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Particle Losses in RHIC
Due to Intrabeam Scattering

Out of the Momentum Aperture

M.J. Rhoades—Brown énd J. Claus

I. Introduction
The consequences of intrabeam scattering,!™3 or the Coulomb-scattering of charged

particles within a bunch, are of overriding importance to the design of RHIC.*

Above transition, the Coulomb-scattering within a bunch results in a growth® of the
longitudinal and transverse emittance of the beam. In particular, the increasing longitudi-
nal emittance dictates the magnitude of the rf system for RHIC.* At the present time, the
rf system which is used to bunch the beam during the colliding stage is operated so as to
keep the rms bunch length constant. This is achieved by increasing the rf voltage so that
the rf bucket remains just large enough to contain the growth in beam energy spread o,.
Within RHIC, at the present time, the maximum voltage is 4.5 MV. For 197 Au ions at top
energy (7 = 100) we may assume Ap = 20,, where Ap is the half height of the bucket in
Ap/p. For 7 Au ions in a storage mode at v = 30, Ag = 2.50, is allowed for a 4.5 MV 1f
system.

An important question for RHIC, “what are the particle losses from a single bunch,
due to intrabeam scattering within the bunch?” The equalities Agp = 20, or Ag =
2.50, may be considéered as boundary conditions or constraints on the longitudinal particle
motion. This boundary represents the so-called momentum aperture for the bunched

particle dynamics.

To date, intrabeam scattering theory for the average transverse and longitudinal emit-
tance growth rates, agrees well with the available data measured for protons at CERN.®
The theory as it stands, however, is not suitable for estimating particle losses across a
momentum aperture, because it assumes the six dimensional form of the distribution func-
tion to be Gaussian in nature, without any boundary or constraint. The overall success
of this parameterization for calculating emittance growth rates is readily understood by
recognizing that the average emittance of the beam is the second moment of the distribu-
tion function. Such averaging is not particularly sensitive to the tail of the distribution

function.

In this manuscript we introduce a model for particle losses across a momentum aper-

ture or boundary due to intrabeam scattering. To achieve this result we derive a form
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for the longitudinal distribution function in the presence of a boundary. This distribution
function is a solution of the Boltzmann equation’ with a simplified collision integral that
is renamed the Fokker—Planck equation.® Although the equation for the evolution of the
distribution function is highly non-linear, we have found a closed final form for the time
evolution of this distribution function.

In section II of this note the general d&namjcal equation for the distribution function
is derived in the rest frame of the bunch. In section III, the complicated non-linear Fokker—
Planck equation is solved exactly in longitudinal phase space, and the form of the particle
losses extracted. In section IV this form is evolved to include accelerator, parameters, and
results for RHIC are presented in section V. Finally in section VI, the results of the report

are summarized, and future work utilizing this formalism is outlined.

II. General Formalism for Intrabeam Scattering

We initially work in the rest frame of the bunch, where all scattering dynamics may
be considered non-relativistic in nature. Apart from the constraint in-energy—phase space,
that is imposed by the rf system, a particle in an accelerator is subject to external guiding
and focusing forces (assumed to be dipoles and quadrupoles), and can scatter via the
Coulomb force from neighboring particles in the bunch. We describe such a situation via

7

the Boltzmann equation,’ i.e.,

Of | b 0F | F*OF _ (of)

ot 52k T moour - \at (I1.1)

where p = 1,2,3 for 3 dimensions, f(Z,?,t) is the projected distribution function of a
single particle in the bunch with position (%) and velocity (¥), F* is the applied external
field (assumed to be dipoles and quadrupoles), and (0f/0t). is the collision integral that
describes scattering from neighboring particles in the bunch. The rf constraint is to be

applied via a boundary- condition.
The Boltzmann form of the collision integral is given by’

Yy = [awasaso(w,2)| " f" - 5
(at)c /dd ‘ (’Q)[ff ff] (I1.2)

