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Parameterization of Transport and Period Matrices with X-Y Coupling

E D Courant
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A parameterization of 4x4 matrices describing linear beam trans-
port systems has been obtained by Edwards and Teng . Here we extend
their formalism to include dispersive effects, and give prescriptions
for incorporating it in the program SYNCHZ.

A period of a beam transport system, or an element or segment of
such a system (periodic or not) 1is characterized by a 6x6 transfer
matrix, which we write in the form

M n di1
T = m N dz (1)
e1 ez F

Here we have written the 6x6 matrix T in terms of 2x2 submatrices
M, m, etc. The dynamic variables are taken to be x, x’= dx/ds, y, ¥,
-As, Ap/p in that order. We consider only transport systems without
acceleration or damping; then the elements in the fifth column and

sixth row of T vanish except for Tss = 'I‘66 = 1, and the matrix T is

symplectic, which means that the inverse of T is given by
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and the symplectic conjugate of a 4x4 or 6x6 matrix is given by (2).

1. Parameterization of 4x4 matrices for a complete period.

When T is a matrix describing a complete period (a circular accele-
rator or storage ring, or a cell of a periodic system), Edwards and
Teng find a similarity transformation that transform the x-y 4x4 sub-
matrix of T (which we also designate by T) into uncoupled form:



T=RUR with U = (4)

where R has the form
I cosp D sing

R = (5)
-D sing I cosp

where A, B ahd D are 2x2 unimodular (symplectic) matrices, I and O are

the 2x2 unit and null matrices, and ¢ is an equivalent rotation angle.

The eiggnvalues of T and the matrix D and the angle ¢ are determined as
follows™:

Eigenvalues are exp(*ip1), exp(xip2), (g1 and pz are the phase
advances of the normal modes).

cosp  + cosp = }TrT=3Tr (M +N) (6)
Define
t=3%Tr (M -N); A=det (m+ n) (7)

then

cosp - cosp, =3 = t{ 1+ A } = v t%+ A sign(t) (8)

and

D=_—""", Dsinp = ——°
V238 (8+t

VA )
cosp = / 8+t ; sinp = [/ 8-t
28 238

We confine ourselves to the casezwhere the phase advances are
real, i.e. the motion is stable; then t +A must be positive so that &
is real. Note that we resolve the ambiguity of the sign of square
roots by requiring 8 to have the same sign as t. (If A is negative
then sing and D are imaginary, but Dsing is still real, which is all
that really matters).

(9)

In Reference 1 it is shown that the transfer matrices A and B for
the uncoupled normal modes are given by

m(n+m)
5+t

n(m+ﬁ)‘

A=H+ =g

B=N - (10)

These are 2x2 unimodular matrices, and can be parameterized in



terms of phase advances and Twiss (Courant-Snyder) parameters in the
usual way:

cosy + sinu B sinu
A= X X X X x (11)
-~y sinp cosp +a sinp
cosy +a sinpu B sinu
B = vy ¥ v (12)
-7 sin cosp +a si
7y uy uy y n”y

The parameters «, B, 7, p in (11) and (12) may be taken as the
definition of the generalized Twiss parameters of the matrix T.

The parameterization just found applies to the matrix for a com-
plete period. It does not apply to the individual elements or compo-
nents of the period, since when the beam traverses an element the «
and B functions are generally different at the beginning and the end.

Consider a periodic system G. The matrix elements of G are perio-
dic in s, as are the parameters «, B, y. At each azimuth s the parame-
ters can be determined as detailed above. Now suppose the matrix for
going from azimuth 51 to 52 is T, so that

6 =TG T !
1

A (13)

We reduce G1 and GZ to semi-diagonal form by the methods of the

previous section:

G =RUR'; 6 =RUR"® , (14)
1 11 1 2 2 2 2
Then T may be written as
T=RVR® (15)
2 1
so that
V=R'TR (16)
2 1
which, with (13) and (14), gives
U=WV® orUVs=w (17)
2 1 2 1

Since U1 and MZ are semi4diagonal, so is V¥, i.e V¥V may be regarded as



the semi-diagonalization of the component matrix T in the context of T
as an element of G.

