-19. Emergency ventilation fan. CL of vent 7 ft above floor elev. Floor elev = 65' Interior ht. assumed 12'	
GEOMETR'	Y DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft)	10.00	
	pipe dia (in)	48.00	48.00
	horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	7.00	15.00
METRIC	distance to beam, a (m)	3.05	
WETTO	horiz. pipe length, d1 (m)	2.13	
	vertical CL pipe length, d2 (m)		4.57
	pipe dia (m)	1.22	1.22
	pipe area, A (sq m)	1.17	1.17
I EG I ENGI	ΓHS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.74	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	5.79	
TESCH	Leg 2, length from leg 1 pipe, R2		3.96
GOEBEL	Leg length, Ri/Sqrt(A)	2.54	3.67
ATTENUAT	ON DETAILS:		
TESCH	Tesch leg atten	2.77E-01	9.99E-03
120011	Tesch vent attenuation:	2.7712-01	2.77E-03
	Angle, source to leg 1 axis (deg)		15
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		6.92E-04
COEDEL	On the Heart affects	5.005.00	7 405 00
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	5.33E-02	7.49E-03 4.00E-04
	Total Goeder Vent Attendation		4.00E-04
MEAN	Geometric Mean Vent Attenuation		5.26E-04
	"Variance" factor:		1.32
SOURCE TE		•	
	No. of ions lost		1.14E+11
	Std star per cc/ion lost Dose-Equiv (rem) per star		1.35E-04 2.66E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		2.44E+02
OVERALL R	ESULT:		
	Exit Dose (rem) [Tesch]		1.69E-01
	Fyit Dose (rem) [Goehel]		9.75F_02

9.75E-02

1.28E-01

Vent Case

INPUT

MEAN

Exit Dose (rem) [Goebel]

Geometric Mean

Location CCW From Open area 4 o'clock, transition tunnel Dwg Title Open area 4 o'clock partial plan No. 2 Bdig No. B1004 Job No. ISA-13-2-467000-10 Dwa / Sheet No. A3 / 8; same as V-18. **Geometry Comments** Emergency ventilation fan from concrete tunnel CL of vent 7 ft above floor elev. Floor elev = 65' Interior ht. assumed 12' **GEOMETRY DATA:** Leg 1 Leg 2 dist to Beam (ft) 10.00 pipe dia (in) 48.00 48,00 horiz. pipe length, d1 (ft) 7.00 vertical CL length, d2 (ft) 15.00 METRIC distance to beam, a (m) 3.05 horiz. pipe length, d1 (m) 2.13 vertical CL pipe length, d2 (m) 4.57 pipe dia (m) 1.22 1.22 pipe area, A (sq m) 1.17 1.17 LEG LENGTHS (meters): Leg 1 length to mid-bend, R1 (m) 2.74 TESCH Leg 1: Source to mid-bend, r1 = R1 + a 5.79 TESCH Leg 2, length from leg 1 pipe, R2 3.96 GOEBEL Leg length, Ri/Sqrt(A) 2.54 3.67 **ATTENUATION DETAILS:** TESCH Tesch leg atten 2.77E-01 9.99E-03 Tesch vent attenuation: 2.77E-03 Angle, source to leg 1 axis (deg) 15 Source Geometry Effect 0.250 **Total Tesch Vent Attenuation** 6.92E-04 GOEBEL Goebel leg atten 5.33E-02 7.49E-03 **Total Goebel Vent Attenuation** 4.00E-04 Geometric Mean Vent Attenuation 5.26E-04 "Variance" factor: 1.32 SOURCE TERM: No. of ions lost 1.14E+11 Std star per cc/ion lost 1.35E-04 Dose-Equiv (rem) per star 2.66E-05 Low Energy Fraction 0.85 Entrance Dose-Equiv (rem) 2.44E+02 **OVERALL RESULT:** Exit Dose (rem) [Tesch] 1.69E-01

