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LONGITUDINAL STABILITY IN RHIC
ABSTRACT

Introduction

Unless specific procedures are adapted the beam bunches in RHIC will be succeptable to
longitudinal coupled bunch instabilities. These will be driven by the higher order parasitic modes
present in the accelerating and storage cavities. At the design intensity per bunch the longitudinal
density of the protons and in some cases the heavy ions will, in conjuction with the space charge
impedance and/or the broadband impedance of the vacuum chamber, shift the coherent
synchrotron frequency of the bunches outside of the incoherent band during some part of the
injection or acceleration cycle. However once the bunches are transferred to the much smaller
bucket of the storage rf system the resulting significant increase is synchrotron frequency spread
will in general result in stability. One can insure stability by transferring the bunches into the
“storage rf buckets” at the lowest possible energy. Another method of obtaining stability is to
increase the synchrotron frequency spread of the bunches in the accelerating rf system buckets.
This can be done by exciting a “Landau Cavity” at some multiple of the bunch frequency so as to
increase the no-linearity of the rf voltage that the bunch sees. In a later section we will discuss
both of these schemes and will in particular investigate using one of the storage cavities as a

Landau Cavity.

Stability Limits

We shall assume that the real coherent frequency shifts produced by the space charge or



broadband vacuum chamber impedance are much large than any imaginary shifts produced by the
damped parasitie modes of the rf cavities. Hence a constant value of (Z/n) can be used in
estimating these shifts. Next we shall assume a longitudinal phase space density of the form
(1-r*)** which leads to a line change density of the form [1 ~(¢/$)*. The latter has both the
first and second derivative zero at the bunch edge and resembles the proton bunches observed in
the AGS at RHIC intensities. (In the early 90's).

The coherent frequency shift Aw,,= (®,, - mw,) of the bunch away from the incoherent
synchrotron frequency at the center of the bunch «, is calculated using the Sacherer® integral
- equation. Here w,, is the coherent synchrotron frequency of a bunch and m = 1, 2, - the
azimuthal mode number i.e. dipole, quadrupole etc. It is also assumed that there is no mode
coupling i.e. Aw,<<mw, Using the method of expansion into orthogonal polynomials one must

solve the equation®

det(M~Ave])=0 ¢y

where M is called the interaction matrix and Av= (@, - mo.)/w,.
Numerical solutions of equation 1 yield eigenvalue Av, with corresponding eigenfunctions

Ry(r) for a given value of m. For the case of a constant (Z/n) one has®,

Mkf%[;l[ 8(p) g () do
-¢

where,



gk«p){z° w(r) £,r) e —‘?mﬁ

€ =n 1/B*v’E/e with v, = w/w, the rotation frequency, and I, is the average beam current. Here
w(r) =(d ¥ /dr)/r is the weight function such that orthogonal polynomials f(r) form a complete set

of normalized functions i.e.:

f w(r) f0) f, @) rdr= 3,

Now P, is the stationary distribution function of the bunch in longitudinal phase space
(,0) or (d),d)/ws) with a the maximum value of r of the bunch and +¢ the bunch length. The
functions £, are given by Satoh @ for distribution functions of the form (1- ) "2, n > - 1,

The My, with k,1 =0, 1,2 for the case m = 1 and n = 3 have been calculated (note M,,,= -'
M, = 0). Then the frequency shifts and corresponding eigenfunctions were obtained for the three
dipole modes in this approximation.

In order to obtain a stability diagram one must include the spread in synchrotron frequency
®,= (1) in the analysis. The source of this spread, which is a function of r, is the non-linear part
of the rf focusing force and the space change force (the latter is linear only for the distribution

with n=1). Following Zotter™® one has,

ws =wso _AwSC‘G(r) - (‘)SO.H(r) (2)



where w,, is the zero current value and A w,, the shift of the center frequency i.e. A w_= &, -
w,, wWith o, the value at the center of the bunch. The function G(r) can be evaluated for a given n
and H(r) is the contribution due to the rf non-linearity.

