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Introduction

Despite the very simply form of the equations of motion and the knowledge that the
motion is exactly integrable, the complete solution of the linear coupling problem in a
practical form remains an outstanding issue. The complication arises from the fact that
the solution is to be described in a four-dimensional phase space which is difficult to
perceive. Several approaches and general analysis have been proposed in the past.}?3 In
our opinion, nevertheless the methods used are too abstract; aside from the formulation
of some general and important theorems, they do not really provide much insight into the
problem and can be hardly useful for designing correction schemes of the coupling effects.

In the approximation that the skew quadrupole errors causing the coupling are small,
it is possible to apply the perturbation method? to the solution of the problem. But also
this may not be sufficient; for instance in the case of storage rings made of superconducting
magnets, these are known to be susceptible to rather large skew quadrupole errors. In this
case a more complete and accurate analysis is required since high-order effects are expected
to play important role.

Recently, it has become common practice to simulate the effect of linear coupling
in particle tracking on computers. The errors are usually taken as lumped in location

of zero length. The effects are then determined either by studying directly the particle
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2 Introduction

motion or by solving for the eigenvalues of the resulting 4 x 4 transfer matrix. We believe
that the thin-lens model of the errors is indeed adequate and formally correct. We have
taken this model as our starting point for the analysis that follows since, as we shall see,
it is indeed suitable for an exact analytical treatment with essentially no approximation
involved and with an accuracy well beyond of that one can obtain with the perturbation
method. Indeed, as we shall see, we have been capable to determine the importance of the

higher order effects and the role they play in a particular correction scheme.
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1. Thin-Lens Model of the Errors

Let us take a distribution of skew quadrupole errors around a circular accelerator or

storage ring. Each error will be approximated as a thin lens described by the strength

where: =1,2,..N and N is the total number of errors in the ring. The strength parameter

parameter

is the gradient error B’ multiplied by the length £ of the error source and divided by the
magnetic rigidity Bp of the charged particle being accelerated or circulating in the storage
ring. If s is the curvilinear coordinate along the reference orbit, we shall take a point of
observation as a starting point at s = sg and assume that the i-th skew quadrupole error is
lumped at the location s = s;. Our first goal is the derivation of the one-turn 4 x 4 transfer
matrix M (s9) which describes the motion of a charged particle in linear approximation
moving from s = sg to s = 39+ L where L is the total circumference of the reference closed
orbit. For this purpose we shall refer to Fig. 1.1 which shows the location of the skew
quadrupole errors and of partial transfer matrices. We shall define with M; the 4 x 4 matrix
which takes the motion from s = s;_1 to s = s;, that is between two errors placed next to
each other, and with @); the 4 x 4 matrix associated to the i-th error and which describes
its effect. In particular M takes the motion from the starting point s = s¢ to the location
of the first error s = s1, and My 3 takes the motion from the location of the last error at
s = sy back to the origin at s = sp. This model, which is based on the short-length and
on the discontinuous nature of the errors, is a fair and realistic approximation of a particle
accelerator which avoids the introduction of continuous distributions of errors. After all,
this model is commonly used in computer particle tracking with programs employing the
kick method.

The total transfer matrix M from s = sp to s = sp + L is easily put together as follows

M = Mpy11 (QnMpy) - (Qit1Miy1) (QiM;) - - - (Q2 M) (Q1M7) (1.2)

There is an easily identifiable pattern which we have emphasized by grouping elements
within brackets. It is a chain of similar factors Q;M; made by the product of a kick matrix
and the transfer matrix from the preceeding error.

Between errors the motion is decoupled and
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| Mpg; 0
= (M50

(1.3)

where Mp; is the ordinary horizontal and My; vertical 2 x 2 matrix from s = s;_1 to s = s;

and @ is the null 2 x 2 matrix

)
=5 1)

The 4 x 4 matrix associated to the i-th error is

1 G
Qi:(Gi 1)

We also define the 2 x 2 unit matrix

where
and

It is easily seen that

(10 (0 U
Qz—(w 1>+92(U @)

0 UMV;)
UMp, 0

so that finally

QiM; = M; + gi (

= M; + ¢iT;

which shows a factorization with respect to the strength parameter.

