

BNL-101846-2014-TECH AD/RHIC/RD/64;BNL-101846-2013-IR

Pressure Relief for RHIC Cryogenic System

K. C. Wu

December 1993

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AD/RHIC/RD-64

RHIC PROJECT

Brookhaven National Laboratory

Pressure Relief for RHIC Cryogenic System

K. C. Wu

December 1993

PRESSURE RELIEF FOR RHIC CRYOGENIC SYSTEM

K. C. Wu

The maximum credible accident for the RHIC magnet cryostats has been identified with a heat load extrapolated from the loss of vacuum experiment for RHIC dipole magnet DRD-009 in MAGCOOL. The venting requirements for each of the cryogenic lines was evaluated and the corresponding pressure drops calculated. The resultant pressure relief system complies with the guideline given by UG-125 paragraph c 2 Section VIII of ASME Pressure Vessel Code. Detailed analysis and results are given.

1). MECHANISM

The relief system is designed to prevent overpressure in the cryogenic system. Should the massive heat input from a catastrophic loss of vacuum occur, cold helium will be heated through a constant density process to higher pressures at a rapid rate. When the pressure reaches the relief setting, helium will be vented outside and the process becomes a constant pressure heating process as illustrated in Fig. 1.

LOSS OF VACUUM

----> HEATING AT CONSTANT DENSITY

----> PRESSURE INCREASE

-----> VENTING WITH HEATING AT CONSTANT PRESSURE

Figure 1. Heating and venting process for pressure relief

2). HEAT LOAD

The most important parameter in designing a relief system is the heating rate. However uncertainties associated with the heat load in an accident are usually large and a maximum credible accident (MCA) must be defined. In RHIC, the longest section of cryostats without a vacuum break occurs in the section from the position of insertion quadrupole Q4 at one end of a sextant to Q4 at the other (See RHIC Design Manual, Table 3-6) and is about 500 meters long. Within this common vacuum envelope, there are cooling passages in the magnets and three lines (the supply line, the return line and the utility line) operated at 4.5 K and one shield line at 55 K. The MCA heat load is extrapolated from the catastrophic loss of vacuum experiments performed with a RHIC dipole in MAGCOOL^{1,2,3} by considering the MCA of the system for loss of vacuum to air and to helium respectively.

In the present study, the heat load from air entering the vacuum space is dominated by cryopumping or condensation of air. It is independent of the length of the magnet and equals 11 kW per cm² of the cross sectional area through which air may enter. The MCA for loss of insulating vacuum to air is assumed to come from an opening of 5.08 cm diameter and 20 cm² cross sectional area. The corresponding heat load to the magnet cooling circuit and the three lines at 4.5 K equals 220 kW.

The heat load from helium entering the vacuum space, however, is mainly from conduction and convection, and is proportional to the heat transfer area in each case. From the tests performed in MAGCOOL, the heat load to the magnet cooling passages and the supply line for one dipole, one feed can and one end can with a total length of 12.5 meter equaled 10 kW. Eight kW of this heat load is assumed to go to the magnet cooling passages and 2 kW is assumed to go to the supply line because the magnet has four times the surface area of the supply line.

The total heat load for the 500 meter section is assumed to be 40 times that of the MAGCOOL results. Thus the magnet cooling passages have a 320 kW heat load. The supply line has an 80 kW heat load. The return and the utility lines are also assumed each to have an 80 kW heat load. The total heat load to the 4.5 K system of a sextant then totals 560 kW.

The heat load to the shield is assumed to be 40 times the 6.7 kW heat load derived from the loss of vacuum experiment with a RHIC dipole performed previously with helium in the insulating vacuum. The total heat load to the shield in a sextant is 270 kW. A summary of the MCA heat load for the magnet cooling passages, the supply line, the return line, the utility line and the shield line for loss of vacuum with helium is given in Table 1.

	Magnet cooling passages	Supply line	Return line	Utility line	Heat Shield line
Heat Load kW	320	80	80	80	270

Table 1. The MCA heat load for the RHIC cryogenic system

3). VENTING OF HELIUM

With the MCA heat input, a relief system can be sized provided the heat absorbing capability of the cryogenic system is known. The pressure rise rate before a cryogenic system reaches the relief pressure depends on the heat absorbing capability of the constant density heating process. The amount of helium that must be vented outside depends on the heat absorbing of the cryogenic system during the venting process. The required venting capacity equals to the heating rate divided by the heat absorbing rate during a constant pressure process as will be explained below.

The RHIC cryogenic system in the ring is designed to relieve pressure at 18.7 atmospheres. No liquid-vapor phase change occurs during the venting process. The heating process from thermodynamic state 1 at the relief pressure to state x at a higher temperature and the relief pressure with helium venting through a relief valve can be explained by Fig. 2.4

m_1	m_x	$(m_1 - m_x)$
P_1	$\rightarrow P_x$	+ $P_{x} = P_{1}$
T_1	T_x	$T_1 \rightarrow T_x$
h_1	h_x	$h_1 \rightarrow h_x$
ρ ₁	ρ _x	$\rho_1 \rightarrow \rho_x$
State 1	State x	Helium Relieved Through Safety Device

Fig. 2 Heating process from state 1 to x with helium venting through relief.

where **P** is the pressure

- T is the temperature
- m is the mass of helium
- h is the enthalpy
- ρ is the density

and subscripts 1 and x refer to thermodynamic states 1 and x.

