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Abstract

Perturbation expansion of standard FEL equations is performed;up to
second nontrivial order in the Vlasov’s equation. Ve found thét the
perturbation expansion can be characterized by a single parameteg, T,
the number of synchrotron oscillations in the wiggler. The validity of

perturbation theory is discussed in this paper.



1. INTRODUCTION

In recent years there have been many experimental and theoretical

i

works done on the free electron lasers. The physics of the FEL hés been
discussed by many authorsl-3. These theoretical works have given alclear
understanding of the basic properties of the FEL's.

In this paper we follow the classical theory discussed b? C.
Pellegriniz, limiting ourself in the Compton regime where a éingle
electron interacts with the existing electromagnetic radiation field and
the wiggler field. We investigate the Maxwell-Vlasov pendulum eqﬁation
and calculate the energy exchange between the electrons and the
radiation field up to the second non-zero perturbation order. We study
the criterion on using the perturbafive method in solving the Vlasov’s
equation. The validity of the perturbation shall be discussed. !

In what follows, section 2 briefly reviews the FEL model we are
interested and the equations of motion; section 3 gives the firét and

t

the second order gain function and discusses the validity condition of



the perturbation expansion. An example is used for demonstration. Some

|

detailed calculation is left in appendix I and II.
2. EQUATIONS OF MOTION

In the simple FEL model, relativistic electrons move through a étatic
magnetic wiggler, at the same time an existing plane electro-magnetic
wave propagates parallel to the electron beam. The wiggler magnetigives
the electroﬂs a transverse velocity in the direction parallel fo the
electric vector of the wave, so that energy can be transfered between
the electrons and the wave. The wiggler has a helical megnetic fieid as

B,==(Bycoskgz, Bysinkgz, By;), 0<z<L. (2}1)
The electromagnetic wave is assumed to be l

E;=(Egsin(kz-wt+dy), Egcos(kz-wt+dy),$0) ,
By =2xEp, 0<z<L. (2;2)

To simplify the problem, we make the following assumptions:

(1) The radiation force is neglected. Thié means that the electron
energy, v, satisfies the condition,

vy < (_mpc_ ) : !
eB,rg , | (2.3)

where ro=e2/4nsom0c2 is the classicai radius of the eleétron.
Assuming the wiggler field of 1T, the right hand side of egq. k2.3)
is of the order 8x10°. |

(2) The space charge force is small, i.e., the electron density safisfy

the following condition,



ng < eEg
moczero , (2.4)

where A=2n/k is the wavelength of the electromagnetic field;

(3) The electrons are highly relativistic, i.e.,
o1, Bi/ B/ <<1;

(4) The wiggler strength parameter K is much larger than the E.M. vave

parameter,
K>>Ky,, (2.5)
where K= eB, _,  Ky=_eEp_
mpcko -mgcck

Besides these conditions, our analysis is one dimensional, collision
between electrons and quantum effects are disregarded. The single
particle motion follows the pendulum equationz,

v=-¢EK sind
mocy | ~ (2.6.1)

é:cko(l-.xﬁg ) + G, (2.6.2)
vhere vy, is tge equilibrium value of vy and $=(kg+k)z-wt+dg .
Starting from the Maxwell’s eqﬁation,
m (2.7)
wvith J(x):ec%BiS(x—xi),we find

0Ep + 2Eq_ Byckpsind=-cuply

vz cdt 2 2 (2.8.1)
Eg(2%g + 2% )_ Byckpcosd =cupds
2z cdt 2 2 s (2.8.2)
where
J1=stina+chosa, J2=—chosa+Jysina, a=kz-wt+g.

The electron distribution function is described by the Vlasov’s equation

df + Hf + N XK =0 (2.9)
at 26 N



Self-consistent solution of equations (2.6.1), (2.6.2), (2.8.1),

(2.8.2) and (2.9) describes the evolusion of the particle-field system.