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

By performing the required chain of multiplication to obtain M, one derives a polyno-

mial of the N-th order in the errors g;, ¢ = 1,2, ..., N, where the coeffcients are also 4 x 4
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matrices. The problem is thus completely defined since we have already the explicit form
of the 2 x 2 transfer matrices Mp; and My; which are needed to give M; according to
Eq. (1.3) and which will be given in the next section. Moreover, though My; and My;
do not include skew quadrupole errors, they may include regular quadrupole errors, the

magnitude and distribution of which is not necessary to specify.
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Qi+1 Qi

M;: 4 X 4 Transfer Matrix from s = s;_1 to s = s;.
Qi: 4 x 4 Transfer Matrix associated to i-th error.

3;: location of z-th error.

Figure 1.1: Distribution of Errors and Local Transfer Matrices.
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2. Coordinate Normalization

An inspection of Eq. (1.3) shows that only relatively few parameters enter the ex-
pression for the total transfer matrix M, namely: the strength parameter g; of the errors,
the amplitude lattice functions Sy, and fy; where the errors are located (H for horizontal
and V for vertical), their derivatives denoted with ap; and ay;, and the betatron phase
advances ¥, and y; at the location of the errors taken as difference from an arbitrarily
chosen origin. As we have seen, the strength parameters can be factorized, but the val-
ues of the amplitude lattice functions and the phase advances appear together only in the
transfer matrices M;. A matrix transformation is known which allows also the factorization
of the values of the amplitude lattice functions.

Introduce the matrix operator

R= (}%H }?V) (2.1)

where

0
VB
HV

It is seen that Det Ry = Det Ry = Det R = 1. The matrix R~! inverse to R is

R1= (Rﬁl ) ) (2.3)

Rpy = (2.2)

S g

® Ry
where
VB 0
Rg'y = ( _a L) (2.4)
VB B/ gy
and

RI}’IV Rygy =1 (2.5)

RR= (; 2) (2.6)

The operator R transforms the total transfer matrix M to M and allows the factor-

ization of the values of the amplitude lattice functions,
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M=Ry M R;! (2.7)

where Ry is the operator given by Egs. (2.1 and 2.2) estimated at s = sg. Let therefore
R; (and its inverse R; ') denote the same operator evaluated at the location s = s; of the
i-th error; then, making use of the properties given by Egs. (2.5 and 2.6), it is possible to
combine Egs. (1.2 and 2.7) as follows

M =Ry My+1 Ry' Ry Qn Ry' Ry My Ry~ Rv_1 Q-1+
-+ R Riy1 Qin R Riyy Miyy R7Y R Qi R7P Ry M; - (2.8)
-+Ry' Ry Q2 Ry' Ry My Ry Ry Q1 R Ry My Ry!

which has an obvious construction. The result is

M=Mpyy1 @8y My On—1 - Qiy1 Miy1 Qi M; Qiq ---

- Qy My Q1 My
which is similar and equivalent to A given by Eq. (1.2). It can be easily verified that

(2.9)

M; = R; M; Ri___ll
M 0 2.10)
B ( 0 MVi)
equivalent to Eq. (1.3), and

(2.11)

cosAgy;, sinApgy;
Mpy, =

—sinAgy; cosApy;
where Agy; =Ygy, — ¥mv;,_, are the betatron phase advances from s = s;_1 to s = s;.
The 2 X 2 matrices Mp; and My; represent rotations by the angles —Ap; and —Ay;

respectively in the horizontal and vertical plane. It can also be seen that

Qi=R; Q; B!
(10 . 0 U (2.12)
‘(@ 1)+q'(v w)

and

¢ = gi\/ BH; Pv; (2.13)
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is the strength parameter in normalized form. There is a very close analogy between Eq.
(2.12) and Eq. (1.9), which are actually identical except for the replacement of g; with gi-

The transformation given by Eq. (2.7) simplifies considerably the notation of the
problem. It has the property of transforming trajectories in the betatron phase spaces that
have elliptical shape to perfect circles. In particular the dependence on the derivatives o H
and ay disappear explicitly. In the following, our goal is the study of the properties of the
normalized matrix M; when these are known, we can obtain the properties of the original

matrix M with the anti-transformation

Our starting point is thus given by Eq. (2.9) where M; is given by Eq. (2.10), which
we have seen performs simple rotations and depends only on the betatron phase advances,
and Q; is the kick due to the error given by Eq. (2.12) in a factorized form which depends
only on the normalized strength parameter ¢; of the error given by Eq. (2.13).