9.75E-02

1.28E-01

Vent Case

Geometric Mean

	Location Dwg Title Bdlg No. Job No. Dwg / Sheet No. Geometry Comments	N-20 RF cavity structure Magnet Encl Sextants 5 & 7 Senone ISA-11-1-467000-2 S1 / 55 42" vents, qty 2, on opposite si CL of vent 33" above floor heig vertical ht scaled from dwg.	des of tunnel
GEOMETR'	Y DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in) horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	11.50 42.00 7.00	42.00 19.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m)	3.51 2.13	5.79
	pipe dia (m) pipe area, A (sq m)	1.07 0.89	1.07 0.89
LEG LENGT	THS (meters): Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a	2.67 6.17	
TESCH	Leg 2, length from leg 1 pipe, R2 Leg length, Ri/Sqrt(A)	2.82	5.26 5.56
ATTENUATI TESCH	ON DETAILS: Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	3.23E-01	4.00E-03 1.29E-03 0 0.250 3.22E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	4.18E-02	2.11E-03 8.83E-05
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		1.69E-04 1.91
SOURCE TE			
	No. of ions lost Std star per cc/ion lost Dose-Equiv (rem) per star Low Energy Fraction Entrance Dose-Equiv (rem)		1.14E+11 1.35E-04 2.66E-05 0.85 1.84E+02
OVERALL R	ESULT: Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		5.94E-02 1.63E-02

3.11E-02

Vent Case

Dwg / Sheet No.

Location Dwg Title Bdlg No.

Job No.

	Geometry Comments	42" dia fan. Floor plan, elev tal similar to 1B. Dist to beam 12' angle to horiz. Leg2 taken as 1 POSSIBLE WEAK AREA NEA	, 17' at 45 deg l2', as in 1B.
GEOMETRY INPUT	/ DATA: dist to Beam (ft)	Leg 1 17.00	Leg 2
	pipe dia (in) horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	42.00 7.00	42.00 12.00
METRIC	horiz. pipe length, d1 (m)	5.18 2.13	
	vertical CL pipe length, d2 (m) pipe dia (m) pipe area, A (sq m)	1.07 0.89	3.66 1.07 0.89
LEG LENGT	HS (meters):		
TESCH TESCH	Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a Leg 2, length from leg 1 pipe, R2	2.67 7.85	3.12
	Leg length, Ri/Sqrt(A)	2.82	3.31
	ON DETAILS:	4.005.04	4.405.00
TESCH	Tesch leg atten Tesch vent attenuation:	4.36E-01	1.18E-02 5.13E-03
	Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation		45 0.100 5.13E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	4.18E-02	9.77E-03 4.08E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		4.58E-04 1.12
SOURCE TE	RM:		
	No. of ions lost Std star per cc/ion lost		1.14E+11 1.35E-04
	Dose-Equiv (rem) per star Low Energy Fraction		2.66E-05 0.85
	Entrance Dose-Equiv (rem)		8.44E+01
OVERALL R			4 22E 00
	Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel]		4.33E-02 3.45E-02
	Geometric Mean		3.86E-02

V-21

none

S2 / 56

ISA-11-1-467000-2

Equipment Area, Emergency Exit 5B Mag. Encl. Sext, 5 & 7,Sextant 5 plan, Part II

Vent Case

	Location Dwg Title Bdlg No. Job No. Dwg / Sheet No. Geometry Comments	Equipment Area, Emergency Ex Mag. Encl. Sext, 5 & 7,Sextant 5 none ISA-11-1-467000-2 S2 / 56 & 48" dia fan. Floor and wall plansimilar to 1A. leg2=9' only POSSIBLE WEAK AREA NEAR	plan, Part II
GEOMETR		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in)	16.00 48.00	48.00
	horiz. pipe length, d1 (ft)	7.00	40.00
	vertical CL length, d2 (ft)		9.00
METRIC	distance to beam, a (m)	4.88	
	horiz. pipe length, d1 (m)	2.13	
	vertical CL pipe length, d2 (m) pipe dia (m)	1.22	2.74 1.22
	pipe area, A (sq m)	1.17	1.17
TESCH TESCH	THS (meters): Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a Leg 2, length from leg 1 pipe, R2 Leg length, Ri/Sqrt(A)	2.74 7.62 2.54	2.13 1.98
ATTENUAT	ION DETAILS:		
TESCH	Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	4.10E-01	3.81E-02 1.56E-02 15 0.250 3.90E-03
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	5.33E-02	2.92E-02 1.56E-03
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		2.47E-03 1.58
SOURCE TE	PM·		
JOURGE IE	No. of ions lost		1.14E+11
	Std star per cc/ion lost Dose-Equiv (rem) per star		1.35E-04 2.66E-05
	Low Energy Fraction		2.66E-05 0.85
	Entrance Dose-Equiv (rem)		9.53E+01

V-22

OVERALL RESULT:

Exit Dose (rem) [Tesch]	3.72E-01
Exit Dose (rem) [Goebel]	1.48E-01
Geometric Mean	2.35E-01

Exit Dose (rem) [Tesch]

Geometric Mean

Exit Dose (rem) [Goebel]

Vent Case V-23

Location Magnet Encl. Near Exit to Service Bdlg.