% 5(ﬁ+ﬁ —-—ﬁ" _ﬁm)&(E'_l_ E' — " _Em)

where f = f(Z,7,t), f' = fI(&,7,1), f" = f(Z,9",t), f"' = f"(Z,7",t). Equation (IL.2)
represents the difference between the number of particles scattered into and out of a region

in six dimensional phase space. In eq. (IL.2),
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u=[v'"" —v#| = Relative Velocity (I1.3)

Z4et . _ Differential Cross Section
o) = g alSind/2™ = 6 — C.0.M. angle (I1.4)
v'*,v* = Velocity of ions before collision (I1.5)

Equation II.4 is the usual Coulomb differential cross section, where mA is the mass of the
ions. It is critical to simplify eq. (IL.2). We follow the method introduced by Landau,®
that is now called the Fokker-Planck equation.® The assumption is that only two—body
scattering occurs and that the momentum change from a scattering event is small on
average. This reflects the long range nature of the Coulomb interaction. Expanding the

distribution functions up to second order in the velocity change, the collision integral is

given by®
ofy 0 “ 1 82 EAY
)c_ (< A0 >) + 520 (f < AvkAe” >) (I1.6)
where |
< Avt >= /de(v'“)/an(u,Q)Av“u (I1.7)
< At AV >= / dv’ f(v'*) / dQo(u, Q)Av* Av”u (11.8)

Av* = Change in pth component of velocity of ion from collision.

< Av* >z= Average change, per unit time, of pth component of velocity.

The first term on the right hand side of equation IL.6 is called the coefficient of dynamical
friction. The second term is called the coefficient of diffusion.

The derivation of egs. (IL7) and (IL8), using the Rutherford form of eq. (IL.4), is
central to understanding the problem of intrabeam scattering. Indeed, much of Bjorken’s
paper on this subject! is concerned with the evaluation of these integrals, however, he
assumes a Gaussian form for f and additionally integrates over the moment of f to extract

the emittance.

Finally, combining the results of many previous authors,»**° the final collision of the

Fokker—Planck equation gives us



m2A? 6f) _ﬂ(f_a_h)_*__l_ ? (f d%g ) (I1.9)

dnZ4et log(. 2, ot v " Guk 2 Jvkvv " QukovY
where
h() = / @& f(7)|F — 7| (I1.10)
o) = f & {7 — 7| (I1.11)

This should be added to the right hand side of the Boltzmann equation. The log term,
log (2/0mix), reflects the divergent nature of the point Coulomb interaction. fp;in is the
minimum scattering angle (in the center of mass), and has to be determined separa.tely
Normally log (2/0min) takes the constant value 10.

In the following section we show the new analytic solution we have found for eq. (I1.9) -
in longitudinal phase space. In this way, both the form of f and a closed expression for
the particle losses will be derived. In section IV we extend the results of the next section

to include those variables of interest in accelerators.

III. Evaluation of Distribution Function, and Particle Losses From Separatrix
We restrict our discussion to evolution of the distribution function in the longitudinal
phase space. Equation (II.9) reduces to,

1/0fy 1 5
B Z(E)c N -Bv( Bv) 2 dv? (fav2) (IIL1)
where
1 m?A?
T 47('2464 log( —) (III‘2)
h(v) = / do' (oo — o[ (I11.3)
o(v) = /_ ) — | (II1.4)

In the absence of dissipation, we are only interested in the diffusion term of equation

(IIL.1). From equation (IIL.4) we find



3g(v)

/ dv' f(v")0(v —o')
where (v — v') is a step function defined by (see figure 1),

9(v——v')=-—1 v<v

(IIL.5)
bv—v)=4+1 v>
Hence,
2 o
aag—v(:) = dv' f(v")6(v —v") = f(v) (I11.6)
From equations (II1.1) and (II1.6) we find
Lor o1
7 ( ot ) ¢ v (f av) (IIL.T)
or
of 0
().~ & o) s
where the diffusion function is introduced as
Iy I
D(v,t) = —”—A—-log( ) F(v,8) = nf(v,t) (III.9)

Equations II1.8 and II1.9 are the diffusion equations for intrabeam scattering in one-
dimension. Unlike the well-known one-dimensional diffusion equation used to estimate
beam-gas scattering, the diffusion coefficient is no longer a constant, but is proportional
to the distribution function. Such a form emphasizes the importance of the tail of the
distribution, for if D(v,t) o< f(v,t) the diffusion rate from the tail of the distribution will
be significantly reduced from the standard Gaussian form for f associated with a constant

diffusion rate.