Similarly to Eq. (1.10) also here we obtain

QMi=Mi+q¢T (2.15)

where

(2.16)
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3. The Polynominal Expansion

After inserting Eq. (2.15) in the chain of products at the right side of Eq. (2.9), and
having performed all the matrix multiplications, one obtains a polynominal which we can

write as

N
M= M®) (3.1)

k=0
where M®) is k-th order term of the polynominal expansion. In particular it is seen that
MO = My My - Myt MMy - MaMy
= Mo (50) = Mo

(3.2)

is the regular 4 x 4 transfer matrix which describes the motion in the storage ring in the
absence of skew quadrupole errors (but including eventually regular quadrupole errors).
Similarly
N
M(l)=ZQiMN+1MN"'Mi+17;'Mi—-1"'M2M1 (3.3)
=1

is the first-order term of the polynominal where 7; has been defined in Eq. (2.16), that is

0 U
7}=<U 0)M,‘=UM,‘ (3.4)
The second order term is
N-1 N
M@ = Z ZQinMNHMN'”MjH’Z}'Mj—l---
i=1 j>i (3.5)

e M TiMioy - - MaMy

and so on; it is obvious how to construct the k-th order term M(F). Finally, for instance,

N
MED =" (g1 Gi1gi-1 - 0201) M1 T T -+ (3.6)
i=1 .

o TigaMTia - TT
and
MW = (qyaw-1- - Gis10idi-1+ 2201) My T Ty -+~
T TiTiy - T

(3.7)
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Taking into account Eq. (3.4), after carrying obvious matrix multiplications, we have
quite generally for the k-th order term
MEF) = Z Z E (@, @r ) MyoUM;y oy, -+
r=1rg>r1  E>TR_y (3.8)
ces MrlrzUMOrl
where Mmj is the 4 x 4 transfer matrix from the location s = sy; to the location s = Sr;

without skew quadrupole errors in between.

M (MH’"J‘ @ ) (3.9)
Ty — )
0 My,
where
" s ARV, SnARY,. 3.1
— i : .10
H,Vr;r; —sin AH:Vr;rj cos AH,Vr,-rj ( )
and

ABVey; = VEV:; — YEV, (3.11)

The k-th order term of the polynominal expansion, given by Eq. (3.8), includes k sums
with k different indices rq,rg,...,7;. The sum with the index 7y, ranges from r;_; + 1 to
N; the sum with index rj_; ranges from ry_5 + 1 to N — 1, and so forth; at last, the
summation with index ry ranges from 1 to N —k+ 1. In each sum there is always a scalar
factor represented by the product of k strength parameters of the errors (¢ry " gr,): thus
the label “k-th order” given to M®*) of Eq. (3.8). It is to be observed that the parameter
strengths appearing in the scalar factor are all different from each other. Finally, it appears
a product of regular transfer matrices M, i from one location to the other of the selected
skew quadrupole errors according to the summation rule specified. These transfer matrices
are separated from each other by the insertion of the 4 x 4 matrix U defined in Eq. (3.4),
and which represent the effects of the kicks due to the errors.

A close inspection of the form of the k-th order term of the polynominal expansion
given by Egs. (3.1 and 3.8) and the understanding of its construction allow, as we shall
see next, the application of simple and straightforth operation that only at first sight may
look complicated and cumbersome.

