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IN FNAL’S ACCUMULATOR RING
J. Claus -
October 1989

Introduction

This report describes some experiments on stochastic cooling of bunched beams which
were performed in FNAL’s Accumulator ring in the beginning of September 1989. I precede
that description with a rough overview of that ring in order to make the interpretation
of the experimental results easier. The next section provides a very abridged parameter
list. It is followed by a section on available diagnostic equipment and operating procedure.
Then the experiments themselves are described. Some calculations are presented. These

attempt to estimate the relevance of these experiments for RHIC. A conclusion follows.

FNAL’s Accumulator Ring

Part of the information in this section is taken from chapter 5 of the “Design Report
Tevatron 1 Project” issued by FNAL in September 1984. This report seems to describe
the present (Sept. 89) ring rather accurately, as far as the basic machine parameters are
concerned. The layout of the ring is given in Fig. 1, the behavior of the principal lattice
functions is shown in Fig. 2. Note that there are three regions per superperiod in which
the dispersion (a,) is practically zero. The lattice contains sextupoles (labeled S7, S9,
S10 and S12 in Fig. 2) and octupoles for chromaticity control and corrections. There are
three rf systems: ARF1, ARF2 and ARF3. ARF1 provides for acceleration at h=2, ARF2
for acceleration at h==84, while ARF3, operating also at h==84, drives a heavily damped
gymnastics cavity. Only ARF1 was available during my presence. A circuit diagram of
these rf systems is given in Fig. 3. There are a number of cooling systems, of which we used
only the so—called core cooling systems during the experiments. The information about the

latter is somewhat sketchy, and measurement of their complex loop gains was one of the
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unrealized goals of the experiments. I understood that there are no publications of .much
relevance on these systems. We used the ‘original’ system for cooling in longitudinal phase
space because the ‘new’ one was not available; it works in 2-4 GHz band, while the new one
should work in the 4-8 GHz band. We used the ‘néw’ systems, which nominally operate in
the 4-8 GHz band, for cooling in the two betatron phase spaces. However, I was told that
their loop gains drop by a large factor (30 dB?) over this band because the transmission
characteristics of the signal cables had not yet been properly compensated. The actually
available band is thus much narrower, perhaps only 1 GHz, centered at 4.5 GHz. The
cooling circuitry is shown in Figs. 4 and 5. Each cooling system contains a number of
adjustable time delays and attenuators, its cooling rate is maximized by experimental
manipulation of these parameters. In Figs. 4 and 5 the blocks labeled ‘DELAY’ represent
delé,ys which can be changed in discrete steps (switching lengths of transmission line) while
the continuously variable ‘trombones’ are indicated by the symbol 1717§ the numbers below
these symbols indicate the time delay in psec inserted at that location. The attenuators

are represented by the symbolg , the attached numbers reflect their settings.

FNAL is strongly interested in the cooling of bunched beams in the Tevatron in the
horizontal and in vertical betatron phase spaces for protons as well as for D’s; they are
in an advanced stage of design and told me that they would know a lot more about it
next year. By contrast, the first priority for RHIC should be cooling in synchrotron phase
space, because this may offer a way to reduce or stop the continuous increase of bunch area
with time due to intrabeam scattering. The resulting increased time average density in
synchrotron phase space tends to increase the rate of growth in betatron phase space due
to intrabeam scattering. This effect could be small, but cooling in betatron phase space
could be used to counteract it. Cooling in betatron space is also of interest because it offers
a mechanism to fight the development of transverse halos around the beam and a way to
reduce the betatron emittance. Cooling while filling may allow longer filling periods than

are possible without it, which is important for operation at high intensity, and cooling
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during operation at low energies (y > 8) may extend the luminosity life times considerably

beyond the very small numbers to be expected without cooling.