The heat absorbed by the helium vapor for any such incremental step can be approximated by eqn. 1. The heat absorbed per unit mass of helium leaving the container from state 1 to state x is given by eqn. 2.

$$q = m_x (h_x - h_1) + (m_1 - m_x) \frac{(h_x - h_1)}{2}$$
(1)

$$L' = \frac{q}{(m_1 - m_x)} = \frac{(h_x - h_1) (m_1 + m_x)}{2 (m_1 - m_x)}$$
(2)

where m, h, 1 and x are as defined above and q is heat absorbed

L' is the heat absorbed per unit mass of helium leaving the container

The amount of helium that must be vented equals the heat input rate divided by the heat absorbed per unit of helium gas leaving the system as shown in eqn. 3.

$$\dot{m}_{vent} = \dot{Q} / L' \tag{3}$$

where $\dot{\boldsymbol{Q}}$ is the heating rate.

m is the helium flow, lb/hr.

and subscript vent refers to the helium vented through the relief.

The relief valve can be sized from the pressure, temperature and flow requirements according to formulas given by the valve manufacturer. Eqn. 4 is given by the Anderson, Greenwood and Co., and a suitable set of units⁵ must be adopted.

$$A = \frac{\dot{m}_{vent} \sqrt{T}}{C \ K \ P \ \sqrt{M}} \tag{4}$$

where A is the orifice area of the relief, in².

- T is the inlet temperature, in degree R.
- C is the gas constant, 377 for helium.

K is the value coefficient of discharge = 0.816.

 \boldsymbol{P} is the pressure of the gas flow, lb/in^2 .

and M is the molecular weight of gas, 4 for helium.

Calculations have been performed for the relief valves of the magnet cooling passages, the supply line, the return line, the utility line and the shield line. The results are given in Table 2 later in this study. Since it is desirable to have the relief valves located near the end of the sextant where penetrations from the cold region to the ambient can be incorporated more conveniently, the pressure drop in the long helium passages should be investigated so that nowhere in the sextant will excessive pressure build up. Also since these calculations do not consider the warmup of cold helium, the piping length to the relief valve should be kept to a minimum.

4). PRESSURE DROPS

The pressure drop calculation in the present study is quite complicated because the flow rate varies with length. In addition, there is a large variation in the flow area in the magnet cooling passages, particularly in the 50 watt recoolers. The pressure drop calculations are divided into two categories, one with a constant and one with a variable flow area. In both cases, the flow rate increases linearly with the path length because venting of helium is caused by the increase in heat load which is assumed to be equally distributed along the sextant.

For the supply, the return, the utility and the shield lines, the flow area does not vary with length. The relief valves for these lines are assumed to be installed at the two ends of a sextant one each at a 50 m distance from the end magnet. The flow path is, thus, 300 meters long. A simplified procedure is developed for estimating the pressure drops. The procedure divides the flow passage into twenty segments. The helium flow in the first segment equals one twentieth the total flow. The flow in the second segment equals two twentieths of the flow. The flow in the segment equals the total flow. The total pressure drop equals the summation of pressure drops in the twenty segments as given in eqn. 5. The total pressure drop equals 7.2 times the pressure drop for the total flow through one segment.

$$\Delta P_{Total} = \sum \Delta P_{i}$$

$$= f \frac{L_{i} \dot{m}_{vent}^{2}}{2 d_{i} \rho g A^{2}} \left[\left(\frac{1}{20}\right)^{2} + \left(\frac{2}{20}\right)^{2} + \cdots + \left(\frac{20}{20}\right)^{2} \right]$$

$$= f \frac{L_{i} \dot{m}_{vent}^{2}}{2 d_{i} \rho g A^{2}} 7.2$$
(5)

where f is the friction factor

d is the hydraulic diameter

L is the length of a segment

A is the cross sectional area for helium flow

and **g** is acceleration of gravity

For the magnet cooling passages, there is large difference in flow area. The pressure drop is calculated from the layout of the magnet string including dipoles, quadrupoles, interconnects, recoolers, etc. The flow also increases with the flow path. The results suggest that venting at intermediate points of the sextant can be avoided by locating four relief valves in the magnet cooling passage. Two will be at locations similar to those for the several lines and one each will be located between dipole D9 and quadrupole Q9 in the RHIC magnet lattice at each end of the sextant. With four relief valves, the maximum pressure drop in a sextant is about 2.2 atms. Detailed results are given in Appendix 2. The largest pressure drop for the magnet cooling passage under the condition that one of the four relief valve fails to open has also been calculated and given in Table 2.

5.) **RESULTS**

Using the MCA heat load, the 18.7 atm (275 psia) relief pressure, and the initial conditions and the geometry of the cryogenic system, the relief requirements have been calculated for each of the supply, return, utility and shield lines and the magnet cooling passages. The detailed results for both constant density and constant pressure heating processes are given in Appendix 1. A summary of the requirements for these relief valves and conditions at which they operate are given below in Table 2. In the Table 2, the pressure drops at design conditions as well as when only one relief valve fails to open are also given. As one can see, the pressure drops in this system certainly comply with the 21% maximum allowable working pressure guideline per UG-125 paragraph c.2 of ASME Pressure Vessel Code Section VIII Division 1.⁶ Even when only one relief valve fails to open, the pressure drops are manageable.

Line	MCA Heat Load kW	Total Area of Relief in ²	Temp. Relief Opens K	Max. Mass Flow g/s	Press. Drop Design atm	Press. Drop with one relief fails to open atm
Supply	80	0.28	7.3	1353	0.05	0.36
Return	80	0.13	54	269	0.02	0.14
Utility	80	0.13	54	269	0.02	0.14
Shield	270	0.38	68	728	0.47	3.24
Magnet	320	1.11	7.3	5411	2.2	4.2

Table 2. Requirements and operating conditions of the relief valves

6). VALVE SELECTIONS

The uncertainties in the calculations associated with the catastrophic loss of vacuum are large. Redundant valves will also be required as back-up in the event of a possible mechanical failure of a valve. Relief valves larger than those calculated shall be used and the system shall be designed to have enough capacity to prevent excessive pressure build up should any relief valve fails to open.