Since it is reasonable to expect that the strength parameters of the errors gi defined

by Eq. (2.13) are small, one may be tempted to apply perturbation methods to estimate
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their effects on the particle motion. For instance, once obtained the polynominal expansion
given by Egs. (3.1 and 3.8), it could be possible to retain only the first-order and second-
order term (k=1 and 2) and truncate the expansion by neglecting the higher-order terms
(k > 2). This approach is invalid because it does not preserve the symplectic properties
of the total transfer matrix M, which are also implicitly assumed in the unperturbed
matrix My and in each of the partial transfer matrices Mmj. It is well known that the
product of symplectic matrices is also symplectic; but that is not true if at least one of
the matrices in the product is not symplectic. This is the case for each of the term M(*)
in the polynominal expansion with the exclusion of M® = M,. From Eq. (3.8) which
gives the explicit form of M®), it is to be noticed the inclusion of the matrix U which
is not symplectic. Thus each term M®*) is not a symplectic operator, though their sum,
including k£ = 0, gives a symplectic operator. A truncation of the expansion given by Eq.
(3.1) to an order ry < N is therefore not symplectic. To avoid this problem, it is our

intention to retain all the terms of the expansion and calculate them explicitly from Eq.

(3.8).
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4. Complex Number Notation

It is more convenient to describe the 4 x 4 total transfer matrix M in terms of four
A n
M= 5)

N AR p®)
=k=o(m(’“) B(k))

Obviously n(® = m(©® = § and A(O), B reduce respectively to the matrices Mg, My

2 X 2 matrices as follows

(4.1)

which describe the one-turn transformation respectively in the horizontal and vertical
plane in the absence of skew quadrupole errors but eventually with the inclusion of regular
quadrupole errors, since these do not affect the oﬁ'-dié,gonal 2 X 2 matrices n and m.

The transfer matrix M given by Eq. (1.2) operates on a four-dimensional vector Z

which describes the status of motion of a charged partial at the location s = sg

Z = (‘;f ) (4.2)

X = (;,) and Y = (;’,) (4.3)

and z,z',y,y represent the usual particle coordinates and angles. On the other hand the

where

matrix M given by Eq. (2.9) will operate on the vector
Z=RyZ (4.4)

which represents the position of the particle in the four-dimensional phase space in the

normalized form. Similarly to Egs. (4.2) and (4.3) we have

Z= (;) (4.5)

X = (;‘,) and Y= (;’,) (4.6)

and u,u,v,v' represent the particle coordinates and angles in the normalized form. It is

where

seen that A®) and m®) are 2 x 2 matrices which always operate on the two-dimensional
vector X, whereas B%) and n®) are 2 x 2 matrices acting only on the two- dimensional

vector ).
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Instead of the two-dimensional vectors and matrices it is also possible to use an equiv-

alent complex number notation. For instance the vector X can be replaced by
X = pe'? (4.7)

with amplitude
p= \ uZ + u’z (4.8)

and phase

6 = arctg u'/u (4.9)
Matrices n,m,A and B then become operators acting on amplitudes and phases. In
particular, matrices My;,; appearing in Eq. (3.8) have the property, as we have seen,
of rotations; they leave the amplitude unchanged and shift the phase # in the clockwise
direction by an angle A Hygr; in the horizontal plane and AV";‘"j in the vertical plane. The

matrix operator U has a more interesting property

_ ({0 O pcos@\ 0
Ux = (1 0) (psin0> o (pcosﬁ)
=1pcosf = ﬁp (ew + e_ie)
_ 2 (4.10)
=S (X +X7)
2
= % 1+0C)X
where X* is the complex conjugate of X and C is the operator that applied to X’ changes

X to its complex conjugate. In matrix notation

C= (é _‘i) (4.11)

A similar derivation is obtained also for U).
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5. Derivation of Driving Terms to All Orders

By comparing Eq. (4.1) with Eq. (3.8) we obtain the following formal construction of

the 2 x 2 transfer matrix n(*)

W= T Y @)

ro=119>T11 TE>TE~1

x MygUMyUMg - MyUMgU My (5.1)

Tk Te—1 - T2 r1

which is valid for k odd; if k is even then n(¥) = 0. In the expression above, My y are the
2 X 2 partial transfer matrices (rotation operators) as defined by Egs. (3.9-3.11) and U is
the matrix operator defined by Eq. (1.8) and Eq. (4.10). There are k summations involved
as already described after Eq. (3.8). Each term begins to the right with My, , which
takes the particle from the origin at s = sg to the location s = sp, of the selected error
by the summation rules: at this location the operator U is applied and it is followed now
by M Hyyry which takes the particle from s = s,, to the second selected errors locations
at s = sr,, to be followed also by the operator U again. This procedure repeats until the
particle is brought from s = s,,, the location of the last of the selected errors, back to the
origin by M Hy 0. It takes some careful study, but then the explicit construction of n(k)
becomes obvious.