Accumulator Parameters

1. General
Kinetic Energy (central orbit) 7.94779 GeV
Bend field 16.84 kG
Magnetic bend radius (p) 17.46 m
Circumference 474.07 m
Revolution period 1.59 psec
Superperiodicity ' 3
Focusing structure Separated function,

FODO normal cell

Nominal working point

Vg 6.61

vy 8.61
Nominal chromaticity

€z -8.52

& -12.93

Chromaticity—Corrected Parameters

Injection Stacking Core Central
Orbit Orbit Orbit Orbit

Kinetic Energy (GeV) 8.02951 7.96229 7.89068 7.94779
Ap/p (%) 0.93 0.165 -0.690 |
Vg 6.616 6.611 6.614
vy 8.611 8.611 8.611
£ 2.05 1.13 -0.22
£, 0.21 0.32 0.33
Yt 5.37 5.42 5.50
1/42 —1/+? 0.023 0.023 0.022



Diagnostic Equipment

The behavior of the beam in the Accumulator was observed via a number of HP
frequency analyzers, a Tectronix oscilloscope and a beam intensity monitor. There is
also a tuneable narrow band radio receiver; tuned to one of the betatron side bands in
the frequency spectrum of the signal coming from a beam position monitor its output
for a given beam intensity is approximately proportional to the betatron emittance. This
measure of the emittance became unreliable whenever the beam became to tightly bunched
and there was some speculation on possible causes for this effect. The final amplifier in
each cooling loop is a TWT (traveling wave tube), its output power is monitored and is
proportional to the beam emittance for the coordinate in which the loop works. This was
used as an alternative measure for the emittance after the difficulties with the receiver
had made their appearance. If the output power of a TWT exceeds about 15 W its power
supply trips. The locations of the spectrum analyzers in the system are indicated in Figs.
4 and 5 by the rectangular boxes enclosing an ‘S’. Their outputs can be observed on screens
that are part of the instruments; they are also digitized and sent to a central memory. From
there they can be sent, singly or in combination, to any of the several computer display
screens which are part of the accelerator control system. Different curves are distinguished
by different colors. These screens can be used to show anything of interest and available
to the control computer, e.g., the outputs of the radio receiver and the output powers of
the TWTs. They can be hard copied, Figs. 3, 4 and 5 are examples of such hard copied
screen images, as are most of the experimental résults given in this note. The system is
operated via conventional computer keyboard, touch panel and track—ball sets, spectrum

analyzers, scope and receiver are controlled via their own (local) controls.

Experimental Procedure

The experiments were done with proton beams at y ~ 10.4 (8.8 GeV/c), obtained

directly from FNAL’s booster. Production of a suitable circulating beam tended to require
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considerable time, perhaps beéause this kind of experimentation falls outside the normal
operating procedure. The ring was filled only once at the beginning of each 8 hour long
session. Experimentation began with circulating currents of 6-7 mA, which dribbled down
to ~ 4.5 mA at the end of the day. The loss rate was generally so low that it could not be
judged by watching the multi-digit intensity monitor, except when the transverse beam
dimensions became too large in the course of the experiments. This happened several

times per session, during which the beam was repeatedly bunched, debunched, cooled and

heated.

Experiments

The principal experimenters were J.D. Jackson and D. McGinnis, with an occasional
help from J. Marriner while I acted mostly as an observer. Marriner had provided a list of
experimental tasks, of which perhaps half was completed. Dave McGinnis kindly provided
me with a write-up and evaluation, a copy of his report is attached. Hard copies of the
raw experimental data are also attached. The first exercise after filling was to cool the
coasting beam in all coordinates. This is a process that is well understood in theory and
in practice. Doing this verified that everything was behaving properly and provided a
reference against which the cooling of the bunched beam could be judged. Then the beam
was bunched adiabatically, occasionally after reheating it in one or more coordinates, by
increasing the 1f voltage amplitude by hand to a predetermined value, and cooling along a
particular coordinate, but primarily the vertical one, was attempted. The attached data

records are grouped according to the rf voltage amplitude used while they were taken,

these voltages were: 0 V (coasting beam), 100 V, 571 V, 1250 V and 3000 V.