Since the magnet cooling passages, the supply line, the return line, the utility line and the shield line are independent, at least four relief valves shall be installed for the magnet cooling passages and two relief valves in each of the several lines. The relief valve system shall have the required capacity plus some safety margin in the event that any one valve in the system fails. A preliminary valve selection based on the Anderson, Greenwood and Co. catalog is given in Table 3.

Line	Valve	Orifice Size in ²	No. Used	Safety Factor	Locations
Supply	G series	0.503	2	3.6	valve boxes
Return	F series	0.307	2	4.7	valve boxes
Utility	F series	0.307	2	4.7	valve boxes
Shield	G series	0.503	2	2.7	valve boxes
Magnet	G series	0.503	4	1.8	valve boxes and between D9 and Q9

Table 3. Preliminary valve selection for a sextantbased on A, G & Co. catalog series 80

7). CONCLUSION

The maximum credible accident for the RHIC magnet cryostats has been identified with a heat load extrapolated from the loss of vacuum experiment for RHIC dipole magnet DRD-009 in MAGCOOL. The venting requirements for each of the cryogenic lines was evaluated and the corresponding pressure drops calculated. The results show the pressure drop in this system is less than the 21 % maximum allowable working pressure guideline for multiple relief valves with unexpected source of heat load given by UG-125 paragraph c.2 Section VIII Division 1 of ASME Pressure Vessel Code.

REFERENCES

- K. C. Wu, D. P. Brown, J. Sondericker and D. Zantopp, "An experimental Study of Catastrophic loss of vacuum for RHIC DRD-009 in MAGCOOL", RHIC Project Tech. Note AD/RHIC/RD-50, Dec. 1992.
- K. C. Wu, D. P. Brown, J. Sondericker and D. Zantopp, "An experimental study using helium to produce a catastrophic loss of vacuum in a RHIC dipole magnet cryostat", RHIC Project Tech. Note AD/RHIC/ RD-54, Feb. 1993.
- 3. K. C. Wu, D. P. Brown, J. Sondericker and D. Zantopp, "An experimental study of catastrophic loss of vacuum for RHIC dipole in MAGCOOL", presented in the CEC-ICMC conference, July 12-16, Albuquerque, N.M.
- 4. R. H. Kropschot, B. W. Birmingham and D. B. Mann, "Technology of Liquid Helium", National Bureau of Standards, Monograph 111, Oct. 1968.
- 5. "SERIES 80 SAFETY-RELIEF VALVES", Catalog 1800, Anderson, Greenwood & Co., May 1974.
- 6. ASME PRESSURE VESSELS Section VIII Div. 1, 1992.

APPENDIX 1:

Requirements and operating conditions for the relief valves of the RHIC cryogenic system

.

Please enter remarks Size relief valve for RHIC supply line S Enter initial pressure, temperature, volume, relief pressure, heating rate, half sextant length and equivalent pipe diameter p0-atm 5 to-K 4.5 vol-L 2655 pvent-atm 18.7 qheat-kW 80 length-m 350 dia-cm 6.8

Constant density heating process

р	t	rho	М	u	d-time
\mathtt{atm}	K	g/cc	kg	j/g	sec.
5.00	4.50	.137	364.8	8.42	
6.37	4.78	.137	364.8	9.08	3.01
7.74	5.06	.137	364.8	9.80	3.26
9.11	5.34	.137	364.8	10.52	3.31
10.48	5.63	.137	364.8	11.21	3.12
11.85	5.91	.137	364.8	11.90	3.13
13.22	6.19	.137	364.8	12.59	3.15
14.59	6.47	.137	364.8	13.28	3.18
15.96	6.75	.137	364.8	13.99	3.21
17.33	7.02	.137	364.8	14.64	2.99
18.70	7.30	.137	364.8	15.36	3.27

oono ouno	P-0-04			F==+++							Pres	drop	Air
tl rhol	h1	tx	rhox	hx	heatl	\mathbf{L}	Gi	mout A	Area	dt	1/2 1	_	
K q/cc	j/g	K	g/cc	j/g	j/g	B/lb		g/s in	<u>1**2</u>	sec	atm	\mathtt{atm}	SCFM
7.3 .137			.126					1322.				.27	985.
8.3 .126	34.1	9.3	.115	39.9	59.	25.	24.	1353.	.26	23.2	.04	.31	1066.
9.3 .115	39.9	10.3	.103	46.5	59.	25.	25.	1352.	.27	23.8	.05	.34	1121.
10.3 .103	46.5	11.3	.091	53.6	61.	26.	26.	1309.	.28	22.8	.05	.36	1137.
11.3 .091	53.6	12.3	.082	60.6	64.	28.	26.	1244.	.27	20.1	.05	.36	1128.
12.3 .082	60.6	13.3	.074	67.3	68.	29.	25.	1170.	.27	17.4	.05		1103.
13.3 .074	67.3	14.3	.068	73.8	72.	31.	25.	1104.	.26	15.2	.05		1079.
14.3 .068	73.8	15.3	.062	80.1	77.	33.	25.	1044.	.26	13.7	.05		1055.
15.3 .062	80.1	16.3	.058	86.5	82.	35.	24.	974.	.25	12.7	.05		1017.
16.3 .058	86.5	18.3	.050	98.9	90.	39.	23.	887.	.24	22.4	.05	.32	980.
18.3 .050	98.9	20.3	.045	111.1	101.	44.	22.	790.	.22	19.1	.04	.29	920.
20.3 .045	111.1	22.3	.040	123.0	113.	49.	21.	711.	.21	16.7	.04	.27	
22.3 .040	123.0	24.3	.037	134.6	124.	53.	20.	646.			.04	.26	823.
24.3 .037						58.	19.				.03	.24	784.
26.3 .034						63.	18.			12.2	.03	.23	751.
28.3 .031						68.	17.			11.2	.03	.22	722.
30.3 .029	168.7	32.3	.027	179.8	169.	73.	17.	474.			.03	.21	696.
32.3 .027	179.8	34.3	.025	190.8	180.	78.	16.	444.			.03	.20	673.
34.3 .025	190.8	36.3	.024	201.8	191.	82.	16.	419.	.16	9.0	.03	.19	652.
36.3 .024	201.8	38.3	.023	212.7	202.	87.	15.	396.	.15	8.5	.03	.18	634.

