

BNL-101515-2014-TECH AD/AP 25;BNL-101515-2013-IR

The Tune Shift Due to Linear Coupling

V. Garczynski

August 1991

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Development Department Accelerator Physics Division BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, NY 11973

Accelerator Physics Technical Note No. 25

The Tune Shift Due to Linear Coupling

V. Garczynski August 1991

THE TUNE SHIFT DUE TO LINEAR COUPLING

V. Garczynski

Accelerator Development Department Brookhaven National Laboratory August 1991

1. Introduction

In RHIC the coupling between X and Y degrees of freedom is expected from various sources.^{1,2} We shall specifically examine the machine tune shift produced by skew-quadrupoles randomly distributed around the ring. In this case the X-Y coupling is linear, and may be calculated exactly within a model in which skew-quadrupole magnets are treated as point objects of strengths q_k and locations s_k , $k = 1, ..., N^3$. This approximation is justified by comparing the length $\ell = 0.6$ m of a quadrupole magnet and the length C = 3833.852 m of RHIC's circumference, $\ell/C \sim 10^{-4}$.

A transfer matrix T_{SQ} of a single skew-quadrupole magnet of length ℓ in the thin lense approximation (in the circular representation denoted with \circ above T_{SQ}) is given by

$$\overset{\circ}{T}_{SQ} = BT_{SQ}B^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & q & 0 \\ 0 & 0 & 1 & 0 \\ q & 0 & 0 & 1 \end{bmatrix},$$
(1.1)

where

$$q = (\beta_x \beta_y)^{1/2} \frac{\ell}{\rho} a_1, \tag{1.2}$$

represents the strength of a skew-quadrupole field, and B contains lattice functions of a perfect ring

$$B = \begin{bmatrix} B_x & 0 \\ 0 & B_y \end{bmatrix}, \tag{1.3}$$

$$B = \begin{bmatrix} \beta_x^{-1/2} & 0\\ \alpha_x \beta_x^{-1/2} & \beta_x^{1/2} \end{bmatrix}, \text{ similar for } B_y . \tag{1.4}$$

The perfect lattice has the following transfer matrix:

$$\overset{\circ}{T}^{(0)} = \begin{bmatrix} R(\mu_x) & 0\\ 0 & R(\mu_y) \end{bmatrix},$$
(1.5)

where $R(\mu_x)$ and $R(\mu_y)$ are rotations, and μ_x , μ_y are tunes ($\mu = 2\pi\nu$),

$$R(\varphi) = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix}. \tag{1.6}$$

For RHIC, we have $\nu_x=28.826$ and $\nu_y=28.821$.

2. Calculation of the Tune Shift

The full transfer matrix can be written as a polynominal in the q's

$$\overset{\circ}{T} = \begin{bmatrix} \overset{\circ}{M} & \overset{\circ}{n} \\ \overset{\circ}{m} & \overset{\circ}{N} \end{bmatrix} = \sum_{k=0}^{N} \overset{\circ}{T}^{(k)},$$
(2.1)

where submatrices $\overset{\circ}{M}^{(k)}$, $\overset{\circ}{n}^{(k)}$ etc. are given by k-th order in the q's driving terms. For the purpose of this note it will be sufficient to display $\overset{\circ}{M}$, $\overset{\circ}{N}$ submatrices up to the second order in the q's only.

$$\mathring{M} = R(\mu_x) + \mathring{M} + \text{higher terms of even order}, \tag{2.2}$$

where

$$\stackrel{\circ}{M}^{(2)} = \frac{1}{4} \sum_{r < s} q_r q_s \left\{ R \left(\mu_x + \mu_x^r + \mu_y^r - \mu_x^s - \mu_y^s \right) - R \left(\mu_x + \mu_x^r - \mu_y^r - \mu_x^s + \mu_y^s \right) + \left[R \left(\mu_x - \mu_x^r + \mu_y^r - \mu_x^s - \mu_y^s \right) - R \left(\mu_x - \mu_x^r - \mu_y^r - \mu_x^s + \mu_y^s \right) \right] J \right\},$$
(2.3)

and J is one of the fundamental Pauli matrices

$$J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \tag{2.4}$$

and μ_x^r , μ_y^r denote phase advances between the point of observations s = 0 and the location of s_r of the r-th skew-quadrupole

$$\mu_x^r = \int_0^{s_r} \frac{ds}{\beta_x}$$
, and similar for μ_y^r . (2.5)

