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1. Introduction

A coupling between X and Y degrees of freedom due to various sources will be present
in RHIC.}2 In this note we shall examine the projected emittances change due to skew-
quadrupoles randomly distributed around a ring. They will linearly couple the z and y
betatron motions, and their effect can be calculated exactly within a model in which skew-
quadrupole magnets act like point objects of a given strength ¢; and location si, k = 1,
..., N3. This approximation is justified, (in the machine with distributed parameters), by
comparing the length £ = 0.6 m of a skew-quadrupole magnet and the length C' = 3833.852
m of RHIC’s circumference, £/C ~ 1074,

We shall use the same notations as in our earlier papers on the linear coupling phenom-
enon*’. Our work can be viewed as an extension of Brown and Servranckx general analysis®
of the influence of the linear coupling on the projected emittance. Our aim is to reveal the
main driving terms responsible for projected emittance change due to the linear coupling,
and to obtain more quantitative results. We also would like to propose a correction scheme
for emittance growth in RHIC. In fact we show that the correction scheme for the tune
splitting proposed by A.G. Ruggiero, which is perhaps to strong just for this purpose, will

correct the projected emittance growth, as well.



2 Symplecticity and Its Consequences

2. Symplecticity and Its Consequences

When the transverse z and y betatron motions are linearly coupled the (z,z') and

(y,y') variables transform jointly when passing from one point, say sy, in a ring to another,

s = s1.
z21=Tz, (2.1)
where
T
!
x
= ) 2.2
z y (22)
)
and T is 4 X 4 real symplectic 4 X 4 matrix
M n
T= [m N] , (2.3)
satisfying the condition
TST =S5, (2.4)
(T is transpose of T).
Here S stands for the 4 x 4 matrix
c 0
s[5 9] -
and
0 1
o= [_1 0] , (2.6)

is one of the fundamental Pauli matrices. The symplecticity condition (2.4) may be written

in two equivalent forms,

1 IT=1, (2.7)
or
2° TT=1, (2.8)
where o
T =575 = []g %] =71, (2.9)

and the bar denotes a symplectic conjugate of a matrix

My My w7 Mo, —MIZ]
M = M = 2.10
[M21 Mzz] — [-M21 My (2.10)
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In terms of the submatrices, the first symplecticity condition, reads
a. MM +nn=1,
_ b. NN + mm =1,
TT'=1— . (2.11)
c. Mm+nN =0,
d. mM + Nm = 0.

Using the fact that for any 2 X 2 matrix one has
MM = |[M]|1, (2.12)
one gets from a. and b., respectively, the equalities

M| +lnl =1, (2.13)
and

IN| + |m| = 1. (2.14)

The condition c. yields four independent relations

My My, n1 M| '
N Ny | 7
ma1 Moo 21 Nag
N1 Nig mi miz| _ g
niy N2 My Mo ’ (2.15)
Mz Moo naL naz|_ g
N. Nog| — 7
ma1 Mg 21 Naa
Nu Niz|  |mnn maz | _
ng1 N2 My Mo,

The last condition, d., is equivalent to, c., upon the symplectic conjugation and, in fact,
is irrelevant. Thus altogether one has six independent conditions reducing the number of
independent parameters in a 4 x 4 symplectic matrix from 16 to 107.

The equivalent set of six independent conditions on T follows from the equations
a! MM +mm =1,
_ b/ NN + @n=1,
TT'=1— . (2.16)
c! Mn +mN =0,

d' Nm +7nM =0.



4 Symplecticity and Its Consequences

One notices that this set of relations follows from the previous set (2.11) upon the substi-

tions,

(2.17)

n — m.

Hence, applying them to Egs. (2.13) - (2.15) one gets at once
IM|+ |m| =1, (2.18)

and

IN] +In] = 1, (2.19)

and four conditions corresponding to (2.15). We shall not reproduce them here explicitly
as they will not be needed in the sequel. Comparing (2.13), (2.14) and (2.18), (2.19) one

gets the well known equalities

[m| = [n}, (2.20)
and

|M| = |N|=1—|n|. (2.21)
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3. The Beam 4-Ellipsoid

When the linear coupling is present one considers instead of two separate ellipses, a

single 4-dimensional ellipsoid, (at a point of a ring),
50712 =1, (3.1)

where (please, do not confuse with o-matrix entering S of (2.6))

a=[? t], (3.2)

Ty
is a symmetric and positive- definite 4 X 4 matrix while o, 0, are symmetric, positive-
definite, 2 X 2 submatrices representing projections of the beam onto (z,z') and (y,y’)
planes and ¢ represents the coupling. When passing from a point s = 3¢ to another one at
s = s1 the matrix o transforms as

g1 = TO’()T. (33)