3. PERTURBATION CALCULATION

To find a simple analytical solution, we further assume that the
system is within the small signal regime, i.e.,
N=Cr-vp)/v<<1. ’ © o (3.1)

These self-consistent equations thus become

n=— oy ( _8 )Zsing (3.2.1)
2 wp

$=2uwgN+dp (3.2.2)

2B +_2Eg - Byckgsing = -cugly (3.2.3)

Dz et 2 2

Eg( 290 + _3%0 )- Byckgeose = cpply | (3.2.4)
2z et 2 2

M + G + RO =0 (3.2.5)

ot 3¢ ¥n ’
vhere @ =( 4neEpK )1/2 is equivalent to the synchrotron oscillition

mOerxw
frequency in a r.f. system. In the case when the net gain is not large,

we can break up the self-consistent chain by assuming constant Q, &g

and solve eq.(3.2.1), (3.2.2) and (3.2.5). In general, we have R/wp<<1,

ve can expand £(®, h, t) in the order of (Q/wo)z, i.e.,
E=If (¢, N, t)(R/wp)2n . : | (3.3)

Following Pellegriniz, ve assume an initial electron distribution to be

£o(@, M)=perg(N)/21, (3.4)



i.e., the electron density is uniform in the length scale of X, wvhere
pe is the longitudinal electron density and g(n) stands the initial

energy distribution with

[an g(n) = 1. (3.5)

-o0

Substitute (3.2.1), (3.2.2) and (3.4) into (3.2.5), we obtain

df, + 2wn of, = w,sind 2, ¢ | (3.6)
ot 2 2 an

The averaged energy transfer is then given by
2

> = S:ch \En £(d,N,t) N

=T<ng> (27 wp) 2D (3.7)
(4]
From the recurrence formula (3.6), (3.4) and (3.7) we observe that the

average energy loss

<np» = 0, for all n = odd.
3.1 FIRST ORDER PERTURBATION

Using the initial distribution in eq.(3.4), we obtain the first order

distribution function as,

f1= peA 1 3g (-cos¢ + cos(d-2wgnt) ). (3.8)
8n N an

the second order f5 can be expanded into azimuth components as
z2 Y
f2=ZEop(N, 1) elmd (3.9)
one can easily obtain f5g5, which gives the non-zero contribution to the
average energy transfer,

f90= peX 2 [ 1 2g (l-cos2wgnt)] (3.10)
64m 21 n2 an



<n> =<np>+<ny>.
<np>= (/wp)* [do {dn £(@,n,t) n
= pe) ( 2/wp)*(2upt)3 {dn g(n) F(2wonto)
16 (3.11)
vhere tg=NyX,/(8/,c) and,

- F(x)=(cosx-1+ x sinx/2)/2. (3.12)
The energy loss by the electrons is equal to the energy gained by the
electromagnetic field. By evaluating Jj, Jp to the first order fj, sub-
stituting it into eq.(3.2.3), (3.2.4) we find that the energy is exactly

conserved to the first non-zero perturbation order,
3.2 SECOND ORDER PERTURBATION
To decide the appliable condition of the perturbation theory, we cal-

culate the second non-zero order perturbation contribution. From

eqs.(3.9),(3.10) and (3.7), we obtain

fy1 = f9_1 = O. ‘ ‘ (3.13)
3y + 4iwghizg = pedwgd (1 2g (em200Nti-1)) (3.14.1)
ot 6411 N n N
Mg p - hiwghfy_g = - perwp d ( 1 dg (e2®¥ONti.i)). (3.14.2)
2t 64ni n N I
fo7 can be found by assuming £fj9 = peA (Aze‘4w0nti+f22), vhere fj59 is a
641
special solution of (3.14.1),
f90 = Bzimote‘zwonti+02e‘2“’0nti+D2 (3.15)
where
B2= 1 2g

nZn



Co= - 1 %
2n? an?
Dp= 1 2 (log)
4n 2n han
Similarly, fp_p can be solved from eq.(3.14.2). The

distribution function becomes,

£y 21 | £, je-2id

f90 + foge

£20 + peX { 1 _2 (n 2g )cos(4wpht-24)
64n 203 an  An
+2wgt 1 dg sin(2wgnt-29)
n2 n
-1 3%g cos(2wgnt-2¢)+ 1 9 (1 2g ) cos2¢)
n? an? 2n 3n n an

(3.16)

second order

(3.17)

Using f5, we can solve f3 to be f31 = Beb; (A3e‘2w0hti+£51),

256n

f31= _peX (B3w02tze"wonti+C3iwote'2w0hti+D3w02tzezwonti

256n
+E3iwotezwonti+F3e2wOnti+G3iwote‘4w0nti+H3e‘4wOnti+I3) ,
wvhere
By=- 1 28
n3 3n
C3=— 3 (1 28)
an ndan
D3=-1 2g
2n3n