Using symmetry arguments a corresponding expansion for the $\overset{\circ}{N}$ submatrix is obtained as

$$\stackrel{\circ}{N} = \stackrel{\circ}{M}|_{x \leftrightarrow y}. \tag{2.6}$$

The presence of skew-quadrupole fields produces the differences

$$\frac{1}{2}Tr \stackrel{\circ}{M} - \cos \mu_x \neq 0,$$

$$\frac{1}{2}Tr \stackrel{\circ}{N} - \cos \mu_y \neq 0,$$
(2.7)

where this means that actual machine tunes are shifted relative to the tunes of a perfect machine. Substituting relevant traces of $\stackrel{\circ}{M}$ and $\stackrel{\circ}{N}$ one finds the final expression for the tune shifts in terms of the second order driving terms,

$$\Delta \mu_x = -\frac{1}{2} \sum_{r < s} q_r q_s \cos(\mu_x^s - \mu_x^r) \sin(\mu_y^s - \mu_y^r) +$$

$$= \frac{1}{2} \cot \mu_x \sum_{r < s} q_r q_s \sin(\mu_x^s - \mu_x^r) \sin(\mu_y^s - \mu_y^r) + 0 (q^4),$$
(2.8)

and

$$\Delta \mu_y = -\frac{1}{2} \sum_{r < s} q_r q_s \sin(\mu_x^s - \mu_x^r) \cos(\mu_y^s - \mu_y^r) + + \frac{1}{2} \cot \mu_y \sum_{r < s} q_r q_s \sin(\mu_x^s - \mu_x^r) \sin(\mu_y^s - \mu_y^r) + 0 (q^4) .$$
(2.9)

The second order driving terms are defined as follows

$$\begin{bmatrix} d_{ss}^{(2)} \\ d_{sc}^{(2)} \\ d_{cs}^{(2)} \\ d_{cc}^{(2)} \end{bmatrix} = \sum_{1 \le r < s \le N} q_r q_s \sin\left(\mu_y^s - \mu_y^r\right) \begin{bmatrix} \sin \mu_x^s & \sin \mu_x^r \\ \sin \mu_x^s & \cos \mu_x^r \\ \cos \mu_x^s & \sin \mu_x^r \\ \cos \mu_x^s & \cos \mu_x^r \end{bmatrix}.$$
(2.10)

Additional sets of the second order driving terms denoted $\check{d}_{ss}^{(2)}$, $\check{d}_{sc}^{(2)}$ etc. are obtained from the above definitions by simply exchanging x and y.

Let us notice that the tune shift vanishes when the tune splitting is corrected. This is most easily seen by first writing $\Delta \mu_x$ and $\Delta \mu_y$ as

$$\Delta\mu_x = -\frac{1}{2} \left(d_{cc}^{(2)} + d_{ss}^{(2)} \right) - \frac{1}{2} \left(d_{cs}^{(2)} - d_{sc}^{(2)} \right) \cot \mu_x + 0 \left(q^4 \right), \tag{2.11}$$

$$\Delta \mu_y = -\frac{1}{2} \left(\check{d}_{cc}^{(2)} + \check{d}_{ss}^{(2)} \right) - \frac{1}{2} \left(\check{d}_{cs}^{(2)} - \check{d}_{sc}^{(2)} \right) \cot \mu_y + 0 \left(q^4 \right). \tag{2.12}$$

On correction of the tune splitting one requires that the following conditions hold

$$d_{sc}^{(2)} - d_{cs}^{(2)} = 0,$$

$$d_{sc}^{(2)} - d_{cs}^{(2)} = 0,$$

$$d_{cc}^{(2)} + d_{ss}^{(2)} = 0,$$

$$d_{cc}^{(2)} + d_{ss}^{(2)} = 0,$$

$$d_{cc}^{(2)} + d_{ss}^{(2)} = 0.$$
(2.13)

Clearly, the tune shifts $\Delta \mu_x$ and $\Delta \mu_y$ given by Eqs. (2.11) and (2.12) vanish under these conditions. This conclusion was recently obtained, using different methods by G. Parzen.⁴

3. References

- 1. E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958).
- D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. Vol. NS-20, No. 3, p. 885 (1973).
- 3. A.G. Ruggiero, "The Problem of Linear Coupling, Parts I, II, III", Talks at Accelerator Physics Division Meetings, May 16, 23 and 30 (1991), BNL.
- 4. G. Parzen, BNL Report, AD/RHIC-100 (July 1991).