In terms of the subblocks this condition is equivalent to the following ones

01 = MogzoM + noyof + nto M + My, (3.4)
oyl = Nayoﬁ + mogem + Nih + mtON, (3.5)

and
t; = ntgm + Moo + nayON. (3.6)

If the initial beam is decoupled i.e., if ¢ = 0, these relations simplify

0p1 = Moy oM + noyotl, (3.7)
Oyl = NayON + mogem, (3.8)
t1 = Mogom + TLO'yQN. (3.9)

Denoting the initial projected emittances as €z, €y0 Where

63.0 = |ozo| , 5730 = |oyol, (3.10)

we get for the squares of emittances at the location s;

€21 = |og1| = |MozoM + noyoti| (3.11)

and
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e = loyi| = ‘NJyON + mazoﬁt|- (3.12)

We assume for simplicity that the initial beam ellipses are upright, i.e., corresponding

020, Oyo are diagonal

Oup = ["81 022} , (3.13)
oy0 = [”33 024] , (3.14)

and then
€2y = 011097 5;0 = 033044. (3.15)

The emittances €;1, €1 can be found from the formulae (3.11), (3.12) with use of the
identity which holds for any real 2 x 2 matrices A and B

A A
By1 By

Bi1 By

.1
Ag1 Ag (3.16)

1 —_—
|A+ B| = IA[+|B|+§TT(AB+BZ) = |A|+ |B| +

Performing the above calculations we get for the emittances at the location s; the

formula
2 2 2, 2 112
€1 = EzOIMI + eyO|n| + A:ﬂa (317)
and
2 2 a2y 2 |2
€y1 = eyOINI + exOlml + AI’!? (318)
where we denoted
M, n 2 M. n 2
Ay =o11033 |5 0 R fopioa | At 12
* M2 nop Mo nog
: : (3.19)
My nny M ngo
+ 0920733 + 022044
My ny My ngg |’
and y )
my1 Ninp m11 N2
Ay = 011033 + 011044
y mo1 Na ma1 N
: i (3.20)
mi2 N mi2  Nig
+ 099033 + 022044
ma2  Noi ma2 N

From the symplecticity conditions (2.15) follows the equality

Ag =0y =A. (3.21)
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Assuming that the beam and machine ellipses match perfectly, i.e., that beam and machine
ellipses coincide, we get the equalities
011 = €004,
022 = €085,
(3.22)
033 = €40y,

o4 = g

Taking into account the formula (2.20), (2.21), we get our basic relations for projected

emittances
€2y =(1— Inl)z o + |n|2€§0 + A, (3.23)
and
632;1 =(1~- lnl)2 Ezo +[nlPedo + A, (3.24)
and ) ,
_ My nn 1M nig
&= e (ﬁxﬂy Moy nar| TPPY My a
iy , iy ) (3.25)
—1 12 "1 —15-1| M1z nig
+ ﬂx :6?/ M22 nai + /6:0 /By Mzz N9 ) .

One notices that, by subtracting projected emittances squares, the following general for-

mula holds

2 2 2 2

€z1 — €1 = (1 — 2|n|) (ezo - eyo) . (3.26)
Moreover, positive definiteness of the matrix o and its submatrices o5, oy implies the

general inequalities

€z1 2> |1 — det n|egg + | det n|eyp, (3.27)
and

g0 > |1 — det nley + | det nleg. (3.28)

These formulas were obtained and their consequences were studied by Brown and Servranckx.
We go beyond their analysis by considering in detail both, |n| and A, within our discrete
model. We calculate these terms in two cases of the linear coupling produced by:

A. Single skew-quadrupole of an arbitrary strength ¢ at a location s; in a ring,



8 The Beam {-Ellipsoid

B. An arbitrary number N of thin skew-quadrupoles of small strengths g; located at sy,
k=1,...,N.
In the first case our results are exact, in the second they are valid up to the second order
in the ¢’s.
We find the main driving terms responsible for emittance change, and study an influ-
ence on it of the tune splitting correction scheme. We also propose a scheme for correction

of the emittance growth in case of RHIC.
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4. The Case of Single Thin Skew-Quadrupole of Arbitrary Strength

Let a thin skew-quadrupole of length £ and of strength ¢ be located at s = s; in an
otherwise perfect lattice. The transfer matrix T' connecting the point of observation at

s = 590 = 0 and the point s = s; is given by the product of the relevant transfer matrices
T (s1,0) = Tsq (51) TO) (s1,0) = (4.1)
o] 0
=B~ (s1) Tsq (s1) T (s1,0) B(0), (4.2)