Please enter remarks Size relief valve for RHIC return line R Enter initial pressure, temperature, volume, relief pressure, heating rate, half sextant length and equivalent pipe diameter p0-atm 1 to-K 4.3 vol-L 3265 pvent-atm 18.7 qheat-kW 80 length-m 350 dia-cm 6.8

Constant density heating process

р	t	rho	М	u	d-time
\mathtt{atm}	K	g/cc	kg	j/g	sec.
1.00	4.30	.016	52.6	24.55	
2.77	9.31	.016	52.6	40.33	10.37
4.54	14.33	.016	52.6	55.84	10.20
6.31	19.31	.016	52.6	71.38	10.22
8.08	24.29	.016	52.6	86.98	10.26
9.85	29.28	.016	52.6	102.61	10.28
11.62	34.31	.016	52.6	118.39	10.38
13.39	39.29	.016	52.6	134.04	10.29
15.16	44.36	.016	52.6	149.97	10.47
16.93	49.32	.016	52.6	165.55	10.24
18.70	54.39	.016	52.6	181.47	10.47

	- · · · · · · · · · · · · · · · · · · ·	L						Pres d	drop	Air
tl rhol hl	tx rhox	hx heat	:l L	Gi	mout A	rea		1/2 1		
Kg/cc j/g	K g/cc	j/g j/g	∫ B/lb		g/s in	**2	sec	atm	atm	SCFM
54.4 .016 299.1 5	55.4 .016	304.4 297	128.	12.	269.	.13	3.5	.02	.14	518.
55.4 .016 304.4 5	56.4 .016	309.7 302	130.	12.	265.	.13	3.4	.02	.14	514.
56.4 .016 309.7 5	57.4 .015	315.0 308	133.	12.	260.	.12	3.3	.02	.14	509.
57.4 .015 315.0 5	58.4 .015	320.3 313	135.	12.	256.	.12	3.3	.02	.14	505.
58.4 .015 320.3 5	59.4 .015	325.6 318	137.	12.	251.	.12	3.2	.02	.14	501.
59.4 .015 325.6 6				11.	247.	.12	3.2	.02	.13	497.
60.4 .015 330.9 6	51.4 .014	336.2 329	142.	11.	243.	.12	3.1	.02	.13	493.
61.4 .014 336.2 6				11.	239.	.12	3.1	.02	.13	489.
62.4 .014 341.5 6				11.	236.	.12	3.0	.02	.13	485.
63.4 .014 346.8 6				11.	230.	.12	5.9	.02	.13	481.
65.4 .013 357.3 6				11.	223.	.12	5.7	.02	.13	474.
67.4 .013 367.9 6	59.4 .013	378.4 369.	159.	11.	217.	.11	5.5	.02	.12	467.
69.4 .013 378.4 7	71.4 .012	388.9 379.	163.	10.	211.	.11	5.4	.02	.12	461.
71.4 .012 388.9 7				10.	205.	.11	5.2	.02	.12	455.
73.4 .012 399.5 7	75.4 .012	410.0 400.	172.	10.	200.	.11	5.1	.02	.12	449.
75.4 .012 410.0 7	7.4 .011	420.5 411.	177.	10.	195.	.11	5.0	.02	.12	443.
77.4 .011 420.5 7	79.4 .011	431.0 421.	181.	10.	190.	.11	4.8	.02	.11	437.
79.4 .011 431.0 8	31.4 .011	441.4 432.	186.	10.	185.	.11	4.7	.02	.11	432.
81.4 .011 441.4 8	33.4 .011	451.9 442.	191.	10.	181.	.10	4.6	.02	.11	427.
83.4 .011 451.9 8	35.4 .010	462.4 453.	195.	9.	177.	.10	4.5	.02	.11	422.

Please enter remarks Size relief valve for RHIC utility line U Enter initial pressure, temperature, volume, relief pressure, heating rate, half sextant length and equivalent pipe diameter p0-atm 1 to-K 4.3 vol-L 2655 pvent-atm 18.7 qheat-kW 80 length-m 350 dia-cm 6.8

Constant density heating process

р	t	rho	М	u	d-time
\mathtt{atm}	K	g/cc	kg	j/g	sec.
1.00	4.30	.016	42.8	24.55	
2.77	9.31	.016	42.8	40.33	8.44
4.54	14.33	.016	42.8	55.84	8.29
6.31	19.31	.016	42.8	71.38	8.31
8.08	24.29	.016	42.8	86.98	8.34
9.85	29.28	.016	42.8	102.61	8.36
11.62	34.31	.016	42.8	118.39	8.44
13.39	39.29	.016	42.8	134.04	8.37
15.16	44.36	.016	42.8	149.97	8.51
16.93	49.32	.016	42.8	165.55	8.33
18.70	54.39	.016	42.8	181.47	8.52