Equation 2 can be written as w,(r) = w,, + D(r). It can be shown  that, again expanding

in orthogonal polynomials, the Sacherer integral equation reduces to the eigenvalue problem.

det(M+mK-Awl)=0 3)

Where again M is the interaction matrix, m the azimuthal mode number and

szw—mwm

with @ the coherent frequency and K the dispension matrix given by

K= f D(ryw(r ) (r)f(r)rar )

Now the matrix elements (M,,+K, ) =Mk/E ,k,1,=0,1,2 have been evaluated (m=1) for n =3

with the following results:

My=Aw, ~(4/7)S,M];=6818Aw,_ ~.51755,



M;,=5806Aw,-.509S,M;, = 2335 =M,
Mjy=Aw, ~4/7)SM111=6818Aw, - 51755,

M =M, =-.0685Aw_+.24325

where S = w,, H(r) and

Awsc=-1-§£ |ZIn|o,,
8 3
Qo

&)
for a constant Z/n. Again the M, =M52 elements are zero and for the r=0 particle so are the
.Moll =M1/0 elements. Hence if one included the effect of space charge and calculates the frequer;cy
shift Aw for no rf frequency spread i.e. S=0 then the lowest order radial eigen mode is ~£,(r) and
the frequency shift is just Aw,,. That is the coherent frequency shift in just equal to the incoherent
single particle frequency shift at the center of the bunch. This corresponds to rigid dipole motion
and is the same result obtained for the distribution n=1 i.e. the parabolic line charge bunch. We
note here that for a given beam current this frequency shift is 1.52 times greater than that obtained
for the lowest order radial mode using equation(1) and the M,, for k,¢ = 0, 1, 2 as mentioned
above.

Since here the lowest order radial eigenmode contains only f,(r) the synthetic kernel

approximation® can be used to obtain a dispersion relation and hence a stability diagram. This



has been done and the result is shown in figure 1. Here

o h*Zin

W, S—_—
2.633B%V,

1

©

where h=rf harmonic number, B = bunching factor, V the total rf voltage. In a stationary bucket
S= ((f)zl 16)w  where @ is the bunch half length in radians. In principal one could use the matrix
equation (3) to obtain the stability limit but this would require a much greater number of elements
M1/ than we have evaluated. The curve shown in figure 1 has also been obtained by other
authors®® for the distribution n=3.

We see then that for a broad band impedance i.e. a constant Z/n the stability limits are
either Aw,/S<0.4 or 0.20 depending upon the sign of Z and 1. Let us consider protons at
injection with V= 196 Kv, w,, =27 45, I, = 1.25ma, B = (6.5/37.5) for a bunch area of 0.3
evsec, and h=342. Then Aw, =.054 (Z/n) w,, and S = [(n B)¥/16] w,, = 1.85 x 102 w_, so that
(Z/m)< j0.14 Q for stability. If the bunch area were increased to 0.5 evsec this limit would
increase to 0.5 Q and to .78 Q for a .6 evsec bunch. Now the broad band impedance due to the
vacuum chamber, bellows, etc. is .75 - 1 Q © up to about 300 MHZ or just above where the first
zero of a 6.5 nsec n=3 bunch spectrum would occur. However one must also consider the space
charge impedance given by (Z/n),, = g,Z, /2 Py* where Z,=377 Q and g, is a form factor that
depends upon the beam size and vacuum chamber radius b. It also depends upon the longitudinal
distribution® and we use the results of this reference for the n=3 case to obtain a g,=5.2 withb

=3 ¢m and 6 = 1.4 mm as the rms beam size (3 mmm rad emittance ). Hence for y = 30 one



obtains a space charge impedance of = - 1.09 jQ. This implies close to a null in the total
longitudinal impedance seen by the proton beam at injection. Since the results quoted above are
only approximations the actual value can only be determined by measurements made with the
beam during turn on. In any event in order to possibly obtain stability without additional efforts,
to be described later, the proton bunch area should be increase to 0.5 evsec rather than the 0.3
evsec originally planned.

Next let us consider the Au beam at injection (y =11.1) where V; = 170Kv and B=
(15.5/37.5) for a bunch area of .25 evsec/AMU. We again take I, = 1.25 ma and obtain a Awl/S
=.044. Hence if we take the criteria | Z/n l<.4/(Aw,/S) we obtainZ/n<9.1Q. Now if we again
take the transverse emmittance as 10wum then the space charge impedance becomes ~-8jQ which
dominates the total broad band impedance. Since injection is below transition 1 is negative and
one again uses the upper half of the stability diagram which give the 9.1Q limit. If the bunch area
is reduced to .2 evsec /AMU so that B =(13.5/37.5) then the (Z/n) limit would be reduced toz;
4.6)Q since (Aw,/S)~B’. This implies that the limit on the Au beam longitudinal emittance is
fairly tight since it should not be larger than .3 evsec/AMU when transition is reached. Again the
actual effective impedance can only be determined by appropriate measurement with a beam.