To find V explicitly we write R1 and RZ in the form (5), and use

(15) in the form RZW = FRI with T in the form (1):

A cosp_ = M cosp. - nD sing
2 1 1 1
(18)

B cosp, = N cosp_ + mﬁisingo1

Thus the element matrix T is semi-diagonalized, with the help of the
semi-diagonalization parameters of G1 and GZ.

For computational purposes it would be preferable if one did not
first have to carry out the procedure for both the matrices G1 and Gz'

In fact the explicit computationlof cosp, can be avoided: We note that

the uncoupled matrices A and B must be unimodular. Therefore we may
simply compute the right-hand sides of (18), and then normalize by
dividing by the square root of the determinant of the resulting
matrices. Using (9) we have

n(m1+ﬁl) 6+t1
] (19)

S+t 28

M cosp, - nD151n<p1 = EM + )

and similarly for the second line of (18). Here the subscript 1 refers
to the global matrix 61 and its components, while M, N, m, n without

subscripts are the 2x2 submatrices of the matrix T.Thus the uncoupled
transfer matrices A and B for the two normal modes for the matrix T are
found as follows:

Find t1 and 8 for the global matrix Gl. From the 2x2 submatrices

of G1 and T form the matrices

A M+ n(m1+n1)/(6+t1)

B)

N - m(n +m )/(8+t )
11 1

Find the determinants of these matrices (they should be equal). The
uncoupled matrices A and B are the unimodular 2x2 matrices

A = A /Vdet(A’) B = B’ /vVdet(B’) (20)

The phase advances for going through T can be found using the
parameterization



. -
(sz/Bxlﬁ (coswx+axlsln¢x) (Bxlez) 51n¢x
A= (21)
% _ .
....... (Bxl/sz) (cosn,llx a*251nwx)
where the 21 element is obtained by requiring A to be unimodular; the

B matrix has the same form with the y parameters. The phase advances
are therefore

—_— -1 —
¢x = tan [A12/(Bx1A11 axlAlz)]
(21)
e -1 P
wy = tan [312/(By1311 aleiz)]

which are again expressed in terms of the parameters of the previous
global matrix 81 and of T.

3. Dispersion.

The fifth and sixth rows and columns of the full matrices refer to
the change in path length -As and to relative momentum deviation Ap/p.
In the uncoupled case, the x-variables still depend on momentum; this
is customarily described {as in the SYNCH program), by augmenting the
2x2 matrix with a third column, where the elements A13 and A23 describe

the dependence of excursion and slope on momentum. The corresponding
elements in the decoupled matrices developed here can be obtained by
augmenting the matrices R effecting the similarity. transformations with
fifth and sixth rows and columns, all zero except for ngdim=1.

4, Modifications of the SYNCH Program.

In the SYNCH program matrices with x-y coupling are generally
formulated in a 7x7 format (the seventh column describes perturbations,
and need not concern us here). However, in the CYC and FXPT operations,
which calculate the Twiss parameters at the end of each element of a
lattice or transport line, all 7x7 matrices are truncated to two 2x3
matrices each, with coupling information lost. We have attempted to
remedy this truncation algorithm in a new version of SYNCH. In the FXPT
operation in the new version, the results of the previous sections are
used to generate o and B functions, dispersion functions, and phase
advances pertaining to the normal oscillation modes of the coupled
system (called x and y but not necessarily horizontal and vertical in
space), while the closed orbit FXPT produces should still be in space
coordinates. The transformations between normal modes and space coordi-
nates (e.g. the matrix D) are not exhibited in the SYNCH output, but
the coupling angle ¢ is printed out at each point of the lattice, to-
gether with the other orbit functions.
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