The friction component of equation (III.1) represents the microscopic basis for pos-
sible future studies on stochastic cooling of bunched beams. Utilizing both the diffusion
and friction term in equation (III.I ) may allow the strong Coulombic forces between fully

stripped heavy ions to be included in a stochastic cooling study.

Let us solve the non-linear partial differential equation (IL.8) i.e.
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What is extremely fortunate (and indeed remarkable), is that this equation is separable,

ie. let
fv,t) = G(v)S(?)

%g(v)é‘(t) = [G'(0)”S*(8) + S*(D)9(v)G" (v) (II1.11)
150 _[6'@)P
nS%(t)  G(v)
where § = ds/dt and G' = dG/dv. Thus,

+G"(v) (II1.12)

S(t) = —2BnS(t) | (IT1.13)

G(v)G"(v) + [G'(v)]* = —2BG(v) . (I11.14)

where B is a constant to be determined later.

II1.1 Time Solution

Now from equation II1.13 we have

ds

== —2BnS(t) (I11.15)
or
St) = ——r (II1.16)
~ C—-2Bqyt )

where C is a constant of integration.

If we impose S(t = 0) = 1 then C = 1 and the time solution is given by

1

St =12 2Bt

(III.17)
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II1.2 Longitudinal Solution

From equation II1.14 we have

d ]
= [6(v)9'(v)] =—2B9(v) (II1.18)
Let us define
Y (v) = G*(v) (II1.19)
Thus
Y"(v) = ~4BY/?(v) (I11.20)
Let
dy
W=— | (IIT.21)
Thus
dw dwdy dwW
o A d Ay (I11.22)
Substituting in (II1.20) and integrating over (Y) we find
2
W _4BY® x g +C (II1.23)
or
dY\? 16 3/
( dv) =2C - 3'BY (II1.24)

If we let 18BY3/2 = X* then the general solution of (IIL.14) can be reexpressed in the

integral equation form,

3v2C ¢ B\1/3 Xdz
e (%) / G = (IT1.25)

where vy, is a constant which is to be determined later.

In order to extract G(v) from equation (IIL25), the integral equation must be inverted
and X, and hence Y, replaced by equation (IIL.19). Equation (II1.25) represents the general
velocity solution to the partial differential equation (111.10).



II1.3 Longitudinal Solution with Boundary Conditions Relevant to RHIC
The planned rf mode of RHIC described in the Introduction makes the solution of the
integral equation (II1.25) easier. Within RHIC the particles are always expected to fill the

bunch up to a maximum v,,, thus we can impose the boundary condition

G(lv] = var) =0
(I11.26)
Y(Jo] <vm)=0

Under these conditions C' = 0 in equation (II1.23), and we can integrate (1I1.24),
3 \1/2 ,
—~3/4 — .
/dy (_163) Y z/dv

Y(v)'/* =iy / gv +d (ITI1.27)

where d is an integration constant. From (IIL1.26) we have at

v=uvpy d=—i\/-—?vM
B
v=—uMmM d=i1/§vM

The symmetric solution of the velocity component of (II1.8), that satisfies the bound-

or

(I11.28)

ary conditions (II1.26) is given by

G(v) = —g(v —vpy)? 0<v<uy
(I11.29)
G(v) = —g(v +oy)? 0>v>—vy

This solution has a discontinuous first derivative at v = 0. This can be understood
on physical grounds, for in the rf bucket the Coulomb forces between particles at a finite
distance apart are always acting. Hence we may expect the velocity equals zero point of
the distribution function not to be an absolute extremum of the distribution function. Any
particle at this point will be subject to the long range Coulomb forces due to the other
particles in the bunch.

