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1. INTRODUCTION

A large proportion of devices used to interact with charged-particle beams in
accelerator or storage rings can be classified as pick-ups or kickers. These devices
extract information about the particle motion or affect a change in the motion. One
device used frequently as pick-up or kicker is made with two little plates with one or
more terminations per plate [1,2]. In this paper the structure with one termination
per plate is examined.

Laslett [3], studying the effect of a centrally loaded clearing electrode plate -
on the transverse coherent oscillation of a coasting beam in a pipe of rectangular
cross section, introduced the transmission line equations governing the charge and
current distribution on the electrode.

Sessler and Vaccaro [4] investigated the longitudinal dynamiés of the beam for
the case of a pipe of circular cross section. They treated the clearing electrode as a
lumped discontinuiy of the electrical properties of the vacuum chiamber walls.

Ruggiero, Strolin and Vaccaro [5] used a circular geometry and a more rig-
orous expression for the induced charges and currents (always averaged along the
transverse size of the plate). '

Ruggiero and Vaccaro [6,7] worked out the problem of the field produced by a
coherently oscillating beam in the presence of conductive plates terminated at both
ends using as variables the termination impedance.

Ruggiero [8] used the previous results to study the line pick-ups in rectangular
and circular geometry in one dimensional approximation.

In this paper the azimuthal dependence is taken into account in circular geom-
etry for one plate of given dimensions. The geometry investigated is the one shown
in Fig. 1.

In section 2 the charges and currents induced on the plates are studied using
azimuthal and frequency harmonic expansions.

In section 3 the potential equation are derived and developed in the frequency
domain in order to give the close expression of the output voltage.

The numerical results are discussed in section 4.



9 CHARGE AND CURRENT INDUCED ON THE PLATES

We consider a bunch of charged particles travelling inside a circular accelerator
vacuum chamber. Assuming the radius R of the closed orbit to be much larger than
the radius of the vacuum chamber we can treat the particles as travelling along a
straight cylindrical pipe of radius b. We want to calculate the voltage induced on a
pair of electrically conductive plates after the passage of a single bunch.

Let z be the axis of the pipe and (r,6) the transverse coordinates. We can

associate to the beam a charge and current distribution

o= N0 — 60)f(w) 1)

J =(0,0,8¢p) (2)

where |

v = fPc is the beam velocity;

N is the number of particles in the beam;

e is the particle charge; .

(r9,80) is the beam position in the transverse plane;

f(u) = f(z — vt) is a function depending on the bunch shape.

The expansion of f(u)

fw) = / F(k)ei*dis 3)

F) = 5 [ fuped @

where the integrals extend from —oo to +00.

The potentials due to charge and current distribution

V=V(z0,n) = V(r,0,v) (5)



Equation (6) allows us to solve the problem through the only scalar Helmotz

equation

1 9%V
ViV — S —4wp )

The expansion of V and p in azimuthal harmonics

Mgl S 9 — 60) f (k) dk 8)
p=22 (r—ro)n;/emcosm( — 60)f(R)e (®)
+o0 _
v=y / e Von() cos mi(8 — 60T  dk ©)
m=0 ’

where

. = 1/2 fm=0
™11 ifm#0

Eq. (7) written in cylindrical coordinates for the single harmonic Ven

d‘ZVm 1 de m2 2\ 1 -~ 6(1’ — 1'0)
dr? + r dr <_r2_ tq ) Vi = —4Nef(k) T (10)
where ¢ = k[7.

Equation (10) is an inhomogeneous Bessel equation with general solution

Voo = ALu(gr) + BEm(qr) + Cm (11)

where I, and K, are modified Bessel functions.

The particular integral Cp is found to be

C.n = —ANef(E) {In(gro)Km(ar) = Kn(@ro)In(@)} Ulro =7)  (12)

where U(z) is the Heaveside function: U(z) =0 for z <0 and U(z) = 1 for z > 0.

By imposing the boundary conditions Vin = 0 at r = b and that Vi is finite at

r = 0 we get for the harmonic m of the potential in the region ro <1 < b
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¥ = —ANef(k) ";f(q ;’)) (g K (ab) = In(@) K@)} (13)

The surface charge density induced on the wall

a(f,u) = / €mm (k) cosm(0 — Go)e’ Tk gk (14)

m—O

from the Gauss law

Om =

417r a;/;"‘] = Nef( )I":fg;;’)) (15)

The surface current density induced on the wall is

Js(6,u) = feme(k) cosm(f — 6p)e? " dk (16)

m—O
where

QObserve that

e]ku — jk(z—vt) __:ej(kz——wt)

where the angular frequency w = kv can replace the wave number k. Thus there is

the freedom to change all the expressions above to the frequency domain represen-

tation.