Dwg Title Mag. Encl. Sext, 5 & 7,Sextant 5 plan, Part II

Bdlg No. none

Job No. ISA-11-1-467000-2 Dwg / Sheet No. S2 / 56 & S13 / 67

Geometry Comments 48" dia vent from plate arch tunnel

GEOMETR'		Leg 1	Leg 2
INPUT	dist to Beam (ft)	9.50	
	pipe dia (in)	48.00	48.00
	horiz. pipe length, d1 (ft) vertical CL length, d2 (ft)	6.00	16.00
	vertical OL length, d2 (it)		10.00
METRIC	distance to beam, a (m)	2.90	
	horiz. pipe length, d1 (m)	1.83	
	vertical CL pipe length, d2 (m)		4.88
	pipe dia (m)	1.22	1.22
	pipe area, A (sq m)	1.17	1.17
LEG LENG	ГНS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.44	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	5.33	
	Leg 2, length from leg 1 pipe, R2		4.27
GOEBEL	Leg length, Ri/Sqrt(A)	2.26	3.95
ATTENIIAT	ION DETAILS:		
TESCH	Tesch leg atten	2.95E-01	8.67E-03
	Tesch vent attenuation:		2.55E-03
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		6.39E-04
GOEBEL	Goebel leg atten	6.89E-02	6.14E-03
COLDEL	Total Goebel Vent Attenuation	0.002 02	4.23E-04
MEAN	Geometric Mean Vent Attenuation		5.19E-04
	"Variance" factor:		1.23
SOURCE TE	ERM: No. of ions lost		1.14E+11
	Std star per cc/ion lost		1.35E-04
	Dose-Equiv (rem) per star		2.66E-05
	Low Energy Fraction		0.85
	Entrance Dose-Equiv (rem)		2.70E+02
OVERALL P	EQUIT.		
OVERALL R	ESULI:		4 705 04

1.73E-01 1.14E-01

1.40E-01

Vent Case V-24 Location Wide Angle Hall Dwg Title Injection/Ejection Structure Bdlg No. B1007-1 Job No. ISA-12-1-467000-15 Dwg / Sheet No. A3 / 15 & S16 **Geometry Comments** 54" dia air ducts, on side wall, 1 on each wall 10 ft above floor. [dwg scales to 48" dia.] Assumed 20 ft to neutron source.

GEOMETRY	/ DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft)	20.00	
	pipe dia (in)	54.00	54.00
	horiz. pipe length, d1 (ft)	9.00	
	vertical CL length, d2 (ft)		27.00
METRIC	distance to beam, a (m)	6.10	
	horiz. pipe length, d1 (m)	2.74	
	vertical CL pipe length, d2 (m)		8.23
	pipe dia (m)	1.37	1.37
	pipe area, A (sq m)	1.48	1.48
LEGIENCE	'UC (metern)		
LEG LENG	'HS (meters):	3.43	
TECOLI	Leg 1 length to mid-bend, R1 (m)		
	Leg 1: Source to mid-bend, r1 = R1 + a	9.53	7.54
TESCH			7.54
GOEBEL	Leg length, Ri/Sqrt(A)	2.82	6.21
ATTENUATI	ON DETAILS:		
TESCH	Tesch leg atten	4.10E-01	2.84E-03
	Tesch vent attenuation:		1.16E-03
	Angle, source to leg 1 axis (deg)		45
	Source Geometry Effect		0.150
	Total Tesch Vent Attenuation		1.75E-04
	Total Teson Vent Attendation		1.700 04
GOEBEL	Goebel leg atten	4.18E-02	1.42E-03
	Total Goebel Vent Attenuation		5.92E-05
MEAN	Geometric Mean Vent Attenuation		1.02E-04
IVIL/\I\	"Variance" factor:		1.021-04
	variance ractor.	ı	arge dist to beam
		L	arge dist to bearin

SOURCE TERM:

 No. of ions lost
 1.14E+11

 Std star per cc/ion lost
 1.35E-04

 Dose-Equiv (rem) per star
 2.66E-05

 Low Energy Fraction
 0.85

 Entrance Dose-Equiv (rem)
 6.10E+01

Exp Hall

OVERALL RESULT:

Exit Dose (rem) [Tesch]
Exit Dose (rem) [Goebel]
Geometric Mean

Vent Case	V-25
Location	Wide Angle Hall
Dwg Title	Injection/Ejection Structure
Bdlg No.	B1007-1
Job No.	ISA-12-1-467000-15
Dwg / Sheet No.	A3 / 15 & S16
Geometry Comments	54" dia air duct in WAH on back wall
	10 ft above floor
	Assumed 20 ft to neutron source.