Finally let us consider both protons and gold at top energy. First protons at y = 268 or
250 Gev and a bunch area of .5 evsec. At 600 kv the bunch length of 4.45 nsec would fit into a
197 MHZ bucket so that this area could be transferred with no rf gym-nastics. At 300kv the
nominal accelerating voltage the final bunch length would be ~5.3 nsec. Putting this into equation

(6) gives a Aw,; = .0654 w,, (Z/n) while S = .0123 w,. This resultsin a Z/n< .075Q. The design



limit for gold bunches is 0.35 evsec/AMU which at 300 Kv for the accelerating voltage gives a
bunch length of = 7nsec at 100 Gev. Again using the above expressions for Aw, and S we obtain
a limit on the broad band impedance of <0.3Q at the nominal 1.25 ma beam current. Since the
space change impedance decreases as 1/y? only the broadband vacuum chamber impedance is
important at these energy. Hence we conclude that both species will become potentially unstable
against coupled bunch longitudinal dipole oscillations driven by the high order parasitic modes of
the acceleration and storage cavities at some point during the acceleration cycle. Since the bunch
areas are limited t0.5 evsec for protons and .35 evsec for Au fons stabilization without feedback

can only be accomplished by increasing S. Methods for accomplishing this are discussed below.

Growth Rates

As pointed out above the proton bunches and the gold bunches at nominal design
intensities will be potentially unstable at one or more times during injection or acceleration. We
assume that any resulting coupled bunch instability will be due to a higher order resonant mode in
one of the rf cavities. In order to calculate the growth rate due to a single mode we will use the

formulations of Baartman © i.e.

Y W, 1R F @)
T = ~ Yy A " X 7
@ VTcosQS ™



Where 1, is the total DC beam current R the shunt impedance of the resonance and @ is

the bunch half length in radians. F,, is a form factor given by

F

mik (112 +k "'ll) J(fwm-rk) (X) (8)

B} o (2 1 G s2ke) T (o)
- D(”) dmg L

Here m is the azmithal mode number, x=r/2, k is the radial mode number, and X=®,,T,
with T ,» the bunch half length in seconds. Since n=3 for our distribution we have p=3/2 and
consider first bnly the m=1 dipole mode. Also we shall assume k=o i.e. that only the lowest order
radial mode is excited. This is reasonable since as noted above the lowest frequency eigen mode
for n=3 has k=0 in the 3x3 matrix approximation. Then equation 7 is correct since only the
growth rate for one radial mode need be considered. The Bessel functions are then J;,, (%) and the
form factor F, ,(y) is plotted in figure 2.

First we consider proton bunches at injection with an area of 0.5 ev sec and Vi, = 196K V.
The first parasitic mode of the revised accelerating cavity is expected to have resonant frequency
0f 104.7 MHZ, a R= 166 KQ and a Q = 29,000. If we assume this to fall on top of a coupled

bunch mode line then the growth rate for the m=1 mode would be given by

(x= 27 104.7 x 10° x 4.2 x 107)

-3 3
Ve = 2745  57x1.25x107°166x10 F1(2,76)=10.6sec‘1
705rad 196x103




Now at 250 Gev with Vi, =300 Kv the bunch length is ~ 5.3 nsec so that ¥ = 1.74 while

-3 3
f.=174 sec’. Then 1/t= 27tx174 57x1.25x107° 166x10

F(1.74) = 8.55 sec™’.
445 300x10°

Next let us calculate the frequency shift due to a broad band impedance of Z/n = 1Q.

Using equation 6 and the injection parameters we obtain

Aco. = 2T 45 x 125 x 107 342% x 1]
' 2633 x (8.4/37.5)7 196 x 103

=.025w_= 7.1 sec™ 17

Thus our assumption that the real frequency shift due to space charge and the vacuum chamber
broad band impedance is much greater than the imaginary shift paused by a single cavity
resonance would not be valid if the higher order cavity modes were not damped. At present
computer simulations indicate that with two dampers installed the first parasitic mode in the neyy
accelerating cavity will have shunt impedance of only 1.3 KQ at 104.7 MHZ with an R/Q =~ 5.7¢).
This is a reduction factor of 128 and would result in a growth rate of .083 sec™ or an e-folding
time of 12 sec. Since the nominal acceleration time to top energy is 60 sec or 5 e-folding times no
significant growth should occur® even if the bunches were unstable at injection. If the number of
bunches is doubled the growth rate will increase and the mode number change. However, since
the resonance will spread across many rotation lines the driving impedance will be essentially the
same and hence a doubling of the rate would probably occur. Increasing the intensity per bunch

will also increase the growth rate and shorten the time the beam will be stable. It should also be
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noted that the growth rate for the same bunch area during acceleration for V; = 300 Kv, change
by less than 20% from the injection value.