An expression very similar to Eq. (5.1) is also valid for A®) with the exception that
the order k is now even; if k is odd then A®*) = 0. Moreover all the terms in the summation
begin to the right with Mp,,, this time. Finally the 2 x 2 matrices m(*) and B®) can be
obtained from n(*) and A®) respectively by simply replacing My in Eq. (5.1) with My
and vice versa. Thus by deriving more explicit expressions for n(*) from Eq. (5.1), one
learns how to obtain equivalent expressions also for m®*), A*) and B®).

With the insertion of Eq. (4.10) in Eq. (5.1) we obtain

n(k):G)kZ Yo Y (@@ x

ri=1re>r TE>The

XMH(1+C)MV(1+C)MHMV(1‘|‘C)MH(1+C)MV (52)

Tk Tk—1 e T2 r1
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that is

.\ k
n® = (%) e { (700 4 59 4o 70 1

ot K,E’,:)) C}

+ (&P + kP +

All Orders

(5.3)

where g v = 2mvgy is the total phase advance per revolution.

At the right side of Eq. (5.3) there are a total of

2hp, = ok

(5.4)

driving terms of the k-th order, divided in two equal groups: those of difference mode thk)

and those of sum mode K é’“) where £ = 1,2,...,h;. In the following it will be convenient

to define the phase difference
61‘ = (¢H - ¢V)'r
and sum

Or = ('¢'H + ¢V)r

at the location s = s,. It can be shown that
VAR 3D D Sl
£ q
ri=17r2>71 TE>Tk—1

and

EV=% % Y (4

ri=17r9>71 TE>TE—1

(k)

(5.5)

(5.6)

Cgr) €T (5.7)
®

g )€ (5.8)

where 7, and Cgk) are given by an algebraic combination of phase differences and sums

at different locations. For instance

) =6, = (Yg - ¥V )y, (5.9)
(Y = o0, = (o + ¥, (5.10)

so that, in particular

N
J](-]‘) — Z qTei(¢H—¢V)r

r=1

=J_

(5.11)
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and

I{(l) Z g RIC SN

r=1

= Jy

(5.12)

In order to obtain the phase angles 77( ) and, Cgk) of the k-th order the following con-
struction rules apply:
(i) Assume that the lower order ngk_l) and szk—l) phase angles are known;
(ii) shift the summation indices by one order upward, that is r; — rjy1;
(iii) if k is odd (that is n(®)
— the 77( ) angles are obtained by adding +6,, to each ngk_l) and —oy, to each C§k"1),
— the sz ) angles are obtained by adding —§,, to each Cgk— and +o0,, to each n(k 1),
(iv) if k is even (that is A(*))
— the 77( ) angles are obtained by adding —6,, to each nék—l) and —o,, to each C&k_l) ,
— the Ce angles are obtained by adding +6;, to each C,(Zk_l) and +o0y, to each ngk_l).

In particular,

n() = Ze=inn (70 + k{’c) (5.13)

where J{l) and K{l) have already been defined by Egs. (5.11 and 5.12). Also

A®) = e 50 4 40

(5.14)
+ (£ + k() ]
where

N-1 N -

JI(Z) = Z Z QT1QT261(6r2-_6T1) (5.15)
ri=119>711
N-1 N

TP =573 grygrei(on=on) (5.16)
r1=1719>11

K(z) Z Z qr19ry € z(a'r2+6rl) . (5'17)
r1=1ro>ry
N-1 N )