GEOMETRY	/ DATA: dist to Beam (ft)	Leg 1	Leg 2
INFOT	pipe dia (in) horiz. pipe length, d1 (ft)	54.00 9.00	54.00
	vertical CL length, d2 (ft)	3.00	27.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m)	6.10 2.74	
	vertical CL pipe length, d2 (m)	_ ·	8.23
	pipe dia (m) pipe area, A (sq m)	1.37 1.48	1.37 1.48
	, , , ,	1.40	1.40
LEG LENGT	HS (meters):		
	Leg 1 length to mid-bend, R1 (m)	3.43	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	9.53	
TESCH	Leg 2, length from leg 1 pipe, R2		7.54
GOEBEL	Leg length, Ri/Sqrt(A)	2.82	6.21
ATTENUATI	ON DETAILS:		
TESCH	Tesch leg atten	4.10E-01	2.84E-03
	Tesch vent attenuation:		1.16E-03
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		2.91E-04
GOEBEL	Goebel leg atten	4.18E-02	1.42E-03
	Total Goebel Vent Attenuation		5.92E-05
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		1.31E-04 2.22
		I	arge dist to beam

SOURCE TERM:

No. of ions lost	1.14E+11
Std star per cc/ion lost	1.35E-04
Dose-Equiv (rem) per star	2.66E-05
Low Energy Fraction	0.85
Entrance Dose-Equiv (rem)	6.10E+01

Exp Hall

OVERALL RESULT:

Exit Dose (rem) [Tesch]
Exit Dose (rem) [Goebel]
Geometric Mean

Vent Case

INPUT

TESCH

TESCH

MEAN

Geometric Mean

Location West Injection Structure **Dwg Title** Injection/Ejection Structure Bdlg No. B1007-1 Job No. ISA-12-1-467000-15 Dwg / Sheet No. A3 / 15 and S9 / 38 **Geometry Comments** 48" dia air duct qty 3 at 10 ft from beam 1 inside ring at West Ejection PS Bdlg 2 on either side of ring bet support bdlg & WAH East Injection Structure assumed similar. **GEOMETRY DATA:** Leg 1 Leg 2 dist to Beam (ft) 10.00 pipe dia (in) 48.00 48.00 horiz, pipe length, d1 (ft) 7.00 vertical CL length, d2 (ft) 12.00 METRIC distance to beam, a (m) 3.05 horiz, pipe length, d1 (m) 2.13 vertical CL pipe length, d2 (m) 3.66 pipe dia (m) 1.22 1.22 pipe area, A (sq m) 1.17 1.17 LEG LENGTHS (meters): Leg 1 length to mid-bend, R1 (m) 2.74 Leg 1: Source to mid-bend, r1 = R1 + a 5.79 TESCH Leg 2, length from leg 1 pipe, R2 3.05 GOEBEL Leg length, Ri/Sqrt(A) 2.54 2.82 **ATTENUATION DETAILS:** Tesch leg atten 2.77E-01 1.65E-02 Tesch vent attenuation: 4.58E-03 Angle, source to leg 1 axis (deg) Source Geometry Effect 0.250 **Total Tesch Vent Attenuation** 1.15E-03 GOEBEL Goebel leg atten 5.33E-02 1.42E-02 **Total Goebel Vent Attenuation** 7.56E-04 Geometric Mean Vent Attenuation 9.31E-04 "Variance" factor: 1.23 SOURCE TERM: No. of ions lost 1.14E+11 Std star per cc/ion lost 1.35E-04 Dose-Equiv (rem) per star 2.66E-05 Low Energy Fraction 0.85 Entrance Dose-Equiv (rem) 2.44E+02 **OVERALL RESULT:** Exit Dose (rem) [Tesch] 2.79E-01 Exit Dose (rem) [Goebel] 1.84E-01