	-	-			L							Pres	drop	Air
t 1	rho1	hl	tx	rhox	hx	heat:	l L	Gi	mout 2	Area	dt	1/2 1		
K	g/cc	j/g	K	g/cc	j/g	j/g	B/lb		g/s i			•		SCFM
54.4	.016	299.1	55.4	.016	304.4	297.	128.	12.	269.			.02	.14	518.
55.4	.016	304.4	56.4	.016	309.7	302.	130.	12.	265.	.13	2.8	.02	.14	514.
		309.7						12.	260.	.12	2.7	.02	.14	509.
57.4	.015	315.0	58.4	.015	320.3	313.	135.	12.	256.	.12	2.7	.02	.14	505.
		320.3						12.	251.	.12	2.6	.02	.14	501.
		325.6						11.	247.	.12	2.6	.02	.13	497.
		330.9						11.	243.	.12	2.5	.02	.13	493.
		336.2						11.	239.	.12	2.5	.02	.13	489.
		341.5						11.	236.	.12	2.4	.02	.13	485.
		346.8						11.	230.	.12	4.8	.02	.13	481.
		357.3						11.	223.	.12	4.6	.02	.13	474.
		367.9						11.	217.	.11	4.5	.02	.12	467.
		378.4						10.	211.	.11	4.4	.02	.12	461.
		388.9						10.	205.	.11	4.2	.02	.12	455.
		399.5						10.	200.		4.1	.02	.12	449.
		410.0						10.	195.	.11	4.0	.02	.12	443.
		420.5						10.	190.		3.9	.02	.11	437.
		431.0						10.	185.		3.8	.02	.11	432.
		441.4						10.	181.		3.7	.02	.11	427.
83.4	.011	451.9	85.4	.010	462.4	453.	195.	9.	177.	.10	3.6	.02	.11	422.

Please enter remarks Size relief valve for RHIC shield line H Enter initial pressure, temperature, volume, relief pressure, heating rate, half sextant length and equivalent pipe diameter p0-atm 15 to-K 55 vol-L 1804 pvent-atm 18.7 qheat-kW 270 length-m 350 dia-cm 5.4

Constant density heating process

р	t	rho	М	u	d-time
\mathtt{atm}	K	g/cc	kg	j/g	sec.
15.00	55.00	.013	23.2	183.92	
15.37	56.31	.013	23.2	188.04	.35
15.74	57.63	.013	23.2	192.15	.35
16.11	59.03	.013	23.2	196.57	.38
16.48	60.34	.013	23.2	200.68	.35
16.85	61.66	.013	23.2	204.80	.35
17.22	62.97	.013	23.2	208.91	.35
17.59	64.28	.013	23.2	213.03	.35
17.96	65.69	.013	23.2	217.44	.38
18.33	67.00	.013	23.2	221.55	.35
18.70	68.31	.013	23.2	225.67	.35

		-		2	L							Pres	drop	Air
t 1 :	rho1	h1	tx	rhox	hx	heat	1 L	Gi	mout i	Area				t Cap.
K	g/cc	j/g	K	g/cc	j/g	j/g	B/lb		g/s i	n**2				SCFM
68.3	.013	372.7	69.3	.013	378.0	371.	160.		728.		.5			1567.
		378.0						11.	718.	.38	.4	.46	3.21	1556.
		383.3						10.	708.	.38	.4	.46	3.18	1546.
		388.5						10.	698.	.37	.4	.46	3.15	1535.
		393.8						10.	689.	.37	.4	.45	3.12	1525.
		399.0						10.	680.	.37	.4	.45	3.09	1515.
		404.3						10.	671.	.37	.4	.44	3.06	1505.
		409.5						10.	662.	.36	.4	.44	3.04	1496.
		414.8						10.	654.	.36	.4	.44	3.01	1486.
		420.0						10.	642.	.36	• 8	.43	2.97	1477.
		430.5						10.	626.	.36	.8	.42	2.92	1459.
		441.0						10.	611.	.35	.8	.42	2.88	1442.
		451.5						9.	597.	.35	.7	.41	2.83	1425.
		462.0						9.	583.		.7	.41	2.79	1409.
		472.5						9.	571.	.34	.7	.40	2.75	1394.
		482.9						9.	558.	.34	.7	.39	2.71	1379.
		493.4						9.	546.	.33	.7	.39	2.67	1364.
		503.9						9.	535.		.7	.38	2.63	1350.
		514.3						9.			.6	.38	2.60	1337.
97.3	.009	524.8	99.3	.009	535.2	526.	226.	9.	514.	.32	.6	.37	2.57	1324.

```
Please enter remarks
Size relief valve for RHIC Magnet Cooling Passages M
Enter initial pressure, temperature, volume, relief pressure,
heating rate, half sextant length and equivalent pipe diameter
p0-atm
5
to-K
4.5
vol-L
5335
pvent-atm
18.7
qheat-kW
320
length-m
350
dia-cm
5.4
```

Constant density heating process

р	t	rho	М	u	d-time
\mathtt{atm}	K	g/cc	kg	j/g	sec.
5.00	4.50	.137	733.1	8.42	
6.37	4.78	.137	733.1	9.08	1.51
7.74	5.06	.137	733.1	9.80	1.64
9.11	5.34	.137	733.1	10.52	1.66
10.48	5.63	.137	733.1	11.21	1.57
11.85	5.91	.137	733.1	11.90	1.57
13.22	6.19	.137	733.1	12.59	`1. 58
14.59	6.47	.137	733.1	13.28	1.60
15.96	6.75	.137	733.1	13.99	1.61
17.33	7.02	.137	733.1	14.64	1.50
18.70	7.30	.137	733.1	15.36	1.64