Now we demand at ¢t =0

oM

F(v,t =0) = Ng |  (II1.30)
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where Np is the density of particles in the bunch. From this definition of Np we find
B = 9Ng/2v3;. Collecting together (IIL.27), (IIL.31) and (II1.17) we can write the final

form of the distribution function as

3NB(’U e vM)2m2A2
t) = <v<
f(v,1) 203, m?A? + 187lnNpZiett 0sv<om
(II1.31)
3NB(‘U + vM)2m2A2
2v3,m2A? + 187lnNpZ*E*t

fv,1) =

0>v> —um

~ where we have defined £n = log(2/0mir). In Appendix A we verify that equation (IIL31)
is a solution of equation (III.8).

1.4 Particle Losses Across Momentum Aperturé
We define the time development of the particle density Np(¢) within a bunch by

Np(t) = - f(v,t)dv . ' (II1.32)

—vpr

Using the solution for f(v,t), given by equation (II1.31) we find

: .NB(t = 0)
NB(t) = 9mlnNp (t=0)Z%ett
1+ m2A2v3,

(II1.33)

Hence if we write Np(t) = N(t)/V, where N is the number of particles in the bunch at
time ¢, and V the spatial volume of the bunch, equation (II1.33) also gives the number of
particles in the bunch as a function of time. Remember (II1.33) is defined in the particle

rest frame p.

From equation (1I1.33) the half life t’l’ /2 in the particle rest frame p is given by

P m2A%v3,
1/2 7 9NpgnZtetin

If we separate the heavy ion physical parameters from the dynamical variables of the
bunch, equation (II1.34) can be written in the lab frame L as

(I11.34)

L v 1 |
= = III.35
by InZtetmpyAln % o ( )

where « is the Lorentz function, my is the mass of a nucleon, and A is the atomic mass

of the ion. a is the all important critical dynamical variable, and is a measure of the

phase space density occupied by the bunch, i.e.
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(II1.36)

where VI .is the spatial volume in the lab frame L.

From equations (I11.33) — (I1I11.36) we can see that the half life for particle losses from
the bunch is critically determined by the beam density in phase space. The selection of

the constraint vZ, will severely effect the value of a, and hence tf I2-

IV. Evolution to Accelerator Variables

During the ten hour beam lifetime, there are no expected constraints or particle losses
in the transverse direction. For this reason we choose the transverse 4-dimensional phase
space volume of the beam as that volume that contains 99.9% of the beam!! at time

(t = 0). This volume is taken to be a constant over the ten hour period. With this model,
equation II.1 becomes, ‘

df _ (9f
dt (at ) c (Iv-1)
.and much of the preceding analysis can be directly utilized.

From equations (I11.32) — (II1.36) we can write for the fraction of particle retained,

N@EEYy 1
= 1v.2)
L 9l Zietmpy Aatl (
N(it=0) 1+ N
where tU is the storage time of the beam in the lab frame, and « is now given by
3
o= 17 . (IV.3)

p*(52)*mer/ Bfls
In equation (IV.3), p is the beam momentum in the lab frame (p = myAvyfc), Ap/pis -
the momentum spread of the bunch, and £p is the length of the bunch. The ratio N/mey/ B i
is simply the peak value of a Gaussian representation for the particle density!! at time

tL = 0, where BB is the geometric mean of the lattice function around the ring, and €
is the beam emittance. A value of € is chosen such that the Gaussian parameterization of

the beam contains 99.9% of the particles!! in a 4-D phase space.
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V. Estimation of Particle Losses from RHIC

In this section we apply formulas (IV.2) — (IV.3) to estimate particle beams from
RHIC for 4 = 30. For RHIC operation, £p is a constant for the ten hour beam lifetime,
and the separatrix Ap is adjusted such that Ap = do,(= dAp/p) for all tL. The constant
parameter d is limited by the available rf voltage*® of 4.5 MV. For v = 30 we consider
both d = 2 and d = 2.5. Numerically, equation IV.2 becomes

N 1 V1)
L _ - 1.88x10-21N¢L )
NG =0 1+ Rats

for 197 Au beams in RHIC. For the RHIC lattice 4/ BB = 20.71 m, and to include 99.9%
of the beam in a 4-D phase space we takel! ¢ = 6ey, where ey corresponds to 95% of
the beam in a projected 1-D phase space. For RHIC operation we have N = 10° and the

values of 0, were taken from the intrabeam scattering calculations of Parzen.’