Coasting Beam Cooling
The coasting beam run was used to make the travel times from pick up to kicker of
the particles and the electrical signal equal. This was done by adjusting the appropriate

trombone until the Schottky scans with the cooling loop open and closed were both sym-
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metric relative to the same center line. Fig. 6a shows the initial condition, Fig. 6b the
final one. In each, the curve with the large amplitude represents a scan with the cooling
loop open, the small amplitude one has it closed. The difference between the two is the
signal suppression in the cooling loop. Notice that these particular scans are centered on
4.499848 GHz =~ 7156 fr., and that they are 200 kHz wide (20 kHz/dev). Each took 6
sec to make. Then the beam was cooled in vertical betatron space, the development of
the process is shown in Fig. 6c. Vertical emittance and beam current are plotted along
the vertical axis, time along the horizontal one. The falling curve represents the changing
vertical emittance, the flat one presumably the circulating beam current. The fact that
the latter has an incorrect value and seems to increase with time was not noticed at the
time the experiment was done and suggests a measuring error. Notice that the emittance
decreases with a factor 3.3/1. in (900-84)/60 ~ 13 minutes. After this it seems to be
close to but, not quite at its asymptotic limit. The notes on this figure are Marriner’s
and give an early estimate of various parameters, based on an estimated effective band-
width of 0.5 GHz and an estimated mixing factor of 5 (1 for perfect mixing, >>1 for
bad mixing). The experiment was repeated after a longitudinal cooling run. This reduces
the momentum spread in the beam so that the mixing deteriorates and the mixing factor
increases. Before this experiment was started the beam was heated in vertical betatron
phase space by changing the time delay in the cooling link to produce positive rather than
negative feedback. With the emittance at an agreed—upon value the heating was stopped
by opening the loop, the beam was longitudinally cooled for 10 minutes, and recooled in
betatron space. Before and after longitudinal Schottky scans are given in Figs. 6e and
6f. Note that they are centered at h=126 (f. = 79.23598001 MHz) and that they took
20 sec to make. The reduction in momentum spread is associated with a reduction in the
frequency spread and shows up as a relative reduction of the side band amplitudes, thus
as a more triangular scan. The progression of the cooling in betatron space is shown in

Fig. 6g, which also shows an essentially constant beam current. It may be seen that the



cooling rate is reduced relative to the first run, since now the relative change in emittance

is about 2.8 in 13 minutes, rather than 3.3.

Bunched Beam Cooling

Figures 7 through 10 give the results for bunched beam cooling, each of them for a

particular value of the rf voltage amplitude: Figs. 7 for V5 = 100 V, Figs. 8 for V,.; = 571

V, Figs. 9 for V. = 1200 V and Figs. 10 for V. = 3000 V. The sequence of sub—figures

for each amplitude corresponds to the sequence of operations, which was:

a.

b.

longitudinal Schottky scan,

oscilloscope screen photo of rf voltage and beam current,

cool in vertical betatron phase space,

oscilloscope screen photo of rf voltage and beam current;

vertical scans, one with cooling loop open, the other with cooling loop closed, for
signal suppression measurement;

longitudinal scan of cold beam,

heat to restore initial betatron emittance,

cool longitudinally during 10 minutes,

oscilloscope screen photo on rf voltage and beam current,

j. longitudinal scan of cooled beam, with longitudinally cold beam,

cool in vertical betatron phase space,

oscilloscope screen photo of rf voltage and beam current,

. longitudinal scan of cold beam,

vertical scans, one with cooling loop open, the other with cooling loop closed, for

signal suppression measurement.

Figures Xc and Xk, which describe the cooling process in vertical betatron phase

space may show the emittance, as obtained from the radio receiver, for some cases the

output power of the TWT tube, which is another measure for the emittance, and the
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beam current, all as functions of time. Note that the change in beam current during the
15 minute long cooling periods is negligible in all cases. The heating process was never
recorded, thus there are no Figs. Xg. The set of records is incomplete for some of the rf

voltages.

Some Calculations

As an assistance for judging the relevance of these results for RHIC, I compare the
operating conditions in the two machines. For the accumulator I take the case of operation
with 3 kV rf voltage, because it has the smallest phase spread in the bunches, for RHIC I
assume operation at 30 GeV/u and at 100 GeV /u.