Eg=- 1 (512g -2 2%g)
4n3  noan an2

Fa=- 1 (- g +51 2%g - 171 a2)
sn3 3  noan? 2 noan

G3=11 _2(n2g)
2 %> an

=



2n a0 4 nZan? 4 ndan : (3.18)
The initial condition also gives the following céndition
A3y=—(F3+H3+I3). |
Hence, the third order f3 is given by
fq = f31eicb + f3_1ei"b + f33e3i¢ + f3;3e'3i¢

= _paX | B3w02t2cos(2wont—¢) + Cawpt sin(2wpnt-%)
128n
+A3COS(2woht—¢) + D3w02t2COS(2w0ht+¢)
-E3wgt sin(2wght+e) + Faycos(2wpnt+®)
+Gawpt sin(4wgnt-9) + Hycos(4wpnt-¢).
+I3COS¢»} + f33e3id> + f3_3e—3i¢ . (3.19)
Since we only need to calculate f,;g for the second order energy
transfer, we need only f3i7 components in the third order distribution

function. The solution is given by

E40=- _peX 2 { (-B3+D3)[ - _1 wptgPeos2ugnto

512n an Zn
+ 1 wotpsinZwgnty - 1 (1—cos2w0nto)]
2n? 4n3
+(C3+E3)[ 1 wptpsinZwgntp- 1 (1-cos2wgntg) ]
2n 4n2
-(43-F3) 1 (1l-cosZwgntp)
2n
+G3[ 1 wptpsindwgntg- _1  (1-cosiwgntp)]
4n 16n2 |
-H3 1 (1l-cos4wphtg)] } (3.20)

4n .



The averaged energy exchange is
AKN> = <ng> + <> (3.21)
vhere <ny> is given by eq.(3.12) and
 <ng>=peh(9/wg)8 £3¢>$3n £40(, N, )N
=poA(2/wp)8(wyto) {g(M)Fa(wontoldn (3.22)
where (see appendix I) the second gain function is given by

Fo(x)=1 { - 1 sin2x - 13 cos2x + 53 sin2x - 3 (l-cos2x)

x4 2 4 X 8 x2 ) x3
- 1 cos4x + 11 sin4x - 9 (l-coséx) }
2 x 8 =x¢2 8 x3 (3.23)

If ve define the first order gain function as
Fi(x)=1 ( sin2x - (1-cos2x) )
x2 X , (3.24)

then the averaged energy exchange per electron is

N>/ peh= 1 (g/wo)4(woto)3§dn g(n)F1 (wphtp)
16
¢ 1 (/u0)8(ugto)” {dn g(mFa(upnto)
256 . (3.25)
The gain function Fi(x) and Fy(x) are plotted in Fig.l and Fig.2

respectively. Note that (appendix I) Fq(x=0)=0, Fp(x)=0, which means
that if initially all the particles are at the equilibrium energy,
g(n)=8(Nn), the net energy exchange during the whole process should be

Zero.

3.3 EXAMPLE



For the special case of g(n)=8(n-nhg),

<>/peh= 1 (2/wp)*(woto)3F (wotohng)
16
+ 1 (R/wp)8(wptg) Folwytohg) -

256 (3.26)

The higher order contribution can not be neglected when

<ny> 16 F1(wgtghg) (3.27)
Even for a more general initial condition we can still convince

ourself that the possible energy exchange intergration is of the follow-

ing order:

{]fon dgdn _ 1 ;

wot
[{£1n dedn ~(woto)(/wp)?

(|£2n dedn ~ (wotp)3(2/wp)*
[ |£3n dedn ~ (wptp)>(2/wp)®

| {£4n dodn ~ (wotp)7(2/wp)8

' (3.28)

since the experimental set up is normally operating at wptghg ~ 1 to
obtain the largest gain. We shall estimate the validity of perturbation
method in that condition. For

B,=1 (T), Eg=109 V/m, A\,=0.1 m, v,=100, N,=50,

(2/wp)2= e2B Egh,2 = 5.8 x 1070

2ﬂ2m0283Yr2 ,

wotp = 20Ny ,

L Fy(x) = 1072,

16 Fq(x)



hence
<ng> = 0.3
<ngp> ,

the higher order contribution may not negligible in this situation.

