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The longitudinal coupling impedance Z,/n at the harmonic n for a
toroidal vacuum chamber with perfectly conductive walls has been calculated by
several people.l'4 For the case of a pencil beam with no transverse
dimensions, that is with zero width and zero height, a useful and quite

general expression is
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where a and b are respectively the minor and major radius of the vacuum
chamber which has a rectangular cross-section with height h and width w=b-a.
The beam is circulating on an orbit with radius R within the vacuum chamber
(a<R<b) with velocity v=fc, c¢ being the light velocity. Z,=377 ohm is the

free space impedance. Other definitions are:

P (x,y) = I (x) K (y) - K (%) In(y) (2a)

5,(x,y) = I (x) KI(¥) - K/ (0 I () (2b)

where I, K, are the modified Bessel functions and
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ey -4 (e

b
N
I
/e
4



which is positive for mn < = pR/Bh. Let us denote with n,=nR/h the harmonic
which corresponds to the lowest vacuum chamber cut off. We are interested in
the estimate of the coupling impedance Z,/n for n < n,.
always positive and the use of modified Bessel functions in (1) the most

In this case P; is
convenient.

Observe that the summation at the right hand side of Eq. (1) is over all
odd integer values of p > 1, which corresponds to the case of the beam being

located on the middle plane of the vacuum chamber.

A convenient representation of the modified Bessel functions is as

follows5
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When Eqs. (4a-d) are inserted in Eqs. (2a-b) we obtain
P Gey) -SRI [0 4 g xy) ] (8a)
and
s,y) = SIS {1y 1y - (8b)
n*Y Xy n'* Y
where

T (5,5) = 0y(x) + 0,(y) = 0,(x) 0,(y) - 0,(x) O,(y) +
(9

+ [ 0,(y) - 01(X) + Oz(x) Ol(y) - 01(X) 0,(y) ] cotgh(x-y)

and a similar equation for Tﬁ(x,y) which is obtained from (9) by replacing 041

and Oy respectively with 01 and 0.



Insertion of Eqs. (8a-b) in Eq. (1) gives
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This expression is quite general and valid for any harmonic n. The quantity

between the graph parentheses is real for n<n,.

If we retain only the first term in the summations at the right hand

side of Eqs. (5a-d) we have for x— «
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Thus in the low frequency approximation, so that n2<<x, all the four
quantities above are small and to zero order can be neglected if compared to
unit. Inspection of (9) then shows that also T, and T/ can be neglected

within that approximation.



In this case, Eq. (10) reduces to the following form
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and that h and w are of the same order of magnitude.
From Eq. (13)
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which for the range of interest is a small quantity.
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Observe that the condition n <<FPR under which Eq. (12) has been derived

is equivalent to

n 5j5; (14)

which is more limiting than n *n, under which Eq. (13) has been derived.

Substituting Eq. (13) in Eq. (12) gives
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The summations (16) and (17) have been derived assuming the beam is

located in the center of the vacuum chamber, that is b-R = R-a = w/2.

The first term at the right hand side of Eq. (15) is the wusual "space
charge" contribution which can be derived also in the case of a straight pipe.
The second term is the contribution from the "curvature". Observe the strong

dependence with the harmonic number (nz).



For w *h Gy ~ 1, whereas G, diverges. This is due to our assumption
by which the beam has no transverse dimensions. Including a beam height d
with uniform distribution (but still with zero width), the summation (16) is

modified as follows4
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with u——z-ﬁ.

It can be proven that for w Zh, G, does not depend much on a (like G1)

and that

h
G0 = 1+ log 3

Eq. (15) is valid only for harmonics satisfying (14). A closer look to Eq.

(13), nevertheless, shows that
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P

and that one should consider all other terms appearing in Eq. (10) that could
give a first oder contribution comparable to the difference between (ap/ﬂFP)2

and 1, which is the source of the "curvature" term in Eq. (15).
The following applies only for those harmonics n satisfying (14).
We shall concentrate our analysis to the quantity between graph

parentheses at the right hand side of Eq. (10). We shall denote this quantity

with Q. 1In zeroth order approximation it is given by Eq. (13).



Since T, and T/ are expected to be small quantities, to first order we

have
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It is sufficient to retain only the lowest order contributions, that is Egs.
(11a-d). Thus, taking into account that x~y and letting y=x(1+§) with |&|<<1,
we have from Eq. (9) to lowest order and n>>1:
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Insertion of these equations in (19) gives
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The last terms are the contributions we were looking for to the first order

approximation. Thus
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and
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Eq. (23) is more accurate than (15). The last two terms are the contributions

from the "curvature®. The first has the 1'2 dependence 1like the "space-

term there 1is still a

The

charge" term but with opposite sign. For this

"cancellation" between electric and magnetic fields. second term is

nevertheless that part of the magnetic field that cannot be "cancelled"

_properly.

We have derived Eq. (23) for n = n,, and we cannot prove at the moment
if its validity'holds beyond this range. Otherwise for n ~ n, the last term

of Eq. (23) would give a predominant contribution. Observe that Gy ~ Gy ~ 1.
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