2.27E-01

Vent Case

Location

	Location Dwg Title Bdlg No. Job No. Dwg / Sheet No. Geometry Comments	West Injection Structure Injection/Ejection Structure B1007-1 ISA-12-1-467000-15 A3 / 15 and S9 / 38 48" dia air duct qty 1 at 17 ft from located on outside of ring opposite Ejection PS Bdlg. East Injection structure assumed s	e West
GEOMETRY	/ DATA:	Leg 1	Leg 2
INPUT	dist to Beam (ft)	17.00	3
	pipe dia (in)	48.00	48.00
	horiz. pipe length, d1 (ft)	7.00	
	vertical CL length, d2 (ft)		12.00
METRIC	distance to beam, a (m)	E 10	
METRIC	horiz. pipe length, d1 (m)	5.18 2.13	
	vertical CL pipe length, d2 (m)	2.10	3.66
	pipe dia (m)	1.22	1.22
	pipe area, Á (sq m)	1.17	1.17
LEG LENGT	'HS (meters):		
	Leg 1 length to mid-bend, R1 (m)	2.74	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	7.92	
TESCH	Leg 2, length from leg 1 pipe, R2	0.54	3.05
GOEBEL	Leg length, Ri/Sqrt(A)	2.54	2.82
ATTENHATI	ON DETAILS:		
TESCH	Tesch leg atten	4.28E-01	1.65E-02
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tesch vent attenuation:	1.202 01	7.07E-03
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		1.77E-03
00555	0 1 11 "	5.00 m.o.	
GOEBEL	Goebel leg atten	5.33E-02	1.42E-02
	Total Goebel Vent Attenuation		7.56E-04
MEAN	Geometric Mean Vent Attenuation		1.16E-03
	"Variance" factor:		1.53
SOURCE TE			
	No. of ions lost		1.14E+11
	Std star per cc/ion lost Dose-Equiv (rem) per star		1.35E-04 2.66E-05
	Low Energy Fraction		2.00E-05 0.85
	Entrance Dose-Equiv (rem)		8.44E+01
OVERALL R	ESULT:		
	Exit Dose (rem) [Tesch]		1.49E-01
	Exit Dose (rem) [Goebel]		6.38E-02
	Geometric Mean		9.76E-02

V-27

West Injection Structure

Vent Case

Dwg / Sheet No.

Geometry Comments

Location

Dwg Title

Bdlg No.

Job No.

		less 3' berm slope down 17' diagonal, 12.5' horiz. beam scaled from dwg. POSSIBLE WEAK AREA NEA	to duct mouth
GEOMETRY		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in) horiz. pipe length, d1 (ft)	17.00 48.00 7.00	48.00
	vertical CL length, d2 (ft)	7.00	12.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m) vertical CL pipe length, d2 (m)	5.18 2.13	3.66
	pipe dia (m) pipe area, A (sq m)	1.22 1.17	1.22 1.17
LEG LENGT	'HS (meters):	2.74	
TESCH TESCH		2.74 7.92	3.05
GOEBEL	Leg length, Ri/Sqrt(A)	2.54	2.82
ATTENUATI TESCH	ON DETAILS: Tesch leg atten	4.28E-01	1.65E-02
,	Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	7.202 01	7.07E-03 50 0.100 7.07E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	5.33E-02	1.42E-02 7.56E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		7.31E-04 1.03
SOURCE TE			
	No. of ions lost Std star per cc/ion lost		1.14E+11 1.35E-04
	Dose-Equiv (rem) per star Low Energy Fraction		2.66E-05 0.85
	Entrance Dose-Equiv (rem)		8.44E+01
OVERALL RI			
	Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		5.97E-02 6.38E-02 <i>6.17E-02</i>

V-28

none

A5 / 51

Equipment area 7-B

ISA-11-1-467000-2

48" Vent CL 15' below berm top,

Mag Encl. sextnt 5&7, Eqt area 7B em'g'cy exit

Vent Case

Dwg / Sheet No.

Geometry Comments

Location

Dwg Title

Bdlg No.

Job No.

	,	this case is 54", other is 48" Leg2 could be up to 22' long, since broadens on way to MFH	e berm
GEOMETRY		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in) horiz. pipe length, d1 (ft)	10.00 54.00 6.00	54.00
	vertical CL length, d2 (ft)	0.00	20.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m)	3.05 1.83	
	vertical CL pipe length, d2 (m)	•	6.10
	pipe dia (m) pipe area, A (sq m)	1.37 1.48	1.37 1.48
LEG LENGT	THS (meters):		
TESCH	Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a	2.51 5.56	
TESCH	Leg 2, length from leg 1 pipe, R2		5.41
	Leg length, Ri/Sqrt(A)	2.07	4.45
ATTENUATI TESCH	ON DETAILS: Tesch leg atten	3.00E-01	7.06E-03
	Tesch vent attenuation: Angle, source to leg 1 axis (deg)		2.12E-03 0
	Source Geometry Effect Total Tesch Vent Attenuation		0.250 5.30E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	8.21E-02	4.35E-03 3.57E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		4.35E-04 1.22
	No. of ions lost Std star per cc/ion lost Dose-Equiv (rem) per star Low Energy Fraction Entrance Dose-Equiv (rem)		1.14E+11 1.35E-04 2.66E-05 0.85 2.44E+02 1.29E-01 8.71E-02 1.06E-01