One reads from Fig. 10c a beam current of 7.3 mA and from the first oscilloscope
photo in Fig. 10i a full width bunch length of 9/22.75x1/2x474.07 = 93.77 m = 312.8
nsec. The approximate revolution frequency is ¢/474.07 ~ 632380 Hz, the central fre-
quency in the longitudinal scan of Fig. 10f, 79.235825 MHz is a harmonic h of the
revolution frequency: h = int(79.235825/0.632380) = 125, thus the true revolution fre-
quency is 79.235825/125 = 633886.6 Hz. The revolution period is then 1/633886.6 =
1.5775 psec, instead of the 1.59 pusec given in the parameter list. The charge per bunch is
0.5x1.5775x1076x 7.3x1073=5.76x10~° C=-5.76x107°/(1.609x 10~1%) = 3.58x10'° pro-
tons. The lineal charge density, averaged over the bunch length is 3.58x101%/93.77 =
3.81x10® protons/m, the peak lineal charge density is twice as high, or 7.6x108 pro-
tons/m, if I assume a triangular distribution, as suggested by the scope trace. The peak
lineal density in RHIC is 1.32x10°, resp. 2.72x10° particles/m for 10° particles in gaus-
sian, resp. triangular bunches with rms widths of 0.3 m, thus a factor 2-4 higher than
that in the accumulator. This would reduce the cooling rate in RHIC by the same factor
as compared with that in the accumulator, if one assumes every thing else to be equal.
The absolute difference in revolution periods of particles with different momenta is AT =

TnAp/p, where n = ;2 — 4~2. This difference is inversely proportional to the required

8



frequency response of the longitudinal cooling loop. In the accumulator n ~ 0.023, T =
1.578 psec, while I calculate for the peak relative momentum error Ap/p ~ 1.35x1073,
thus AT = 49 psec. A similar calculation for RHIC yields for a bunch area of 0.3 eVsec
and a rms bunch length of 0.3 m AT ~ 10 psec at ¥ = 31.4 and AT ~ 8 psec at v = 101. (I
assume that the 0.3 eVsec contains 0.95 of the particles, that the half length of the bunch
in time corresponding to the rms bunch length is 2.5x0.3/(8c) = 2.5 nsec and therefore
the peak energy error 0.3/(wx2.5x107°) = 38.2 MeV. This implies Ap/p = 1.3x1072 at
v = 314 and Ap/p = 4.1x10™* at v = 101, while v, = 24.8, T = 3833.852/c = 12.78
psec.) The accumulator’s absolute slippage rate is larger than RHIC’s by a factor 49/8 =
6. Taking the number of particles per unit slippage as a measure for the required peak
frequency in the cooling loop one concludes that RHICs peak frequency would have to
be 20-40 times the accumulator’s for equal performance. Such high frequencies, up to
and beyond 100 GHz, do not seem feasible, thus one cannot expect a longitudinal cooling
system to maintain the bunch area in RHIC at its initial value of 0.3 eVsec. The situation
changes if one allows an increase of that area, something which will occur due to intrabeam
scattering and which can be forced by intentional heating. Increasing the rf voltage am-
plitude simultaneously to preserve the bunch length, the increase in area will show up as
an increased momentum spread. The slippage rate increases proportionally and the peak
frequency requirement decreases. Accepting a final bunch area that is 10X the initial one
reduces the peak frequency requirement by the same factor, i.e. to 816 GHz, which does

seem feasible.

RHIC has a circumference of 3833.852 m, i.e. 3833.852/474.07 = 8.087 accumulator
circumferences. If the cooling rate per turn were the same in the two rings, the rate per unit
time in RHIC would be 0.123 of that in the accumulator: 10 minutes in the accumulator

is equivalent to 80 minutes in RHIC.