9. THE PLATE EQUATIONS

Scalar and longitudinal vector potentials produced over the plate are derived
3],

from the Maxwell equations, assuming that the plate is perfectly conductive [

104 _
Ey=—7% —VV] o 0 (22)

19V
- —— 2 £
VAt 0 (23)

These equations written in cylindrical coordinates in the frequency domain and

exp{—jwt) convention

oV w,
9 _;ZA, = 4
P cA 0 (24)
10V w
vos 1ot =0 (25)
104y OA, .w
SIS —— — — 2
706t o el | (26)
The expansion of the potentials in even and odd harmonics gives
= - = . (2m+1
= m m m 27
|4 n;)e {V cosmgf+V sm( 5 g9>] 27
= — = . {2m+ 1'
z = m zm Z1m 9 28
A Y;)e [A cosmgf+ A sm( 59 )] (28)
oo - _ 1
Ag = Z €m [AOm sinmgf + Agm cOS (2m + g())] (29)
m=0
where g = 27 /pq-
Equation (26) with (24) and (25) becomes
v 1av:t o,
—6;2_-*”1)7392 +kgV =0 (30)

where k2 = w?/c?



Equation (30) can be separated, using (27-29), in the even and odd harmonics

of V
Vo , mgl=
-73}_2_+[k°—_b2—]v'"=0
Vo , (2m+1\*¢|=
s 5= (257 |0
If we call
. m2g2
=k
o _ g (i)'
D 0 2 b2

the solution of equations (31) and (32) is

Vi = Gme 7% + b/

from which
A = _E — —ipz _}_ oIP*
ko
Y Mg (. _jpz T ipz
Aom =17 76—0—6 {ame IPZ f b e’? }
and

from which

— __P (= —];Z _ = iz
Arm ko A€ bme }
= 2 1 = = =
Agm 7 glk—*—b g {6 —IPZ 4 bme””}
0

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)



Equation (23) is valid in the case that charges and currents are conserved.
When we suppose to have current "sources” and/or "losses” in a generic point

(2p,0p) on the electrode then equation (23) modifies as follows [3]

10V . '
V A + ——é't— = —Zo]s(gp, Zp) (4:1)

where j5(8p, zp) is the current dens1ty flowing "in” or "out” at the location (6p,2p)
and Zg is the characteristic 1mpeda,nce of the transmission line formed by the plate

and the surrounding.

3.1 Boundary condition at the termination

For an electric termination at the point (65, 2p)

3s(0p, zp) = %5(9 - 611)6(" — 2p) (42)

where V,, is the potential at the point and Z7 the load impedance. Equation (41)
with the condition (42) gives, in the frequency domain

v 19Vv? w Z
o+ g TRV = =i, V00— )6 — =) (43)

When we use expressions (27-29) in (43)

Vm oo Vm = | . (2m+]1 3
;Gm{[ 32 +7 Vm] cosmge-l—{ 572 +p Vm:\ sm( 3 g9>}.—

=—j kog"—v 56 — 0,)5(z — 2p) (44)

Multiplying both sides of (44) by cos lgG or sin 21g6 and integrating over 0
in the interval [—o/2, @0 /2] gives

OV
0z2

Z
+ P2V —JkoZ—O—V Qmé(z —zp) (45)

where Vin, p, Qm can be @ or @ and



Q.= 2 cosmgl, (46a)

€mPo
= 2 . 2m+1
= —— 0 46b
G = s 2520, (a60)

Integration of both sides of (45) in the interval z, & € when € — 0 gives

Wl Val _ g ‘
Oz ]zp+ - 3z ]ZP_ - —Jko ZT%Qm (47)

where with (+) or (—) we point out the solution on the right and left of the point
z = zp.

Expression (47), when we take into account (24), becomes

Zy

Ajm - A;m = ———an (48)
Z
The continuity of Vi, at z =z, gives
Vi-v;=0 (49)

To observe that V, in eq. (44) is the total voltage at the location of the

termination, given as the sum of all the harmonics m and thus still an unknown.