V-29

B1008

A4/9

Major Facility Hall 8 o'clock to support bdlg_

MFH 8 o'clock partial floor plan

Exhaust fans, 2 on each side of MFH.

ISA-13-4-467000-18

Vent Case

Dwg / Sheet No.

Geometry Comments

Location

Dwg Title Bdlg No.

Job No.

	Geometry Comments	this case is 48", other is 54" Leg2 could be up to 22' long, si broadens on way to MFH	
GEOMETRY		Leg 1	Leg 2
INPUT	dist to Beam (ft) pipe dia (in) horiz. pipe length, d1 (ft)	10.00 48.00 6.00	48.00
METRIC	horiz. pipe length, d1 (m)	3.05 1.83	18.00
	vertical CL pipe length, d2 (m) pipe dia (m) pipe area, A (sq m)	1.22 1.17	5.49 1.22 1.17
LEG LENGT	THS (meters): Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a	2.44 5.49	
TESCH	Leg 2, length from leg 1 pipe, R2 Leg length, Ri/Sqrt(A)	2.26	4.88 4.51
ATTENUATI TESCH	ON DETAILS: Tesch leg atten Tesch vent attenuation: Angle, source to leg 1 axis (deg) Source Geometry Effect Total Tesch Vent Attenuation	3.09E-01	6.61E-03 2.04E-03 0 0.250 5.10E-04
GOEBEL	Goebel leg atten Total Goebel Vent Attenuation	6.89E-02	4.17E-03 2.87E-04
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		3.83E-04 1.33
SOURCE TE			
	No. of ions lost Std star per cc/ion lost Dose-Equiv (rem) per star Low Energy Fraction Entrance Dose-Equiv (rem)		1.14E+11 1.35E-04 2.66E-05 0.85 2.44E+02
	ESULT: Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean		1.24E-01 7.01E-02 9.3 <i>4E</i> -02

V-30

B1008

A4/9

Major Facility Hall 8 o'clock to support bdlg_

Vents in plate arch, 2 on each side of MFH.

MFH 8 o'clock partial floor plan

ISA-13-4-467000-18

Vent Case V-31 Location MAJOR FACILITY 8 O'CLOCK **Dwg Title** MAJ. FAC. 8 O'CLOCK W. WALL EL. & SECT. Bdlg No. B1008 Job No. ISA-13-4-467000-18 Dwg / Sheet No. S-4 / 27 **Geometry Comments** 2 VENTS, EACH 30" dia air vents in MFH, middle of wall floor elev. 52' CL 20' off floor, elev = 72'

wall 3.5' thick.

GEOMETRY INPUT	DATA: dist to Beam (ft)	Leg 1 25.00	Leg 2
1141 01	pipe dia (in) horiz. pipe length, d1 (ft)	30.00 9.50	30.00
	vertical CL length, d2 (ft)	0.00	25.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m)	7.62 2.90	
	vertical CL pipe length, d2 (m)		7.62
	pipe dia (m)	0.76	0.76
	pipe area, A (sq m)	0.46	0.46
LEG LENGT	HS (meters):		
	Leg 1 length to mid-bend, R1 (m)	3.28	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	10.90	
TESCH	0, 0 11,		7.24
GOEBEL	Leg length, Ri/Sqrt(A)	4.85	10.72
ATTENUATI	ON DETAILS:		
TESCH	Tesch leg atten	4.89E-01	7.22E-04
	Tesch vent attenuation:		3.53E-04
	Angle, source to leg 1 axis (deg)		0
	Source Geometry Effect		0.250
	Total Tesch Vent Attenuation		8.83E-05
GOEBEL	Goebel leg atten	1.01E-02	1.07E-04
	Total Goebel Vent Attenuation		1.08E-06
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		9.76E-06 9.04
			Small pipe diameter. Goebel result preferred.