In the case of Au ions at injection we have a bunch that is 15.5 nec long for an area of .25
evsec/ AMU this gives a y =27 x 7.75 x 10” x 104.7 x 10°=5 for the first parasitic accelerating
cavity mode. We see from figure 3 that F, ,(5) = .015 so that the lowest order radial dipole mode
if unstable would be driven very weakly i.e. .0035 sec™ growth rate. Now the k=0 quadrupole
mode if it excited and were unstable would have a growth rate 6 2/3 greater since F,p(5)=.1as
shown in figure 3. This would result in an e-folding time of 42 sec so that even in the highly
unlikely event that such a mode were unstable it could not grow before acceleration takes place.

During acceleration the bunch length shrinks significantly so that the growth rate of any»l
unstable mode driven by the 104.7 MHZ impedance will vary considerably. When y = 20.95 the
bunch length for a given area will be the same as for y = 26 and y = 108. If the area is .25 ev sec
AMU the width would be 5.8 nsec which gives a x(/04.7) = 1.91 which is at the peak of the F 1,0
form factor. The resulting growth rate for V=300 Kv is .059 sec ! for the current of 1.25
ma/bunch in 57 bunches. This is still a very low value considering that it would take 5.7 sec to
change y from 11.8 to 20.95 and another 3.17 sec to reach y =26 at a B = .5T/sec. From Y=
21-26 the growth rate will of course vary and w, will pass through zero and the rotation of the

bunches in phase space will change sign. Thus, even if a coupled bunch instability were to occur

11



before transition it is not clear if it would persist in the non-adiabatic region around transition.
Hence, unless there were an impedance considerably larger than those expected in the accelerating
cavities or the storage cavities the occurance of a coupled bunch instability before the transition
energy is reached that would have a measurable effect on the Au bunch area highly unlikely at the
design intensity or several times this current.

At y=26 the bunch length would be 6.4 nsec assuming that in passing transition there is a
growth in area from .25 to .3 evsec/AMU. The growth rate for the 104.7 MHZ resonance driving
the dipole mode would be essentially the same as at y=20.95 i.e. =.059 sec.” For y=V3 v, = 39.5
the bunch length would increase to 7.5 nsec but the growth rate would change very little to .057
sec”. Finally at 100 GeV the bunch would again be 6.4 nsec wide and the growth rate would be
.052 sec™ for the same resonance. Since it would take about 52 sec to accelerate from Y=26 to
Y=108 we see that even if the bunches were unstable during the period it would represent only 2.8
e-folding periods. Using the Baartman criterion of 4-5 e-folding times as being safe one can
conclude that at the design intensity and perhapg .5 0% greater the Au bunches should be exhibit
no oscillations due to the lowest frequency, accelerating cavity resonance. Again if the current
per bunch is increased stability will be lost sooner and the growth rate increased while increasing
the number of bunch only changes the growth rate. In the case of the Au ions it is possible to

transfer the bunches to the storage rf system buckets at y ~ 26 and then use that system for
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acceleration™”. This would then greatly increase the intensity threshold for instability due to the
much larger synchrotron frequency spread within the bunch since it would then occupy a much
larger fraction of the bucket area. We shall discuss this in more detail later.

So far we have considered only the m=1 or dipole mode driven by the lowest frequency
parasitic resonance expected to be present in the accelerating cavities. Table 1 shows the
predicted resonances and the effect of proposed damping loops. For protons at injection § = 5.2
for the 197.9 MHZ resonance and we find F,, = 0.2, F,, = 0.18 and a negligible value for F,,.
Since the damped resonant impedance is essentially the same as the 104 MHZ line the growth
rates would be smaller than for the dipole case. At what intensity the m=2 or 3 modes would be
become unstable has not been estimated. One can only state that it will be progressively larger as
m increases.

Next let us consider the highest frequency mode in table 1 and protons at 250 GeV. Then
X = 5.37 and one finds that F;; = .2. The growth rate would be .264 sec™ at the design intensity
but it is highly unlikely that the sextuple mode would be unstable at this level.