		-		2	-						Air
t1	rho1			rhox	hx	heat]	L	Gi	mout Area	dt	Cap.
K	g/cc	j/g	K	g/cc	j/g	j/g	B/lb		g/s in**2	sec	SCFM
7.3	.137	29.2	8.3	.126	34.1	60.	26.	22.	529096	10.9	3939.
8.3	.126	34.1	9.3	.115	39.9	59.	25.	24.	5411.1.04	11.7	4265.
9.3	.115	39.9	10.3	.103	46.5	59.	25.	25.	5408.1.09	12.0	4486.
10.3	.103	46.5	11.3	.091	53.6	61.	26.	26.	5236.1.11	11.4	4550.
11.3	.091	53.6	12.3	.082	60.6	64.	28.	26.	4977.1.10	10.1	4512.
12.3	.082	60.6	13.3	.074	67.3	68.	29.	25.	4682.1.07	8.7	4413.
13.3	.074	67.3	14.3	.068	73.8	72.	31.	25.	4417.1.05	7.6	4317.
14.3	.068	73.8	15.3	.062	80.1	77.	33.	25.	4174.1.03	6.9	4221.
15.3	.062	80.1	16.3	.058	86.5	82.	35.	24.	389699	6.4	4066.
16.3			18.3				39.	23.	354695	11.2	3922.
18.3	.050	98.9	20.3	.045	111.1	101.	44.	22.	315890	9.6	3678.
20.3	.045	111.1	22.3	.040	123.0	113.	49.	21.	284284	8.4	3470.
22.3	.040	123.0	24.3	.037	134.6	124.	53.	20.	258380	7.5	3291.
24.3	.037	134.6	26.3	.034	146.1	135.	58.	19.	236676	6.7	3137.
26.3	.034	146.1	28.3	.031	157.5	147.	63.	18.	218473	6.1	3004.
28.3	.031	157.5	30.3	.029	168.7	158.	68.	17.	202970	5.6	2887.
30.3	.029	168.7	32.3	.027	179.8	169.	73.	17.	189568	5.2	2784.
32.3	.027	179.8	34.3	.025	190.8	180.	78.	16.	177865	4.8	2692.
34.3	.025	190.8	36.3	.024	201.8	191.	82.	16.	167563	4.5	2609.
36.3	.024	201.8	38.3	.023	212.7	202.	87.	15.	158462	4.3	2534.

APPENDIX 2:

Pressure drop calculations in the

magnet cooling passages

Calculate the pressure drop in a RHIC string with uniform temperature distributi Enter 11 for constant flow condition Enter 22 for flow increase with distance such as occur in a loss of vacuum situation 22

Select the starting and the ending magnets

I	Item	I	Item	I	Item	I	Item	I	Item	I	Item	I	Item	I	Item
1	SP3	2	DO	3	INT	4	Q1	5	INT	6	Q2	7	INT	8	Q3
9	SP2	10	Q4	11	INT	12	Q5	13	INT	14	D5	15	INT	16	Q6
17	REC	18	INT	19	D6	20	INT	21	Q7	22	INT	23	Q8	24	SP1
25	INT	26	Q9	27	INT	28	D9	29	INT	30	Q10	31	INT	32	D10
33	\mathbf{INT}	34	Q11	35	INT	36	D11	37	INT	38	Q12	39	INT	40	D12
41	INT	42	Q13	43	INT	44	D13	45	\mathbf{INT}	46	Q14	47	REC	48	INT
49	D14	50	INT	51	Q15	52	INT	53	D15	54	INT	55	Q16	56	INT
57	D16	58	INT	59	Q17	60	\mathbf{INT}	61	D17	62	INT	63	Q18	64	INT
65	D18	66	INT	67	Q19	68	INT	69	D19	70	INT	71	Q20	72	INT
73	D20	74	INT	75	Q21	76	REC	77	INT	78	D20	79	INT	80	Q20
81	INT	82	D19	83	INT	84	Q19	85	INT	86	D18	87	INT	88	Q18
89	INT	90	D17	91	INT	92	Q17	93	INT	94	D16	95	INT	96	Q16
97	INT	98	D15	99	INT	100	Q15	101	INT	102	D14	103	INT	104	Q14
105	REC	106	INT	107	D13	108	INT	109	Q13	110	INT	111	D12	112	INT
113	Q12	114	INT	115	D11	116	INT	117	Q11	118	INT	119	D10	120	INT
121	Q10	122	INT	123	D9	124	INT	125	Q9	126	INT	127	SP1	128	Q8
129	INT	130	Q7	131	INT	132	D6	133	INT	134	Q6	135	REC	136	INT
137	D5	138	INT	139	Q5	140	INT	141	Q4	142	SP2	143	Q3	144	INT
145	Q2	146	INT	147	Q1	148	INT	149	D0	150	SP3	151	END	152	END

Enter I1 and I2 for the starting and ending magents 75 124 Enter the total flow in g/s 5400 Enter inlet pressure in atm 21 Enter inlet temperature in K 7.3

```
Do you satisfy this input ? (y/n)
y
```

No of arc magnets between Q21 and INT equals 24

RHIC	flow	pres.	pres.
comp.	rate	-	drop
-	g/s	\mathtt{atm}	atm
Q21	86.	21.00	.0002
REC	86.	21.00	.0037
INT	86.	21.00	.0000
D20	171.	21.00	.0016
INT	171.	20.99	.0001
Q20	257.	20.99	.0017
INT	257.	20.99	.0002
D19	343.	20.99	.0059
INT	343.	20.99	.0004
Q19	429.	20.99	.0045
INT	429.	20.98	.0006
D18	514.	20.98	.0128
INT	514.	20.97	.0008