SOURCE TERM:

No. of ions lost	1.14E+11
Std star per cc/ion lost	1.35E-04
Dose-Equiv (rem) per star	2.66E-05
Low Energy Fraction	0.85
Entrance Dose-Equiv (rem)	3.90E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean

Vent Case V-32 Location MAJOR FACILITY 8 O'CLOCK **Dwg Title** MAJ. FAC. 8 O'CLOCK W. WALL EL. & SECT. Bdlg No. B1008 Job No. ISA-13-4-467000-18 Dwg / Sheet No. S-4 / 27 **Geometry Comments** 54" dia air vent in MFH, high on wall, 1 vent CL of leg1 14' below roof at elev 85' wall 3.5' thick.

GEOMETRY DATA:	Leg 1	Leg 2
INPUT dist to Beam (ft)	25.00	
pipe dia (in) horiz. pipe length, d1 (ft)	54.00 9.50	54.00
vertical CL length, d2 (ft)	9.50	12.00
METRIC distance to beam, a (m)	7.62	
horiz. pipe length, d1 (m)	2.90	
vertical CL pipe length, d2 (m)		3.66
pipe dia (m)	1.37	1.37
pipe area, A (sq m)	1.48	1.48
LEG LENGTHS (meters):		
Leg 1 length to mid-bend, R1 (m)	3.58	
TESCH Leg 1: Source to mid-bend, r1 = R1 + a	11.20	
TESCH Leg 2, length from leg 1 pipe, R2		2.97
GOEBEL Leg length, Ri/Sqrt(A)	2.95	2.45
ATTENUATION DETAILS:		
TESCH Tesch leg atten	4.63E-01	2.25E-02
Tesch vent attenuation:	4.002-01	1.04E-02
Angle, source to leg 1 axis (deg)		30
Source Geometry Effect		0.150
Total Tesch Vent Attenuation		1.56E-03
GOEBEL Goebel leg atten	3.76E-02	1.93E-02
Total Goebel Vent Attenuation	3.70L-02	7.25E-04
		7.202 04
MEAN Geometric Mean Vent Attenuation		1.06E-03
"Variance" factor:		1.47

SOURCE TERM:

 No. of ions lost
 1.14E+11

 Std star per cc/ion lost
 1.35E-04

 Dose-Equiv (rem) per star
 2.66E-05

 Low Energy Fraction
 0.85

 Entrance Dose-Equiv (rem)
 3.90E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch]
Exit Dose (rem) [Goebel]
Geometric Mean

Vent Case V-33 Location MAJOR FACILITY 8 O'CLOCK Dwg Title MAJ. FAC. 8 O'CLOCK W. WALL EL. & SECT. Bdlg No. B1008 Job No. ISA-13-4-467000-18 Dwg / Sheet No. S-4 / 27 **Geometry Comments** 54" dia air vent in MFH, low on wall, 1 vent floor elev. = 52' 0"; vent CL = 52' + 4'= 56' underside roof elev = 52' + 47'= 99' less 4' for berm slope. Beam @ 69 ft. wall 3.5' thick.

GEOMETR	Y DATA: dist to Beam (ft)	Leg 1	Leg 2
iivi O1	pipe dia (in) horiz. pipe length, d1 (ft)	25.00 54.00 9.50	54.00
	vertical CL length, d2 (ft)	9.50	41.00
METRIC	distance to beam, a (m)	7.62	
	horiz. pipe length, d1 (m)	2.90	
	vertical CL pipe length, d2 (m)		12.50
	pipe dia (m)	1.37	1.37
	pipe area, A (sq m)	1.48	1.48
LEG LENG	ГНS (meters):		
	Leg 1 length to mid-bend, R1 (m)	3.58	
TESCH	Leg 1: Source to mid-bend, r1 = R1 + a	11.20	
	Leg 2, length from leg 1 pipe, R2		11.81
GOEBEL	Leg length, Ri/Sqrt(A)	2.95	9.72
ATTENUAT	ION DETAILS:		
TESCH	Tesch leg atten	4.63E-01	4.63E-04
	Tesch vent attenuation:		2.14E-04
	Angle, source to leg 1 axis (deg)		27
	Source Geometry Effect		0.150
	Total Tesch Vent Attenuation		3.21E-05
GOEBEL	Goebel leg atten	3.76E-02	1.86E-04
	Total Goebel Vent Attenuation	J., JL JL	7.00E-06
MEAN	Geometric Mean Vent Attenuation		1.50E-05
	"Variance" factor:		2.14

SOURCE TERM:

No. of ions lost	1.14E+11
Std star per cc/ion lost	1.35E-04
Dose-Equiv (rem) per star	2.66E-05
Low Energy Fraction	0.85
Entrance Dose-Equiv (rem)	3.90E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean

Vent CaseV-34LocationWide Angle HallDwg TitleM. Schaeffer sketchBdlg No.B1007-1Job No.