Under the operating conditions assumed the accumulator has only 0.016 times the
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longitudinal focusing strength of RHIC, so it approximates coasting beam conditions rather
better than RHIC does. How this difference is reflected in the cooling rates is uncertain.
I calculated the focusing strengths from the expression for the synchrotron phase advance
per turn for small amplitude motion: Av, ~ {2rhneV/(B21E,) - (Z/A)}/? fad/turn: a
synchrotron period in the accumulator takes 20119 turns for h = 2, V = 3000 V, while in
RHIC it takes 334 turns at v = 31.4 and 343 turns at 4 = 101, assuming that h = 2052, V
=4.5MV, v, = 24.8, A/Z = 2.5. It would be interesting to repeat the experiments in the
accumulator with the h = 84, Vg, = 126 kV. This would increase its longitudinal focusing
strength with a factor 42, which makes it 0.6 times that in RHIC. If the 126 kV is not
available one could at least see how the cooling scales with harmonic number by making
rungs at h=2 and h==84, keeping V/h constant in order to preserve the total bucket area

hA, and the peak energy error.

Conclusions

Stochastic cooling of bunched beams is a fascinating but difficult subject. Longitu-
dinal cooling Qf bunched beams with reasonable cooling rates is obviously possible under
the conditions that existed in the accumulator during this run, the rates were considerably
better than I expected on the basis of an extremely preliminary and superficial exposure
to the theory. It seems therefore desirable to develop a better understanding of existing
theory, so that-a more reliable comparison with these results may be made. It seems also
desirable to take advantage of each opportunity for experimentation at FNAL’s Accumu-

lator, particularly, but certainly not exclusively, in the longitudinal coordinate.
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of the data and his write up.
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p Note # 485

BUNCHED BEAM COOLING STUDIES IN THE ACCUMULATOR
Sept. 4-8, 1989
David McGinnis
INTRODUCTION

Bunched beam cooling studies were performed on the Accumulator
during Sept. 4-8, 1989. A proton beam from the BOOSTER was injected into
the core and was bunched with the h=2 or h=84 RF systems. Problems with
the h=84 RF system prevented detailed studies of bunch beam cooling at
this harmonic. The rest of this report will deal only with a beam bunched
at the h=2 harmonic. Because the vertical plane has a lower chromaticity
than the horizontal plane, only vertical betatron cooling was studied in
detail. However, results on cooling in the horizontal plane are
qualitatively similar.

BEAM PREPARATION

As stated earlier, a proton beam of approximately 10 mA was
injected from the BOOSTER into the Accumulator injection orbit. The
beam was then moved to the central orbit with the h=2 RF systems and
subsequently scraped to a momentum spread that could be accommodated
by the 2-4 GHz momentum cooling system. The final beam intensity was
about 5 mA. The beam was unbunched and the momentum spread was
reduced further to approximately 0.06% by the 2-4 GHz central orbit
momentum cooling system. Also the horizontal emittance was reduced by
the 4-8 GHz core horizontal betatron system.

DC BEAM COOLING MEASUREMENTS

With the beam in a DC or coasting state, the following data was
taken:
1. The frequency spectrum of the 126th longitudinal Schottky
band.
2. The DC beam current.
3. The open loop and closed loop amplitudes of the vertical
betatron Schottky bands at 4.0 GHz.



4, The vertical emittance as a function of time with the 4-8 GHz
vertical cooling system on.
From these measurements, the mixing factor, cooling gain, signal/noise,
and cooling bandwidth could be determined.

DC BEAM CALCULATIONS
Mixing Factor
The mixing factor is calculated from the longitudinal Schottky

spectrum by assuming that the Schottky line is a guassian function of
frequency.