Q18	600.	20.97	.0086
INT	600.	20.96	.0011
D17	686.	20.96	.0223
INT	686.	20.94	.0014
Q17	771.	20.93	.0141
INT	771.	20.92	.0018
D16	857.	20.92	.0343
INT	857.	20.88	.0022
Q16	943.	20.88	.0209
INT	943.	20.86	.0027
D15	1029.	20.86	.0490
INT	1029.	20.81	.0032
Q15	1114.	20.81	.0290
INT	1114.	20.78	.0038
D14	1200.	20.77	.0662
INT	1200.	20.71	.0044
Q14	1286.	20.70	.0385
REC	1286.	20.66	.7843
INT	1286.	19.88	.0051
D13	1371.	19.87	.0868
INT	1371.	19.79	.0058
Q13	1457.	19.78	.0498
INT	1457.	19.73	.0066
D12	1543.	19.73	.1096
INT	1543.	19.62	.0074
Q12	1629.	19.61	.0622
INT	1629.	19.55	.0082
D11	1714.	19.54	.1351
INT	1714.	19.40	.0091
Q11	1800.	19.39	.0761
INT	1800.	19.32	.0101
D10	1886.	19.31	.1634
INT	1886.	19.14	.0111
Q10	1971.	19.13	.0914
INT	1971.	19.04	.0121
D9	2057.	19.03	.1945
INT	2057.	18.84	.0132

Total pressure drop equals 2.178 atm Do you want another calculation (y/n) ? Y Calculate the pressure drop in a RHIC string with uniform temperature distributi Enter 11 for constant flow condition Enter 22 for flow increase with distance such as occur in a loss of vacuum situation 22

Select the starting and the ending magnets

I	Item	I	Item	I	Item	I	Item	I	Item	I	Item	I	Item	I	Item
1	SP3	2	D0	3	INT	4	Q1	5	INT	6	Q2	7	INT	8	Q3
9	SP2	10	Q4	11	INT	12	Q5	13	INT	14	D5	15	INT	16	Q6
17	REC	18	INT	19	D6	20	\mathbf{INT}	21	Q7	22	INT	23	Q8	24	SP1
25	INT	26	Q9	27	INT	28	D9	29	INT	30	Q10	31	\mathbf{INT}	32	D10
33	INT	34	Q11	35	INT	36	D11	37	INT	38	Q12	39	INT	40	D12
41	INT	42	Q13	43	INT	44	D13	45	INT	46	Q14	47	REC	48	INT
49	D14	50	INT	51	Q15	52	INT	53	D15	54	INT	55	Q16	56	INT
57	D16	58	INT	59	Q17	60	INT	61	D17	62	INT	63	Q18	64	INT
65	D18	66	INT	67	Q19	68	INT	69	D19	70	INT	71	Q20	72	INT
73	D20	74	INT	75	Q21	76	REC	77	INT	78	D20	79	INT	80	Q20
81	INT	82	D19	83	INT	84	Q19	85	INT	86	D18	87	INT	88	Q18
89	INT	90	D17	91	INT	92	Q17	93	INT	94	D16	95	INT	96	Q16
97	INT	98	D15	99	INT	100	Q15	101	INT	102	D14	103	INT	104	Q14
105	REC	106	INT	107	D13	108	INT	109	Q13	110	\mathbf{INT}	111	D12	112	INT
113	Q12	114	INT	115	D11	116	INT	117	Q11	118	INT	119	D10	120	INT
121	Q10	122	INT	123	D9	124	INT	125	Q9	126	INT	127	SP1	128	Q8
129	INT	130	Q7	131	INT	132	D6	133	INT	134	Q6	135	REC	136	INT
137	D5	138	INT	139	Q5	140	INT	141	Q4	142	SP2	143	Q3	144	INT
145	Q2	146	INT	147	Q1	148	INT	149	DO	150	SP3	151	END	152	END

Enter I1 and I2 for the starting and ending magents 88 28 Enter the total flow in g/s 5400 Enter inlet pressure in atm 23 Enter inlet temperature in K 7.3

Do you satisfy this input ? (y/n) Y

No of arc magnets between Q18 and D9 equals 30

RHIC	flow	pres.	pres.
comp.	rate	-	drop
	g/s	\mathtt{atm}	atm
Q18	86.	23.00	.0002
INT	86.	23.00	.0000
D18	171.	23.00	.0016
INT	171.	23.00	.0001
Q19	257.	23.00	.0016
INT	257.	23.00	.0002
D19	343.	23.00	.0058
INT	343.	22.99	.0004
Q20	429.	22.99	.0044
INT	429.	22.99	.0006
D20	514.	22.99	.0125
INT	514.	22.97	.0008
REC	514.	22.97	.1234

Q21	600.	22.85	.0084
INT	600.	22.84	.0011
D20	686.	22.84	.0219
INT	686.	22.82	.0014
Q20	771.	22.82	.0138
INT	771.	22.80	.0018
D19	857.	22.80	.0337
INT	857.	22.77	.0022
Q19	943.	22.76	.0204
INT	943.	22.74	.0027
D18	1029.	22.74	.0480
INT	1029.	22.69	.0032
Q18	1114.	22.69	.0284
INT	1114.	22.66	.0037
D17	1200.	22.66	.0648
INT	1200.	22.59	.0043
Q17	1286.	22.59	.0377
INT	1286.	22.55	.0049
D16	1371.	22.55	.0842
INT	1371.	22.46	.0056
Q16	1457.	22.46	.0483
INT	1457.	22.41	.0064
D15	1543.	22.40	.1062
INT	1543.	22.30	.0071
Q15	1629.	22.29	.0603
INT	1629.	22.23	.0080
D14	1714.	22.22	.1309
INT	1714.	22.09	
REC	1714.	22.08	1.3710
Q14	1800.	20.71	.0748
INT	1800.	20.63	.0099
D13	1886.	20.62	.1607
INT	1886.	20.46	.0109
Q13	1971.	20.45	.0898
INT	1971.	20.36	.0119
D12	2057.	20.35	.1912
INT	2057.	20.16	.0130
Q12	2143.	20.15	.1063
INT	2143.	20.04	.0141
D11	2229.	20.03	.2248
INT	2229.	19.80	.0153
Q11	2314.	19.79	.1245
INT	2314.	19.66	.0166
D10	2400.	19.65	.2614
INT	2400.	19.38	.0179
Q10 INT	2486.	19.37	.1442
D9	2486. 2571.	19.22	.0192
60	20/1.	19.20	.3014

