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1 Motivation

High field high energy proton colliders, such as a 50 TeV HECATEV with
12 Tesla dipoles, will experience radiation damping times of order one hour.
Round beams will become flat. That is, while the emittances at the beginning
of the store are approximately equal, ¢, ~ €y, the vertical emittance will shrink
to an equilibrium value that is much smaller than the equilibrium horizontal
emittance, €; >> €,. This is in general a “good thing” - doublet IR optics are
simpler than triplet optics, for example - but it is inconvenient that the beam
is not flat all the time.

Is it possible to include an “emittance exchanger” section in the transfer
line from the injector to HECATEV, so that round beams going in become flat
beams coming out? What is possible using skew quadrupoles in the transfer
line, without violating Liouvilles theorem?

2 Normal modes - notation

Unfortunately, it is necessary to develop a somewhat bulky set of notation, in
order to be explicit. A reader who is relatively disinterested in the details might
wish to skip this section. A reader who is really disinterested might skip to the
“Summary and Conclusions”.

Here goes. The 4 physical coordinates at a reference point in a storage ring
are written

Y = p (1)



where z, and y, are horizontal and vertical displacements, and :B;, and yI’, are
horizontal and vertical angles. Normalized coordinates, written as

8 8

X = 2)
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are related to the physical coordinates through

(%)

where, for example, the 2 by 2 matrix G, is given by

o= (0 &)

The Twiss functions in this expression, 8, and ay, are explicitly the design
values at the reference point.

Linearized motion is represented by the one turn matrix T', so that in going
from turn n ton 41
X1 = TXn ()

In general, the 4 by 4 matrix T is modified from its design value by coupling
(and other) errors. Edwards and Teng [1] have shown that matrices U and V/
always exist such that

T = vov? (6)

where U is block diagonal in unimodular 2 by 2 matrices A and B

o= (43)

The matrix V is conveniently written in component form as [2]

c 0 sd se
0 c sf sg
—sg  se c 0

sf —-sd 0 ¢
where the components are related through
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The angle ¢ lies in the range
-4 < ¥ < w/4 (10)

It only deviates significantly from zero when the difference in the eigentunes,

(1 — @2, approaches its minimum value - that is, when the tune diagonal is
approached and the beams become strongly coupled [2].

The linear motion of a single test particle has now been solved. If the
normalized displacement on turn 0 is Xy, then on turn » it is

X, = VU™ (V7IXy) (11)

This motion is easily visualized when this motion is projected onto the (normal-
ized) real space plane (z,y), for the special cases shown in Figure 1.
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Figure 1: Normal modes, projected onto the (normalized) real space plane,
(z,y), for two special cases.

3 Eigenaction and eigenemittance

The 4-D motion is conveniently described by defining eigenactions J; and Js,
and eigenphases ¢; and ¢, such that

z = 2Jice + V2J35 (deg + esz)

= 2Jies 4+ V2Jas (fca + gsa) (12)
y = 2J15 (—ger +es1) + V2Jzcer

y = 2J15( fer—dsy) + 2Jcs



where terms like ¢; and sy are shorthand for trigonometric terms like
1 = cos(2mQin + ¢1) (13)

et cetera. The eigenactions and eigenphases are found for a test particle with
initial conditions Xy by comparing Equation 12 with Equations 8 and 11. The
eigenaction assumes its familiar role in the absence of coupling, when s = 0
and ¢ = 1. For example, the decoupled eigenaction on any turn is then simply
calculated as

ho= S e (14)

In general, the eigenemittance of an ensemble of test particles is given by

€1 = /Oo JIP(Jl) dJl (15)
0

where p(Jy) is the probability distribution of the eigenaction. This, too, becomes
familiar in the absence of coupling, when the root mean square horizontal beam

size is given by
<zp > = \ef, (16)

where angle brackets imply an average over both action and phase, J; and ¢;.
4 A transfer line with skew quads

The question now becomes “How do eigenemittances €; and €3, coming out
of a general transfer line with adjustable design parameters, transform into €,
and ¢y in the following ring?” This is answered by first considering how the
eigenactions are transformed.

The normal modes in an injector may be projected through a transfer line
into a second ring, using the same V matrix notation as above. Skew quadrupoles
deliberately inserted in the transfer line may be used to manipulate the matrix
components, within the constraints set by Equations 9 and 10. Without loss of
generality with respect to the predictions of ultimate emittance exchanger per-
formance, derived below, it may be assumed that the second ring is perfect and
normal, so that ifs normal modes are regular and erect, with eigenemittances
€z and €.

In that case, the horizontal and vertical actions for a test particle parame-
terized by (J1, ¢1, Ja, ¢2) are simply given by

J. = %(mz + o2) (17)

1
Ty = S +9?) (18)
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After contemplating substituting Equation 12 into the right hand sides of these
two equations, it becomes clear that the new actions J, and Jy depend on
the old eigenphases ¢, and ¢;. After averaging over the eigenphases for all
test particles with fixed (J1, J3), and assuming that (¢1, @3) are smoothly and
independently distributed, then

1
<h> = AR+ SR+ 4 g?) (19)
1
<Jy> = 32J1§(d2+62+f2+gz) + Uy

Clearly, if the values (d, e, f, g) are large, then the actions (and emittances) will
be significantly blown up.

Referring to Equation 9, it is easy to show that
1
5@+’ +244% > 1 (20)

where the minimum value of 1 occurs when

d

e

g =1
f=0
This corresponds to one of the special cases in Figure 1, where both eigenmodes

are tilted by the same angle v. Evidently, Equation 21 defines what is meant
by a “well matched” transfer line, so far as skew quadrupoles are concerned.

(21)

Assuming that the transfer line is well matched (Equation 21 is true), then
Equation 19 becomes

< Jp > = Cle + 32J2 (22)
<Jy> = '+ Ah (23)

Integrating over J; and Js, this simply becomes

& = cosi(y) e + sin’(¥) e (24)
sin®(9) &1 + cos?(#) e

This describes the optimal design performance of a matched transfer line, acting
as emittance exchanger.

€y

5 Summary and Conclusions

A transfer line that incorporates skew quadrupoles can be used as an “emit-
tance exchanger”, in order to modify incoming emittances ¢; and €5 to outgoing



emittances ¢; and €,. Inspection of Equation 24 reveals that, under well tuned
conditions, the emittance sum remains unchanged:

€&z+ey = €146 (25)

Unfortunately, Equation 24 also reveals that the beams can be made rounder,

but not flatter:
€ €1
1< =< = (26)

€y €9

where it is assumed that €; > e3. Such an emittance exchanger is no help in
making HECATEV beam flatter at injection - without blowing up the total
emittance. An emittance exchanger may have other potential uses, perhaps in

electron or muon transfer lines.
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