2
N 20‘%2
y(f) = e
V2r S,
The mixing factor is defined as:
f
M(f) - \V( )Qeak
waverage
Because the 10 dB full width of the guassian is:
Af1 0dB = 4.292 S,

and using the fact that:

o(f) = f_f" Gf (fo)

0

the average mixing factor for a cooling system that operates over a
frequency range from 4 GHz to 4+W GHz is given as:

85.31x10°

average -
g Af(hz) W(GHz))

4+
10ch=126 2



Noise to Signal ratio

The average noise/signal ratio of a betatron Schottky band is found
from measuring the peak Signal+Noise of a betatron Schotiky line and the
average noise floor. The peak Signal/Noise is:

Speak ) (S+N)

_ peak _ 1
N
avg avg
The average noise to signal in a Schottky band is:
N N: S
U=1— avg _ 1 . avg “peak
2S 2 S S
avg “peak avg

The factor of 1/2 appears because there are two betatron Schottky lines
per band. The ratio between the peak signal and the average signal is the
mixing factor. Thus the average noise to signal in a Schottky band is:

’ N
U=— vy M( f)
2 (S+N) -N
peak avg
Since all the signal to noise measurements were done at 4 GHz, the

average noise to signal is:

N v  10.66x10°

_1 |
2 - Af(H
(5+N) Navg)j (H2), os

U

h=126
lin in

The signal suppression is the ratio between the open loop gain and
the closed loop gain. This ratio can be written as:

g
SS(dB) = 20l0g, 0(1+gom)

The cooling gain is found by inverting the above equation:



Cooling Bandwidth

The cooling time, <, is given as:
1_ _V\_l_(
T N 29 -0
p
where Np is the number of protons in the machine. The number of particles

in the Accumulator is equal to:

M+ U))

10
= mA
Np 1x10 Ibeam( )
The cooling time is a minimum for a cooling gain given by:
1
Jopt "M+ U

The equation for the cooling time can then be rewritten as:

1
©ONM+U) 9opt 9opt

Every quantity in this equation has been measured except for the cooling
bandwidth. This equation can be inverted to determine W. Since the mixing
factor is a function of cooling bandwidth, the resulting equation will be
quadratic in W.

2
aW +bW+c¢c=0
where W has units of GHz and:

1(Sec) Af(Hz)

g
1 Olbeam( mA) 10db 26( opt

sl

gopt



b = 8a - U Af (Hz)
1Och=126

¢ =-170.62x10° - 8U Af(HZ),
h=126

Coasting Beam Calculations

The results of the measurements and the above calculations are
summarized in the following table:

10 dB full width of Longitudinal Schottky band at h=126 (Hz) 805

Revolution Frequency (Hz) : 628857
Signal Suppression (dB) 3.59
g/gopt ' 0.51
Schottky Line Noise to Signal at 4 GHz 0.16
Beam Current (mA) 5.81
Cooling time (Sec) 627
Cooling BandWidth (GHz) 2.46

Mixing Factor at Center Frequency. 20.25

The cooling bandwidth is not 4 GHz because the gain equalizer for the
coaxial trunk line had not been installed as of September 1989. Thus, the
Schottky signal at the higher frequencies of 4-8 GHz band was severely
attenuated. '

Bunched beam measurements

The h=2 RF system (ARF3) was "adiabatically" raised to several
different RF voltages. At each of these RF voltages, the vertical system
was placed 1800 from its optimum phasing and the beam was heated to a
fairly large vertical emittance. The heated vertical emittance was
approximately the same for each of the RF voltages. After the beam was
heated, the vertical cooling system was returned to its proper phasing.

At each RF voltage, the vertical emittance as a function of time was
measured with the 4-8 GHz vertical cooling system on. Along with each
vertical emittance measurement the following data was also taken:



The ARF3 fanback voltage.

The bunch time domain structure was recorded using the

resistive wall monitor. (This measurement was taken

immediately before and after the vertical emittance
measurement.)

3. The spectrum of the longitudinal Schottky band at h=126. (This
measurement was taken immediately before and after the
vertical emittance measurement.)

4. The open loop and closed loop amplitudes of the vertical

betatron Schottky bands at 4.0 GHz.

N —

These measurements were repeated for two different longitudinal
emittances; a "hot" and a "cool" longitudinal emittance. The "cool"
longitudinal emittance was obtained by engaging the 2-4 GHz momentum
cooling system with an attenuation setting of 13dB for 10 minutes after
the "hot" longitudinal emittance data was taken.

Bunched Beam Analysis

Because the Schotiky line at h=126 has a large coherent signal with
a bunched beam, the mixing factor derived from this information might be
inaccurate. However, the mixing factor can be determined from analyzing
the time domain response of the bunched beam.