I{§2) = Z Z 9rquzez(6r2+ar1) (5.18)

ri=1r9>r]
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and .
n(®) = ———;—e—i"H [Jl(g) iy S QS
(5.19)
+ (&P + K + K + K C]

where

N-2N-1 N

']1(3) = Z Z Z q"lqrzqrsei(ars—&rz-*_&rl) (5'20)

r1=1712>71173>72

N-2N-1 N

J2(3) = Z Z E QT19rzqrsei(ar3—ar2+6rl) (5.21)

r1=1712>711 13>79

N-2 N-1 N

J3E3) = Z Z Z qr1qrzqr3ei(ar3+§r2_arl) (5.22)

ri=17r2>r1 r3>732

N-2 N-1 N

J4E3) = Z Z Z %19729r36i(6r3+w2_071) (5.23)

ri=17r3>r1713>72

N-2N-1 N

1{1(3) = Z E Z 971QTzqraei(ars+6r2_6rl) (5.24)

r1=1ra>r1 713>79

N-2N-1 N

K§3) = Z Z Z QT1QTzqrsei(6r3+ar2_5rl) (5:25)

ri=17r9>r1 13>79

N-2 N-1 N

K§3) = Z Z Z erqrzqraei(&a—&rz—iﬂrl) (5.26)

r1=1712>71173>T9

N-2 N-1 N

I{f}) = E E E %19n%36i(w3_0r2+6r1) (5°27)

r1=17r2>r173>7r9

and so on. .. Though the construction of the driving termsis by now obvious, nevertheless

their bookkeeping and notation is complicated.
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6. Search of the Eigenvalues

There are four eigenvalues A1, A2, A3 and Ay which are solution of the equation

MZ=)Z (6.1)

The general discussion and solution of this equation can be found elsewhere.! Here, for
our purposes, we shall notice the following. Since M is a symplectic matrix, if A is an
eigenvalue, the complex conjugate A* is also an eigenvalue. Moreover if A is an eigenvalue
then the inverse A™! is also an eigenvalue. Thus the eigenvalues can be paired; for instance,

we can define

A= +1/A\ =2cospyy (6.2)
A2 = Ao + 1/)\2 = 2.coSs 2 (63)
It can be proven that!
1
cos pi1 +cospz = 5 (TrA+TrB) (6.4)
COS (1] — COS fig = \/241: (TrA — TrB)? + Det (n +m) (6.5)

where A, B,n and m are the 2 x 2 matrices as they appear in Eq. (4.1), and 7 is the

matrix symplectic conjugate to m, (see ref. 1.). Also

4cospro=(TrA+TrB)+
+ \/(TT‘A — TrB)? + 4 Det (n + )

(6.6)

We notice that we are dealing with 2 X 2 matrices which are linear combinations of
simple rotation operators and of the complex conjugate operator C. Thus, using also

known properties of symplectic matrices, we have (see Appendix A and B)
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Det (n+m) =

N N i kg ky
—ZZZZO()X

k1=1 k9=1 ¢1=1 €5=1

oldd c?dd 1=2t=

< Real {Jéf’l)JéfZ) + J(kl) (kz)*+ (67)
_ ge—i(uH-i-uv)Jélkl)ng)_*_
_ Kgfl)ng:Z)* _ 'I_{'(kl)_(k2)*
42¢~i(pE— uV)K(kl)‘K‘(kz)*}

where J, () and K, (B are the complex conjugates of the rotations J, ék) and K ék) and 7/(319)

?

and K 176% ) are obtained from J; (*) and K §k) by inverting the sign to the phase differences
§ appearing in the phase factors of Eqs. (5.7 and 5.8). In particular, with a convenient

expansion, with respect to the order of magnitude of the errors,

Det (n +m) =

= |J_?sin® 7 (vg + vy) — [Ty 2 sin® 7 (vg — vv) +

- i Real {7 [78 + 70 + 72 [10) + 7] +

-9 (J_jgs) + Ji-]és)) e—i(ﬂH+uv)} n

(6.8)
(3) | 73 @) 7B
62Real{ & + K ] + 75 [k + R +
2 (1R + 1K) et ]
+ 6th and higher order terms.
At the same time
N
TrA =2cospug + Z TrA®) (6.9)
k=2
JV .
TrB = 2cos py + E TrB®) (6.10)

k=2

even
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But, with k an even integer,

N

A0 (%) 3 (19 4 P c] emin (6.11)
=1
Nk hk

B® = (%) 3 [‘sz'“)+F§’°)C] e—inv (6.12)
=1

Then it is easily seen that (see Appendix A)