3.2 Boundary conditions at the ends
We take into account the current induced by the beam letting in equation (41)

js=bJs8(z — z0) (50)

where Js is the surface current induced by the beam at the ends zp = z1,2. In the

frequency domain, taking into account egs. (14-17),

2 2
Q_V._i__l__al/__i_kgv___

022 b 06*

= —jkoZobé(z — z0) {Z €pGp cos p(6 — 90)} etz (51)

4
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If we use the expansions (27-29) in (51) the equation for the potential becomes,

m

PV oo Vo o= | . 2m+1
Zem{[ 572 +p Vm] cosmgld + { 3.2 +7p Vm] sin —— gl » =

= —jkoZobb(z — 2o €,5, cos p(6 — 80)| e’ 52)
PY P

p
Multiplying both sides by coslgé or sin 2’—;—199 and integrating over  in the
interval {—@0/2,¢0/2] gives

Vi
022

where Vi, p, Pm can be ¢ or s and

+ p? Vi = —jkobZo Prmb(z — zo)el** (53)

Pu= &plpm - (54)

P
with
- 0 ( . o
pm = cozp g {sznc(p — mg)%1 + sinc(p + mg)%‘l} (55)
sin pfo 2m+1

pm =

{sinc(p -

and sinc(z) = sin(z)/z.

) 2 1
D8 —sinclp+ LT (56)

2 2 2

€m

Integration of both sides of (53) in the interval zo + € when € — 0 gives for the
first end at z = —£/2 = z1.

Am(21) = —bZg Pre 3* (57)
and for the second end at z = +£/2 =22
Ave(z2) = bZg P %2 (58)

assuming that z = 0 is at the center of the plate and that £ is the length.

10



9.3 Determination of the potential at the termination
Equations (48,49,57 ,58) written for the even and odd modes and for the two
sides of the plate separated by the termination at z = z, give a system of eight

equations in eight unknown quantities. The solution of this system gives in partic-

ular

Zo

Adt = ZZ —V, Qm;—etpz cosp (g + zp> +

+4bZoPm ko % cos(p — k)— (59)

and
AbF —ZZO Vkao —ip} cosp £-l—:zp +
ZT 2
ko

+4bZ, P cos(p + k)-— (60)

where
A = 4isinpl (61)

where again symbols can be either @ or ..

From eq. (27) the potential at the terminal is

kg [ = . (2m+1
= m | Vm p+ Vi 6 62
Vo n;e {V cosmgl, +V sm( 59 p>] (62)
Let us consider the case that 6, = 0. In this case, only the even modes give

contribution to Vj, since

Vo= emVm (63)
From (35)

11



[o o]
iz, T T
V= Z €m (&;e AL bme"’zi’>

m=0

and with egs. (59-61)

 m, & o keosp () eosp(E =)
I’3’“"’ZTV3’,§=:0€"‘ 5 sinpl
oo 5 k)L 5+ k)L
_ibZe Z . P.. E_o_ [cos(p — k) z +—cos(p+ k)£]
= P sinpl

+

which can be solved for V,, to give, for the special case where also zp

the termination is at the center of the plate,

‘_inO E emﬁmhcos kel2

P sinpl/2
v = o P sinpt/
P . =) - —
1+ i 2q E € Q _Igg_c.os_gtﬂ
2 Zr o mYm p sinplf2

This can also be written as

V, = f(w)#(w)

where

f(w) = Nefi(k)
is the beam induced current at the angular frequency w, and
ZTZp G(To, 90)
Zr+ 2, D(w)

is the effective plate impedance. The form factors

F(w) =

oo

— 9?0
G(ro,60) = 2 >

m=0

ko cos k£[2
p sinpl[2

Fm

1 —  IL(gqro)
=5 mhsm
Fon 2 ; em® I,(qb)
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(65)

= 0, that 1s

(66)

(67)

(68)

(69)

(70)

(71)



and

o0

D)= %z—;’—g% (72)

m=0

show the dependence on the beam position relative to the plate and on the geometry
of the plate.

The effective impedance expressed in the form of eq. (69) shows that it can

be expressed as the parallel of two impedances, one being the termination itself Zr '

and the other given by

. Zg
Zy = Z;D';'D(w) (73)

With a similar method it is straightforth, though quite cumbersome, to cal-
culate the potential V, also for the case 0, # 0. In this case, also the odd modes
will give contribution, but eqs. (67-69) and eq. (73) remain valid. We leave to the
reader the calculations of the form factors G' and D for the more general case.

