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I. Overview

o [ield quality of the arc dipoles determines the
machine performance at injection.

o [Mield quality of the insertion region magnets de-
termines the performance at * = 1 m storage.

e Intra-beam scattering is strong for high charge-
state ions. Beam-beam effects are small.

Table 1: Comparison of storage and injection parameters for Au™t
beams in RHIC.

Quantity Injection Storage

(B*=10m) (f*=1m)

ey (95%) 10 rmm-mr 40 rmm-mr

O Ap/p 0.43x10~%  0.89x1073
Bare 50 m 50 m
Briplet 145 m 1400 m
Oz,arc 2.5 mm 1.8 mm

Oy triplet 4.5 mm 9.3 mm




Goals:

e Storage and collision of beams of broad range
ion species from proton to Au™?* at energies

from 250 GeV to 100 GeV /u.

e An average luminosity (Au"*) of 2x10% cm™%s~*

over 10 hours; Upgradable.



II. Arc Dipoles

e All arc dipoles have been built, warm measured,
accepted by the “Magnet Acceptance Commit-
tee”, and installed in the tunnel.

e 0 dipoles have been rejected.

e All dipoles are sorted on their Integral Transfer
Function to minimize the corrector strength.

e For all the arc dipoles, warm (100%) and cold
(~20%) measurement data are available in data-
base for automated computer tracking, statisti-
cal analysis, and machine control.



Performance Comparison:

The high quality of RHIC dipoles is demonstrated
by comparing their field profiles with those from
other super-conducting machines. The following
plots extend out to the appropriate 2/3 coil ID.

e RHIC, HERA, and the Tevatron have almost
identical coil IDs (80.0, 75.0, and 76.2 mm).

e Plot lines show systematic harmonics, while er-
ror bars show random harmonics (£10).

e INJECTION: HERA is hampered by persistent
currents (low field), while the Tevatron is domi-
nated by an intentional bg. RHIC benefits from
“high” field (systematics) and small filaments
(randoms).
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Figure 1: A comparison of systematic and random field error at in-

jection for RHIC, HERA, Tevatron, and SSC. The plotted range is
2/3 of the coil ID. Multipoles up to order 12 have been taken into

account.



III. CQS Assemblies

e CQS evaluation consists of two steps — first
on individual cold masses (Corrector, Quad and
Sextupole components), then on the complete
assembly.

e All CQS individual components have been built
and measured; A total of 335 out of 426 CQ
assemblies (8 c¢cm) have been built; All CQ as-
semblies for the sextant test have been built,
measured, and accepted.

o Careful alignments and measurements are es-
sential during assembly.

o Extremely accurate “harmonic antenna” and
“colloidal cell” measurements of the field center
of a warm cold mass (quad., sextupole, correc-
tor), relative to externally available surveying
fiducials, makes tight alignment possible on in-
stallation.



CQS Alignment Performance:

Individual magnets are examined for 20 devia-
tions from distribution norms, and for violations of
absolute limits, on various quantities, including:

e Quadrupole field angle — which is used to align
the CQS on the design trajectory. (Also watch
sextupole and corrector angles).

e Corrector and BPM offsets — which indicate
the CQS straightness.

e “Antenna (Colloidal) — Mechanical” difference
of the quadrupole center — which gives an in-
ternal consistency check on quad misalignment.

Trends in the distribution parameters are also
tracked, as with all other magnets.



Table 2: Statistics of dipole and CQS magnetic integral field angle,
horizontal (H), and vertical (V) center offsets.

Quantity H/V Units Mean S.D.
Dipole field angle® [mr] -0.8 0.7
Quad. field angle® [mr] -1.7 0.3
Sext. field angle [mr] -0.3 0.7
Corr. field angle® [mr] —4.5 3.9

Quad. center offset H  [um] 14 61
V  [pm] 110 64
Sext. center offset ~ H  [pm] 15 88
Vo [um] 28 34
Corr. center offset® H  [um)] 70 80

V  [pm] 50 100

a) To be corrected during CQS ring installation.
b) Dipole layer of the corrector only.
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Table 3: Measurement statistics of CQS cold mass center position and
straightness.

Quantity H/V Units Mean S.D.

Quad. center difference H [pm] 35 157
(Antenna—Mechanical) V  [um] 18 T2
Quad. center difference H [pm] 62 276

(Colloid—Mechanical) V  [um] -39 148

Corrector offset H [pm] -150 605
V. [um] 4 412
BPM offset H [pm] 145 335

V [um] 100 277
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IV. Insertion Region Magnets

e All the magnets necessary for the sextant test
have been built, measured, and accepted.

e A sophisticated compensation scheme is used
for the IR triplets.

Figure of merit:
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IR triplet Compensation Methods:

e Minimized undesired multipole harmonics at storage; use
magnet body to compensate the ends on systematic b5
and as, taking into account the expected beam size vari-
ation in the magnet.

e Choose lead-end orientation to minimize the effects of the
stronger end.

e Shim individually using 8 tuning shims after warm/cold
measurements — reduce error to ~ 10% of the original.

e Sort golden quads and correctors for two low-38* IRs.

e “Harmonic antenna” plus welding stripes to reduce twists
and offsets during assembly, and field angle shimming to
reduce rolls between corrector layers.

e Use IR correctors for orbit smoothing, decoupling, and
higher order compensation.

Multiple measurements indicate dependence of
certain multipole values on quench and thermal cy-
cle. Simulation shows within tolerance.
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V. Tracking and Simulation

e Numerical results are based on actual magnet
measurements.

e Linear aperture (short time scale) simulations
investigate the complete list of correction pro-
cedures (e.g., closed orbit, nonlinear correction
of the IR triplets, local linear decoupling, ...).

e Dynamic aperture studies are mainly performed
as “spot checks”.

e Actual distribution values of non-harmonic pa-
rameters are also used, whenever possible. For
example, an RMS quadrupole misalignment er-
ror of 0 = 0.25 [mm)] is assumed.
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Figure 2: RHIC dynamic aperture at injection for Au’™™ particles.
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Dynamic Aperture at Storage:
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Figure 3: RHIC dynamic aperture at the end of storage with * =1m
for on-momentum (Ap/p = 0) Au’™* particles.
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Luminosity Performance:
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Figure 4: Luminosity performance during the gold storage.
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VI. Summary

e All arc dipoles have been completed with excel-
lent field quality and quench performance.

o All sextant magnets have been built and ac-
cepted. The field quality meets 8* = 1 m oper-
ational requirements.

e CQS and IR triplets have been carefully aligned
during assembly to minimize twists, rolls, and
offsets.

e The design goals can be met with a continuing
effort to maintain the construction and align-
ment quality of the magnets.
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