[¢]
where T'sq (s1) is the transfer matrix of the thin skew-quadrupole (in the circular repre-

sentation denoted by o above Tsq)

10 00
° 0 1 0
TSQ (31) =10 0 ’i 0l (43)
g 0 0 1
and
2
q= (ﬁxﬂy)lﬂ - ay , (4-4)
P |51
while the % (©) (s1,0) represents transfer matrix of a perfect lattice
7 R(¥;) 0
7 (0) = [ ] , 4.5
(s1,0) 0 R(%y) (4.5)
where R (1) is a usual rotation matrix
_ | cosy¢ siny
R(4)= [—sin¢ cos1,b] ’ (4.6)
and 1z, , are phase advances given by the standard expressions
81 d 31 d
3 s
¢z / ,Bz "py J ,By ( )

with f;, By being f-functions of the perfect machine. They, together with ay, oy lattice

functions enter the matrix B

(B, 0
B__O By], (4.8)
where
r a1/2
0
By=| P ] 4.9
E )
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and similar for By.

Performing the operations prescribed by the formula (4.1) we get the results

T (s1,0) = [Anf ((:113)) ]’\1,((3311’,‘;))] : (4.10)

where
M (s10) = [(ﬂz e coste (Bulony)™ Sin%] R
and
”(310)=9[ 012 012 ] (4.12)
| (Ba (51) By)' costpy  (By/Bs (1)) sinpy |
and
N (31,0) = M(Sl’o)IwHy ; (4:.13)
and
m(.sl,o) = n(sl’o)lm-by . (4.14)

We omit here the terms in lower row of the matrix M (s1,0) as they are irrelevant when
multiplied by zeros appearing in the upper row of the matrix n(s1,0), in calculating the

A. According to the formula (3.25) we get the result
A= q2€z06y0. (4.15)

Moreover, taking into account that the determinant |n| vanishes in this case one obtains

for the projected emittances, at the location s = s1, the formulae

€21 = €xo + qzexOGyOa (4.16)
621 = 3210 + g2 ez0€40- (4.17)

We see that emittances grow equally fast, in both (z,z') and (y,y’) planes, when a
beam passes through a skew-quadrupole magnet. One may notice in passing that a

flat beam (eyo = 0) remains such immediately after crossing a single skew-quadrupole,

(€21 = €50,€y51 = 0).
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5. The Case of N Thin Skew-Quadrupoles Randomly Distributed
Around a Ring

In this case we consider a single turn transfer matrix T (C, 0) at the point of observation
s = sp = 0, calculated up to the second order in the ¢’s. We have in this case for the
determinant of n
nl= Y gogesin(ul — ul)sin (4 — i) + O (gf) (5.1)
1<r<s<N
and for the A we get

N
A = g€y Z grgs cos (ps — ur) cos (u; — ,u,;) + 0 (q4) . (5.2)

r,g=1

Taking into account that, in the average, we have

<|In|>=0, (5.3)
1 1.
<ln|2>=§<q2>N(N—-1)'z§G‘§, (5.4)
1
<A>= §G§exoeyo, (5.5)
where we denoted
Gi=N< ¢ >, (5.6)

we obtain for the average projected emittance squares

1 1
<€y >=ep+ §G3 (o + €0) + '2'G§€z05y0 > €, (5.7)
and

1 1
< 631 > = 632/0 + gG% (ego + 6?2!0) + §G%e$oeyo > 520- (5.8)

Assuming that

0.25, for RHIC
0= (5.9)
0.5—-1.0, for SSC
we get the estimates for average projected emittance squares in case of RHIC
<€y > =€l +5x 107 (2 + €29) + 3 x 10 250640, (5.10)

< ey > =€ +5x 107 (2 +€29) + 3 x 10 2ez0640, (5.11)
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and even larger effect for the case of SSC,

<y > =€) + T8 x 107 (€2 + €2) + 12 x 10™2e50¢40, (5.12)

< el >=e+T8x107* () + ef) + 12 x 10 2eg0eq0. (5.13)
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6. Correction Scheme for Emittance Growth in RHIC (An Exam-
ple)

It is interesting to examine first how the tune splitting correction influences the emit-
tance growth produced by linear coupling. We use an intersection point as the observation
point s = 0 where the correction is carried out. In order to see this we must disclose the

main driving terms responsible for emittance growth. They can be most easily seen by

first writing the determinant |n| and the term A as

In| = d$d) — di¥d¥ + 0 (¢*) = d? — dP + 0 (¢, (6.1)
and

A =t | (€)' + (80)"+ ()" + (&) ] vo @), G2

where d), d®) are the first and the second order driving terms, [cf. 4, formulae (2.7) and

(2.8)].