Total pressure drop equals 4.098 atm Do you want another calculation (y/n) ? Y Calculate the pressure drop in a RHIC string with uniform temperature distributi Enter 11 for constant flow condition Enter 22 for flow increase with distance such as occur in a loss of vacuum situation 22

Select the starting and the ending magnets

I	Item	I	Item	I	Item	I	Item	I	Item	I	Item	I	Item	I	Item
1	SP3	2	D0	3	INT	4	Q1	5	INT	6	Q2	7	INT	8	Q3
9	SP2	10	Q4	11	INT	12	Q5	13	INT	14	D5	15	INT	16	Q6
17	REC	18	INT	19	D6	20	INT	21	Q7	22	INT	23	Q8	24	SP1
25	INT	26	Q9	27	INT	28	D9	29	INT	30	Q10	31	INT	32	D10
33	INT	34	Q11	35	\mathbf{INT}	36	D11	37	INT	38	Q12	39	INT	40	D12
41	INT	42	Q13	43	INT	44	D13	45	INT	46	Q14	47	REC	48	INT
49	D14	50	INT	51	Q15	52	INT	53	D15	54	INT	55	Q16	56	INT
57	D16	58	\mathbf{INT}	59	Q17	60	INT	61	D17	62	INT	63	Q18	64	INT
65	D18	66	INT	67	Q19	68	INT	69	D19	70	INT	71	Q20	72	INT
73	D20	74	INT	75	Q21	76	REC	77	INT	78	D20	79	INT	80	Q20
81	INT	82	D19	83	INT	84	Q19	85	INT	86	D18	87	INT	88	Q18
89	\mathbf{INT}	90	D17	91	INT	92	Q17	93	INT	94	D16	95	INT	96	Q16
97	INT	98	D15	99	INT	100	Q15	101	INT	102	D14	103	INT	104	Q14
105	REC	106	INT	107	D13	108	INT	109	Q13	110	INT	111	D12	112	INT
113	Q12	114	INT	115	D11	116	INT	117	Q11	118	INT	119	D10	120	INT
121	Q10	122	INT	123	D9	124	INT	125	Q9	126	\mathbf{INT}	127	SP1	128	Q8
129	INT	130	Q7	131	INT	132	D6	133	INT	134	Q6	135	REC	136	INT
137	D5	138	INT	139	Q5	140	INT	141	Q4	142	SP2	143	Q3	144	INT
145	Q2	146	INT	147	Q1	148	INT	149	D0	150	SP3	151	END	152	END

Enter I1 and I2 for the starting and ending magents 88 150 Enter the total flow in g/s 5400 Enter inlet pressure in atm 23 Enter inlet temperature in K 7.3

Do you satisfy this input ? (y/n) y

No of arc magnets between Q18 and SP3 equals 26

RHIC	flow	pres.	pres.
comp.	rate	-	drop
	g/s	atm	atm
Q18	86.	23.00	.0002
INT	86.	23.00	.0000
D17	171.	23.00	.0016
INT	171.	23.00	.0001
Q17	257.	23.00	.0016
INT	257.	23.00	.0002
D16	343.	23.00	.0058
INT	343.	22.99	.0004
Q16	429.	22.99	.0044
INT	429.	22.99	.0006
D15	514.	22.99	.0125
INT	514.	22.97	.0008
Q15	600.	22.97	.0084

INT	600.	22.96	.0011
D14	686.	22.96	.0218
INT	686.	22.94	.0014
Q14	771.	22.94	.0138
REC	771.	22.93	.2760
INT	771.	22.65	.0018
D13	857.	22.65	.0337
INT	857.	22.63	.0022
Q13	943.	22.61	.0205
INT	943.	22.59	.0027
D12	1029.	22.59	.0481
INT	1029.	22.59	.0481
Q12			
	1114.	22.54	.0284
INT	1114.	22.51	.0037
D11	1200.	22.51	.0649
INT	1200.	22.44	.0043
Q11	1286.	22.44	.0377
INT	1286.	22.40	.0050
D10	1371.	22.39	.0844
INT	1371.	22.31	.0056
Q10	1457.	22.30	.0484
INT	1457.	22.25	.0064
D9	1543.	22.25	.1064
INT	1543.	22.14	.0071
Q9	1629.	22.13	.0604
INT	1629.	22.07	.0080
SP1	1629.	22.07	.0179
Q8	1714.	22.05	.0656
INT	1714.	21.98	.0088
Q7	1800.	21.97	.0690
INT	1800.	21.91	.0097
D6	1886.	21.90	.1583
INT	1886.	21.74	.0107
Q6	1971.	21.73	.0780
REC	1971.	21.65	1.8250
INT	1971.	19.82	.0120
D5	2057.	19.81	.1101
INT	2057.	19.70	.0131
Q5	2143.	19.69	.1002
ÎNT	2143.	19.59	.0142
Q4	2229.	19.57	.1117
SP2	2229.	19.46	.0518
Q3	2229.	19.41	.1124
INT	2229.	19.30	.0154
Q2	2229.	19.28	.1258
INT	2229.	19.16	.0155
Q1	2229.	19.14	.1096
INT	2229.	19.14	.0155
DO	2229.	19.03	.1304
SP3	2229.		.0661
923	6667.	18.89	.000T

Total pressure drop equals 4.180 atm Do you want another calculation (y/n) ? n

C:\FORTRAN\NBSDIST>