4. DISCUSSION

As pointed out by Morton3, eq.(3.2.1) and (3.2.2) are the same
standard rf equations wused by accelerator physicists. When the
parameters ® and ng changes adiabatically we can draw the trajectories
in phase space which correspond to the solution of eq.(3.2.1) and
(3.2.2). The maximum stable phase curve of a single bucket is shown in
Fig.3. When the electrons are injected into the FEL with the uniform

distribution in phase, the condition3

No < Npax (4.1)
with
Nmax = (R/wg) T'@®y) (4.2)
T(pp)=(cosd-( 1 sin®.-&.) sin¢r)1/2,
2

must be satisfied to have the electrons partly trapped in the stable
region. Under the influence of the E.M. wave, one bounce period of the
electron motion inside the wiggler corresponds to

N, (Q/wg)=1. (4.3)

The energy transfer calculation shown on Fig.l suggests that the maximum
gain is achieved at

wgtong = 1.3. (4.4)



At the maximum gain, the condition that the higher order perturbation
contribution should not be negligible is (Q/wg)*(wgtg)4x10-2 = 0.15,
i.e., the second order is 15% of the first order. The condition is
equivalent to, |

" (Q/7wg) 20N, =2 . (4.5)

We observe that,

(1) To achieve a high gain, the intereaction should last for a time
comparable to the bounce periqd, Ny(R/wy) > 0.2 , otherwise
either eq.(4.4) can not be satisfied or the electrons can not be
trapped;

(2) When the intereaction goes on less than half bounce period, the per-
turbation method can be used and eq.(4.4) should be satisfied to

achieve a high gain. The injection ngp should be near the "fop" of

the closed region in Fig.3;

(3) When the intereaction goes on about half‘bounce period , the high
gain can be achieved but higher order perturbation contribution
should be included into consideration;

(4) When the intereaction goes on for more than one bounce period , the
perturbation method can no longer be used. However it is implied by
eq.(3.2.1) and (3.2.2) that on one bounce period the total energy

exchange should be very small.

In most of the FEL experiment, the conditions are near to the marginal

limit that perturbation can be applied. Our analysis indicates that in



the usual case the first order perturbatién on Vlasov’s equation is
useful to analyse the behavior of the FEL system. Howvever in the
situation when the criterion given in section. 3 is not met, the
perturbation calculation may not give meaningful result. Other kind of

method, for example a numerical calculation may have to be used.

APPENDIX I: SECOND ORDER GAIN FUNCTION

From eq.(3.20) and (3.22),

N> = (R/wg)82n Sdn £4,0(¢, N, t)N
PeX
=—(9/ )8 _g_jn dn 2 { _1 wg?tgZeos2wghtq(B3-D3)
256 an  2n

+wotosinZuwghtgl~ (B3+D3) + (C3+E3) ]
2n2 2n

+ 1 wotpsindwgnto G3
4n

+(1-cosZwgntg) [ (B3-D3) - (C3+E3) - (A3-F3) ]
4n3 4n2 2n

-(1-coséwgntg)( Gy + Hy ) }
1602 4n (A1-1)



The five terms given in eq.(Al.1) can be evaluated and is given

respectively:
I- 1 [g(mdn (woto)3 (- 1 sin2wgntg - __1 _ cos2awpnty)
256 . h4 2 wonto

IT= 1 f{g(n)dn (wgro)? (sin2wgntp + 7 cos2wpntg + 5 sin2wgntg )
256 n’ 4 wohtg 8 (wohtp)?

III= 1 |g(ndn (wotg)® (-2sinkwgntg - 9 coshwontg + 25 sindwontg )
256 né 2 wyhtg 8 (wohtg)?

Iv= 1 {g(n)dn (woto)3 (-2sinkwghty -4 cos2wgntg + 6 sin2wgntg
256 né wohtg (wphtg)?
-3 (1-cos2wpntp) )
(wphtg)3

V= _1_ Sg(mdh (woto)3 ( 2sindwgnty +4 cosbwgntg - 7 sin4dwpntg

256 n’ wonto 4 (wghtg)?
- 9 (Q-cosédwgntgy) )
8  (wphtq)? . (A1.2)
Hence,
Mg>= ped | Falwontg) g(n) dn , (41.3)
256

where Fo(x) is given in eq.(3.26).
We expand Fy(x) by the Taylor expansion and can easily find that the

coefficient of the terms 1 , 1 , 1 and 1 is equal to zero. Thus

X7 X5 X3 X
Fz(X:O):O (Al-A)

and Fp(x) is an odd funtion in x, as is Fi(x).
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FIG.1 FIRST ORDER GATN FUNCTION.
FIG.2 SECOND ORDER GAIN FUNCTION.

FIG.3 STABLE REGION IN PHASE SPACE.
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