On correction of the tune splitting, up to the second order in the ¢’s, one requires that

the following condition, among others, holds
d? —d® =o. (6.3)

One sees that this amounts to vanishing of the determinant |n|, and has effect on the
emittance growth as it is seen from the formulae (3.23) and (3.24).

One has then after the tune splitting correction

Ei]‘lAllzo = 630 + AlAl/:O, (6.4)
and
ey, = €0+ Ao (6.5)

It is clear from the formula (6.2) that the projected emittance would stay unchanged, up
to the fourth order in the ¢’s, if one corrects, additionally, all the first order driving terms
[ d%) ] sin iy, sin
dgc) E 0 sin fiy, €os fuy
dg) COS [A, SIN fiyy

] dg) | COS piy; COS fi

=0 (6.6)
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It is clear from the formulae (6.1) and (6.2) that both, |n| and A, vanish in this case, up
to the fourth order in the ¢’s. In fact, the whole matrix n vanish in this case, and the
projected emittance stay unchanged, at the point of correction, up to the fourth order in

the ¢’s

€al),_, = &0+ 0 (¢"), (6.7)
and

€y, = €0 + 0 (¢%). (6-8)

As in the case of the tune splitting correction scheme for RHIC, the correction of
the combinations of the second order driving terms can be done most effectively in the
insertions. One can achieve both the tune splitting correction and the emittance growth

correction by requiring, at the crossing points in RHIC, the conditions

d =0, , ) (6.9)
dd = o, (6.10)
(1) _ * Ae=0
dsd =0, 2c=0 (6.11)
1
&) = o, , Ay—0 (6.12)
d? + 4% = (6.13)
d? 1 42 = J (6.14)

In order to make the paper rather self contained we quote the relevant combinations

of the second order driving terms appearing in the above formulae

dD+d? = Y qrggsin (4 — ub) cos (w3 — p3), (6.15)
1<r<s<N
and
i +d) =3 grgesin(ug — ph) cos (3 — up) - (6.16)
1<r<s<N

One sees that the proposed correction scheme for emittance growth will remove the
tune splitting at the same time. The price for this comfort is rather small — six instead

of five conditions needed to remove just the tune splitting. Because, in RHIC, correctors
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in the arcs are ~ 90° apart in each plane, it is not possible to correct locally the above
combinations of the second order driving terms. One must place the relevant correctors in
the insertions.

We conclude with the statement that the correction scheme proposed by A.G. Ruggiero®
for the tune splitting will correct, same time, the projected emittance growth at the cross-

ing points.
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7. Simple Consequences of the Basic Relations

Following Brown and Servranckx we shall examine few simple consequences of the basic
relations (3.23), (3.24) and (3.25) augmented by our knowledge of the determinant |n|, and
the term A appearing there.

1. If €z0 = €40, then €51 = €41 everywhere in a ring independently of the coupling,

and

& =ey = (1= n)* + |nf?] g + A (7.1)

2. If |n] = % at some point s = sj in a ring, then, at this point

1
|M| = |N|=|m| =3, (7.2)
and
1
631 = 621 = Z (Eio —+ 630) + A. (7-3)

3. If |n| = 0 at some point s = sy, then at this point

621 = eiﬂ + AIIn[:O’ (74)
and
631 = 630 + Ao’ (7.5)
and, obviously
eil - 621 =€) — 630. (7.6)

4. If |n| = 1 at some point s = s, then
631 = 630 + A||n|‘__17 (77)

and

2 2

€y1 = €30 + A||n|=1v (78)
and, in this case, the opposite is true

€2 — 521 =- (620 - 632/0) . (7.9)



5.

Ha.

5b.

5e.
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If €z0 # 0, eyo = 0 (flat beam in the horizontal plane at so = 0) then o33 =
044 =0, and A =0, and

1 = (1—[n])’ &y, (7.10)
621 = Inl2€20. (7.11)

If in addition to the previous situation, at some point s = s; the inequality

holds

0<|n| <1, (7.12)
then
ez1 = (1 = |n|) €z0 < €z0, (7.13)
€y1 = |nlezo < €s0, (7.14)
and, as the result
€x1 + €41 = €50 ' (7.15)

If, however, at s = s1, the inequality holds

In| <0, (7.16)
then
éz1 = (1 — |n|) €z0 > €z0, (7.17)
€y1 = —|nleso, (7.18)
and, at this point
€xl — €yl = €g0. (7.19)

Finally, if at the point s = s1, the inequality holds

In| > 1, (7.20)

then
€z1 = — (1 — |n]) €z0, (7.21)
€y1 = |nlezo > €z, (7.22)

and we have, at this point, an opposite situation

€z1 — €y1 = —€z0- (723)
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