In Figure 1 the particles retained for v = 30 197 Au beams are plotted for the projected
ten hour beam lifetime within RHIC. It can be seen that for Ap. = 20, this calculation
predicts up to 30% beam loss from the longitudinal momentum aperture. The cubic
dependence of the particle losses on Ap is evident, for when Ap is increased to Ag = 2.505,
the particle losses across the momentum aperture have decreased to 20% after a ten hour
beam lifetime. The charge in the particle loss rate over the ten hour lifetime may. be easily
understood from equation V.1. Initially the available phase space area is at its smallest
value and hence the loss rate is maximum. As t increases Ap(= do,) also increases as
the rf voltage is increased. In this way the particle density of the bunch decreases and the

diffusion rate across the momentum aperture falls as a consequence.

V.1 Discussion of Results

In this paper we have derived a closed form for the particle losses across the momen-
tum aperture in RHIC. The boundary conditions relevant to RHIC lend themselves to a
simplified solution of the diffusion equation. The formalism is essentially microscopic in
nature, that is the non-linear diffusion equation is derived starting from the two body
interaction within a bunch. Although some approximations have been utilized, i.e. the
guiding and focusing fields were assumed to be dipoles and quadrupoles, the lattice func-
tions were averaged around the ring, and the rf voltage was assumed to simply impose a
constraint on longitudinal motion, the overall results would seem to reflect the essential

features of particle losses. These features are:
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1) The particle distribution in longitudinal space, for the boundary conditions relevant
to RHIC, are given by Equation (IIL.31).

2) As a direct consequence of this distribution, if all other parameters remain constant,

the particle losses depend on the third power of the momentum aperture value Ap.

3) Overall, the critical dynamical variable for particle losses is the particle density of the
bunch. Hence we may expect the largest loss rate of the particles during the initial

storage times.

4) For the rf conditions at RHIC (4.5 MV), we may expect some particle losses over a
ten hour period. The theory derived here predicts 30% losses for Ag = 20, and 20%
for Ap = 2.50,. Although these losses remain to be experimentally verified, the the-
oretical predictions derived here indicate that the particle losses may be significantly
reduced by a modest future upgrade of rf voltage. This modest upgrade reflects the

cubic dependence of the losses on Ap.
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Figure Caption

1.
2.

Definition of the function 8(v — v').

Figure showing the loss rate of ®“Au ions across a longitudinal separatrix based
on equation V.1. The dashed line corresponds to Ap = 20, and the solid curve
Ap = 2.50,. Within equation V.1, eg takes the value 107 mm mrad and £p takes
the value £p = 1.58m for Ag = 20, and {5 = 1.17m for Ap = 2.50,
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APPENDIX A

In this appendix we verify that the solution given earlier for the distribution function
is indeed a solution of the non-linear partial differential equation (IIL.8). We want to show,

B 2 1
f(v,t) = —g(‘v + ‘UM) X 1_*21377?
is a solution of
230~ &) + 154
Now
10f _ B 9 OB
p ot = 3w Eum) X * A —2Bn)?
of 2B 1
By = T3 (EvmM) X 1—2Bnt
f__2B 1
ov?2 3 7 (1—2Bnt)
Thus
0f\2 _4_, 2 1
311) = gB (v Eom) x (1—2Bnt)?
and ,.

8f\ 2B? 1
f(3v2 ) 9 (v. & vm)” x (1 —-2Bnt)?

Hence on combining (A.3), (A.4) and (A.5) we see (A.1) is a solution of (A.2).
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(A3)

(A.4)
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