N I 1

TrA®) =2 (—;—) Real |e™iHH Z Jlgk) (6.13)
L £ .
N\ k I 1

TrB®) =2 (%) Real |7V ngk) (6.14)
L £ J

where the driving terms of the sum mode do not enter at all. In particular,

TrA® — TrB®) =

(Rea,lJz(z)) sinw (vyg +vv)sinw (vg —vy) +
— (Imag.]z(z)) cosm (vyg + vy)sinm (vg —vy)+ (6.15)
+ (RealJl(z)) sinw (vg + vy)sinw (vg —vy) +
- (ImagJ{Z)) sinw (vg + vv)cosw (veg —vy) .
We have thus derived explicit expressions for cos 11 and cos ug which are valid to any
order and that are given by the combination of Eqgs. (6.7), (6.9-6.10) and (6.13-6.14)
inserted in Eqgs. (6.4-6.6).
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7. Stability Conditions

The motion of a particle in the presence of skew quadrupole errors is stable only when
each of the four eigenvalues has an absolute value which in magnitude is less than unit.

This requires the simultaneous satisfaction of two distinct stability conditions; né,mely
(TrA — TrB)* + 4Det (n +m) > 0 (7.1)

and, when this is satisfied,

lcos p12] <1 (7.2)

where cos y1,2 is given by Eq. (6.6). In the absence of the skew quadrupole errors, y; and
po reduce to py and py. In this case, the first condition is always satisfied and we shall
assume that also the second stability condition is fulfilled, so that ug and uy are real
quantities.
There are two cases of interest:
(i) Equal Tunes, where the vertical and horizontal betatron tunes vy and vy have the
same fractional part, that is

vg—vy=m (7.3)
with m any integer or zero.

(ii) Opposite Tunes, where
vgt+uvy =m (7.4)

Both of these cases correspond to TrA(® = TrB(®), Then (TrA - TrB)2 is of course
always a positive quantity but small, of at least fourth-order in the strength parameter of
the errors.

It is seen from Eq. (6.8) that, to third-order terms included, Det (n 4 77) is positive in
the first case and thus the first stability condition Eq. (7.1) is always satisfied. In the case
of opposite tunes, Det (n + M) is a negative quantity and thus Eq. (7.1) is not necessarily
satisfied; in this case the motion is unstable. It is then preferable to design and operate
an accelerator with the case shown by Eq. (7.3). The magnitude of the integer m is here

not important. In the following we shall consider only the case of equal tunes.
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8. Tune-Splitting
This is defined as half of the difference between the shifted tunes, namely

_pe—
A=t (8.1)

It is important that this quantity is made as small as possible. From Egs. (6.4-6.6) we

obtain

Ar —1—\/ % (TrA — TrB)? + Det (n + ) (8.2)

47 sin po

where pg is the average of yy and . We have

TrA® — 17rB® =0 (8.3)
and from Eq. (6.15)
TrA® - TrB® = — (Imag 7)) sin o (8.4)

so that (TrA — TrB)? in the square root of Eq. (8.2) is a small quantity of at least fourth-
order in the magnitude of the errors strength parameter. On the other side, to the lowest

order

Det (n + ) = |J-|? sin® uo (8.5)

Thus since we expect that ‘Jl(z)l to be considerably smaller than |J_|, the tune-splitting

for an uncorrected machine is

1
NP (86)

which, as one would have expected is of first order in the strength parameters.
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9. Correction Strategy

Suppose that the goal is to correct for an unreasonably large tune-splitting. Then
from Eq. (8.6) it is obvious that one wants to place two families of correctors around the
ring to compensate for the J_ driving term, which is given by Eq. (5.11). In principle
one will require also the correction of the J driving term, given by Eq. (5.12), since
because of the regular gradient errors, not necessarily the two tunes satisfy Eq. (7.3)
exactly. The correction of the J, driving term can be accomplished with the addition
of two more families of skew quadrupole correctors. It is desirable that the two sets of
correctors are normal to each other so that the two driving terms, J_ and J4, can be
adjusted independently.