The RMS half width, o, can be determined by measuring the 1/2

maximum half width of a bunch:

_ -1
op =4t , I (1_)
2n2

The RMS half width in RF phase is equal to:
=2
Gq) no_rh fo

where h is the RF harmonic number (h=2 for our case) and f, is the beam

revolution frequency. The RMS half width of the momentum spread can be
found by considering the orbit of a single particle in phase space with a
maximum phase error of - The orbit is governed by:



Qz(cos(q)) - cos("q,)) =‘

where Q is the radial synchrotron frequency:

("’RF“)2 (Ap)g

2 p

2 neV 00 ¥s)
0S
_ Op®VRe™08's
Bcp2rh
Vg is equal to -180° for a stationary bucket. The momentum for the

central orbit is 8.837 GeV/c; B = 0.994; and n = -0.022. The maximum
value of the momentum error occurs when ¢ = 0:

A 1S

(_p) ) (omn Sm(?ﬁ)

Plos U

The RMS frequency spread at the first Schottky band (h=1) is equal to:
Ay 3@)
f

02

2Q .
= ——8In

0 “RF
RVIS
Since the RMS longitudinal emittance (68% of the beam) is equal to:

2r Qo_p ®_ 0
e = —C—O_—T sin(——RF T)
Pavis RE'

the mixing factor can be written as:
M(f) \ﬁ (fo)
2\ f Prvs/ T

Bunching the beam with RF increases the particle density that
the cooling system samples. The distribution of particles in the RF bucket
is approximately Gaussian:

RF Duty Factor



2

oN 1
ot th—,t'G

T
where Np is the total number of particles in the machine. The peak density
is:

ot /
peak 2m GT

The particle density for a DC or coasting beam is:

(Eﬂ) 1N
h

SN N

—) I =N f

ot T po
rev

The duty factor is defined as the ratio of the DC beam density to the peak

beam density:
SN
ot

D._ DG

N
ot
peak
which can be rewritten as:

D =+2n hfoGT

The Duty factor for the RF harmonic and revolution frequency used in this
study is:

D(%) = (0.315) o_(nS)

Because the cooling system sees an increase density of particles with a



bunched beam,the cooling time becomes:

Pkl

1_WD _ 1

T N MU
p

g g

opt opt

Da mmar

A summary of the bunched beam study data is shown in the following
table.The Duty and the Mixing factors were calculated assuming that the
bandwidth of the cooling system for a bunched beam is the same as the DC
or coasting beam bandwidth (2.46 GHz). Because the Signal/Noise
measurements for this study were not trustworthy and considering the
fact that the Signal/Noise is a function of the vertical emittance which is
changing during the measurement, the U factor was not included in the
calculations for the Duty factor. Following the data table is a graph of the
duty factor as a function of o. The slope of the graph is 0.362 % per nS

change of o7 which can be compared to the theoretical estimate of 0.315
% per nS change of o derived earlier.

Conclusions

The data presented in this study indicates that the cooling duty
factor is linearly proportion to the bunch length. Since the mixing factor
is also linearly proportional to the bunch length, the cooling time for a
given number of particles, cooling gain, and longitudinal emittance should
be independent of bunch length. Also there was no evidence of any coherent
signals in the 4-8 GHz stochastic cooling system. The following is list of
suggestions for future studies on bunched beam cooling.

1. More accurate data on bunch shape in the time domain coupled
with more bunch profiles taken during the betatron emittance
measurement. :

2. More accurate data of the Signal/Noise coupled with more

Signal/Noise measurements during the betatron emittance
measurement. Also, the Signal/Noise should be measured at
other frequencies throughout the cooling band.



o0k

Cooling with various beam intensities. As an alternative to No.
2, the studies could be made with large beam intensities so
that the signal to noise factor is not important.

Bunch beam cooling at h=84. '

Horizontal bunch beam cooling. .

Longitudinal bunch beam cooling both at 2-4 GHz and 4-8 GHz.
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