Dwg / Sheet No. Geometry Comments

54" dia vent on back wall, 4.25 ft from roof. Berm slopes 1:2 from top of 3 ft thick roof.

Very short second leg!

Assumed 30 ft to neutron source.

GEOMETR'	/ DATA: dist to Beam (ft)	Leg 1	→
,,,, o,	pipe dia (in) horiz. pipe length, d1 (ft)	54.00 9.00	54.00
	vertical CL length, d2 (ft)	9.00	4.00
METRIC	distance to beam, a (m) horiz. pipe length, d1 (m)	9.14 2.74	
	vertical CL pipe length, d2 (m)	2.14	1.22
	pipe dia (m)	1.37	
	pipe area, A (sq m)	1.48	1.48
LEG LENGT	HS (meters):		
TESCH	Leg 1 length to mid-bend, R1 (m) Leg 1: Source to mid-bend, r1 = R1 + a	3.43	
TESCH		12.57	0.53
GOEBEL	Leg length, Ri/Sqrt(A)	2.82	
ATTENUATI	ON DETAILS:		
TESCH	Tesch leg atten	5.29E-01	6.46E-01
	Tesch vent attenuation:		3.42E-01
	Angle, source to leg 1 axis (deg) Source Geometry Effect		0 0.250
	Total Tesch Vent Attenuation		8.54E-02
GOEBEL	Goebel leg atten	4.18E-02	2.13E-01
	Total Goebel Vent Attenuation	preferred>	8.90E-03
MEAN	Geometric Mean Vent Attenuation "Variance" factor:		2.76E-02 3.10
			Large dist to beam Goebel result preferred.

SOURCE TERM:

No. of ions lost	1.14E+11
Std star per cc/ion lost	1.35E-04
Dose-Equiv (rem) per star	2.66E-05
Low Energy Fraction	0.85
Entrance Dose-Equiv (rem)	2.71E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean

Vent Case V-35

Location Wide Angle Hall
Dwg Title M. Schaeffer sketch
Bdlg No. B1007-1

Job No.

Dwg / Sheet No.

Geometry Comments 30" dia vents on side wall, 20 ft from floor.

Assumed 30 ft to neutron source.

GEOMETRY DATA:	Leg 1	Leg 2
INPUT dist to Beam (ft)	30.00	
pipe dia (in)	30.00	30.00
horiz. pipe length, d1 (ft)	9.00	
vertical CL length, d2 (ft)		17.00
METRIC distance to beam, a (m)	9.14	
horiz. pipe length, d1 (m)	2.74	
vertical CL pipe length, d2 (m)		5.18
pipe dia (m)	0.76	0.76
pipe area, Á (sq m)	0.46	0.46
LEG LENGTHS (meters):		
Leg 1 length to mid-bend, R1 (m)	3,12	
TESCH Leg 1: Source to mid-bend, r1 = R1 + a	12,27	
TESCH Leg 2, length from leg 1 pipe, R2		4.80
GOEBEL Leg length, Ri/Sqrt(A)	4.63	7.11
ATTENUATION DETAILS:	•	
TESCH Tesch leg atten	5.56E-01	2.08E-03
Tesch vent attenuation:		1.16E-03
Angle, source to leg 1 axis (deg)		0
Source Geometry Effect		0.250
Total Tesch Vent Attenuation		2.89E-04
GOEBEL Goebel leg atten	1.15E-02	8.24E-04
Total Goebel Vent Attenuation	Preferred>	9. <i>47E-06</i>
MEAN Geometric Mean Vent Attenuation		5.24E-05
"Variance" factor:		5.53
		ong dist to beam parrow pipe diameter

SOURCE TERM:

-1 \ 1111	
No. of ions lost	1.14E+11
Std star per cc/ion lost	1.35E-04
Dose-Equiv (rem) per star	2.66E-05
Low Energy Fraction	0.85
Entrance Dose-Equiv (rem)	2.71E+01

OVERALL RESULT:

Exit Dose (rem) [Tesch] Exit Dose (rem) [Goebel] Geometric Mean