Inspection of Eq. (6.8) shows that, setting J- = J4. = 0, corrects also the fourth-order
terms of Det (n + 77) automatically. Thus, after correction, Det (n + ) is a small quantity
of at least 6-th order in the error strength parameters. On the other side this method of
correction would still leave (TrA — T?“B)2 to at least fourth-order; so that now the first

term under the square root of Eq. (8.2) dominates with respect to the second term and

TrA-TrB
A 167 sin g (9-1)

which according to Eq. (6.15) shows a second-order dependence with the magnitude of the
€rrors.

In some cases, even this residual tune-splitting may be too large to be tolerated. Then
a further correction to higher order is required. In the case of equal tunes, the lowest order
contribution to Eq. (9.1) is given by the last term at the right hand side of Eq. (6.15),
Imag [Jl(z)]
—
In principle two more families of correctors are required for the control of the driving

term Jl(z), which together to those for J,. and J_ add to a total of six families, divided

Ar (9.2)

in three groups. It is to be observed that the driving term Jl(z) is actually a second-order
correlation factor among all the errors and correctors and thus of difficult control. It would
be important that the correctors set for J4 and J_ adjustment are placed in such a way
that do not affect the overall Jl(z) driving term. Similarly it would be desirable that the

correctors for the control of Jl(z) do not change J4 and J_.
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Appendix A.

Let R represent a 2 x 2 matrix which performs a rotation in the anticlockwise direction

by an angle 8 of a two-dimensional vector in a plane,

R— (cosG —-sinG) (A1)

sin 6 cos @

which in complex number notation can be also represented by the operator
R=¢" (A.2)
Let n and m be two independent linear combinations of a finite number of rotations, that
is
n=> asRn, (A.3)

m = Z by R, (A4)

where the coefficients a; and b, are real numbers.
If R,, rotates the vector by an angle 6,, and Ry, by an angle 6p,,, then the product
Rn, R, is also a rotation matrix-operator of the form given by Eq. (A.1) with the angle

On, + O,
Let R* denote the complex conjugate of R given by Eq. (A.2), that is

R* = ¢ (A.5)
This operator rotates the vector by an angle 6 but in the clockwise direction, so that
RR*=R'R=1 (A.6)
In matrix notation, it is seen from Eq. (A.1), that
R*=R" (A7)

where R~ is the inverse of the 2 x 2 matrix.

It is easily seen that

Det (R) = 1 (A8)

and
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Tr(R) =2cosb

= 2Real (R)
Also
Det (n) = Real (nn*)
= Z E asay cos (0p, — Om,)
8 T
= Real (Z Z asa,RnsR,*;zr>
3 T

and

Tr(n)=2 Z as cos On,
3

= 2Real Z asRy,
3

If C is the complex conjugate operator which in matrix notation is defined by
(o )
C =
0 -1

Tr(nC)=0

then

and

Det (nC) = — Det (n)

27

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

Since the product p = n -m is also a linear combination of rotations with real coeflicients,

then all equations above hold also for p.



28 Appendiz B

Appendix B.

To obtain explicit expressions of the eigenvalues we need to provide calculation of

Det (n + 7). We note first of all that
Det (n +m) = Det (n) + Det (m) + T'r (nm) (B.1)
We can write concisely
n=n"+ntC (B.2)
m=m"+mtC (B.3)

where the first terms, shown with the sign minus, are the contribution from the difference
mode, and the second terms denote the contribution from the sum mode. Taking into

account Egs. (A.13-14) and Eq. (B.1) we have

Det (n) = Det (n—) 4+ Det (n'*'C’) +Tr (n_“n'*'C)

(B.4)
= Det (n_) — Det (n+)
Similarly
Det (m) = Det (m™) — Det (m™) (B.5)
At the same time ,
Tr(nm)="Tr (n_m—) +Tr (n"’m"’ C) +
+Tr (n"m*C)+Tr (n"'m_* C) (B.6)
=Tr _(n_m_) +Tr (n+m+*>
So that, finally,
Det (n + ) = Det (n_) — Det (n"’) +
+ Det (m_) — Det (m"') + (B.7)

+Tr (n_m—) +Tr (n'*'m"'*)
Taking into account Eqgs. (A.10-11) we then obtain Eq. (6.7).