Finally it is to be observed that V, as giveﬁ by eq. (67) represents the frequency
response of the plate excitation. The total voltage as function of time is otherwise

expressed by the Fourier integral

V(£) = / Fw)F(w)e " duw (74)

13



4. DISCUSSION AND NUMERICAL RESULTS

A beam position monitor is made of two parallel plates. Typically the difference
of the termination voltages is taken ,which is then divided by the sum in order to
obtain the beam position. The electronics past the termination also has build-up
cutoffs which automatically eliminate the contribution to frequencies larger than
a certain value. Usually the range of frequency of interest corresponds to those

wavelengths ) satisfying simultaneously the conditions

A >>b/By (75)

A>> l | (76)

that is those wavelengths considerably larger than the dimension of the plates.
Tnspection of (33) and (34) combined to the form factors (70-72) shows that

there is clearly a cutoff in the plate response function given by A = bypg. For the

case of long wavelengths, only the mode m = 0 gives a significant contribution.

When only this is retained, we have

D = 2c]wf (77)

and

R=Y (3) Fh ) (19)

Then it is seen that Z, is the impedance which corresponds to a capacity

Zp wCp (80)
ol
= 31
Cp 2CZO ( )



Combining all together

2 Z

Z(w) = :;SDOFO m (82)

Observe that the dependence on the beam position (6o, 70) is given by Fo, eq.
(79)- '

Thus the frequency response is equivalent to that of a low-frequency pass-band
circuit with a frequency cut-off of about w, ~ 1/CpZ7. For the case of a beam bunch °
of total length smaller than the corresponding wavelength at cut-off, the induced
signal after one single bunch passage has a peak voltage in the time domainatt =0

?_(p_oNeFo

V = ' 83
14 e (83)

which then decays with the constant time w.. Observe that according to eq. (81)
and the definition of characteristic impedance Zg, Cp/¢q is half the capacitance C
of the geometry formed by one plate and the surrounding vacuum chamber.

The sum signal which is obtained by adding the output voltage of the two

plates, in the case of small beam displacement (ro — 0), is

Ne
Vs = 87—1_5 (84:)

whereas the difference of the voltage is

o Ne sinpg /2 rg cosby

Vo= 7C /2 b

(85)

valid in first approximation versus the displacement rq cos 8 of the beam.
The ratio Va / Vg divided by the beam position gives the sensitivity of the plate

system as a beam position monitor

Va _ singg /2
V)_j b(po / 2
For the special case 8 = 0 for one plate, that is 6, = = for the other, summation

(79) has a closed form {9] which inserted in (83) yelds to

S = (86)

15



ro\2 o
Vg =38 Ne [1 + --1—arctg (%) sineo } (87)

nC ¥o 1-— (5,;1)2 €Os (g
and
2T0 g3 Lo
RO LA S s Yol (88)

o' 1-(3)

which are valid for any valae of ro/b between zero and 1.
Figures 2, 3 and 4 show the behavior of Vz, Va and their ratio according to

eqgs. (87 and 88) versus ro/b for different widths o of the plates.
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5. CONCLUSIONS
An exact solution for the problem of one plate working as beam position detec-
tor in an accelerator pipe is depicted in this paper. The azimuthal variation of the
field is added in this work giving the complete description of the field. Examining
the results the following comments are in order:
a) in the low frequency range the response of a single plate is equivalent to that
of a pure capacitance in agreement with the general understanding;
b) increasing the frequeﬁcy the output voltage became reactive and abrupt de-
crease;
c) for the two electrodes systems the coupling between the plate is neglected, a
more rigorous analysis must take into account this effect that increase with the
~ frequency;
d) with little adjustments the proposed method is useful in the solution of other

similar problems like line pick-ups and other devices of this type.
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CAPTION OF FIGURES

1 Geometry of the problem.

2 The sum signal Vi, divided by Vy = 4Ne/C versus beam displacement 7 /b, for
0, = 0, and for different plate width ¢q.

3 The difference signal 'VA divided by Vy = 4Ne/C versus beam displacement ‘
10/b, for 6 = 0, and for different plate width (.

4 The ratio Vo /Vs versus beam displacement ro /b, for 8y = 0, and for different
plate width ¢q.
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