Finally let us look at the storage cavity modes. In particular the first resonance above the
196 MHZ fundamental i.e. at 308.4 MHZ would produce a ) = 8.1 at injection, 7.5 at y = 39.5,
and 5.1 at 250 GeV for protons. The mode with the largest growth rate would be m=4 at top

energy. Again, at design intensity it would be ~ .82 sec’. At lower energy the m= 5,6 modes
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would be most strongly driven as can be seen from figure 2. For this resonance Q = 4400
corresponding to a 70Kc band width while the line spacing for the coupled bunch modes is £ =78
Kc and the harmonic number is #3950. Since f, the rotation frequency changes by over 40Hz
from injection to maximum energy the spectrum line corresponding to a given coupled bunch
mode n near the cavity resonance at 308MHz will change by about 160Kc. Hence a given mode n
would not be driven at the same rate during the acceleration cycle for this reason as well as due to
the change in ). As far as the stability of the m = 4, 5, 6 modes is concerned again the real
frequency shifts at a given intensity will decrease with m so the thresholds will be greater. The
maximum growth rate of .82 sec™ for the 308 MHZ resonance (m=4) is still more than eight times
smaller than the broadband dipole mode frequency shift of 7.1 sec . For m = 4,56 of course the
latter will be smaller so that one would be in the region where the real and imaginary frequency
shifts are comparable and thresholds are difficult to determine.® At the design intensity it is safe
to assume however, that the 308 MHz resonance will not present a problem. As the intensity is
increased the threshold for higher m modes could be reached but by then other methods for
suppressing instability could be employed. As for the other parasites modes in the storage cavities
the resonant impedances are much lower and or the  values much higher so that they should not
be a problem at design intensity or several times larger.

We should point out that the growth rates calculated above are for a single cavity. Inthe
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case of the accelerating cavities one should multiply by a factor of two since the damped
resonance will certainly overlap. For the storage cavities since the band width of the 308 MHz
mode is less than the mode frequency spacing only a worst case scenario where the same parasitic

mode of more than one cavity falls on top of another would alter the results.

Stabilizing Methods:

As mentioned in the introduction one can increase the intensity threshold for stability by
increasing the synchrotron frequency spread within the bunched beam. We shall consider first the
increase obtained when the Au beam is transferred into the storage buckets at Y =26 instead of ¥
=108.99 At y=26 and 0.4 eV sec/AMU bunch area with V ... = 300 kv the bunch half length will
be .714 rad with B = .197. Using equation with h =360 and Io = 1.25 ma we obtaina A w, =
0265 w,, (z/n) while S=( (?)2/ 16) w,, = .239 w,, so that (A w,/s) = 1.1 (z/n). Now if the bunches
are transferred to the 196 MHZ buckets with h = 2,520 and V= 6MYV then B=.44 and we obtain a
A @, =5.9x10% w,, (z/n). For this case S=.134 w,, so that (A w,/s) =.044 (z/n) hence for the
same intensity the allowed (Z/n) can be 25 times greater.

If the bunch area is 0.35 eV sec/AMU then at y= 26 or 24.4 GeV rebucketing with 2MV

on the storage cavities should be possible with no loss % For this area and V,__ = 300 Kv we

find a (A w,/s) = 1.5 (z/n). With V, =600 Kv which is required prior to rebucketing it is
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increased by 2" i.e. (A ®,/s) =1.78 (z/n) . In the 2MV, h= 2,520 bucket one has a A w, = .0086
Wy, (Z/n) with S= .232 w,, so that (A ®,/s) =.0373 (Z/n) which would allow an impedance 40
times greater than in the nominal accelerating bucket. We note that at y = 26 the space charge
impedance for a 3mmm rad emittance beam would be ~ -1.45jQ while again the nominal broad
band vacuum chamber impedance is expected to be ~ 0.8jQ. Hence in the region around y =26
the cancellation of these impedance can be expected to occur. Thus the reduction in the stability
threshold due to the two fold increase in V,, prior to rebucketing will be of less importance when
performed at low energy.

Next let us consider the proton case. In principal one could also transfer the bunches from
the h=360 to the h = 2,520 rf buckets at a low value of y where the ratio of n)/y is the same as at
Y =268. For protons this would occur for a y = 23.875 well below the nominal injection value of
~30. This is quite close to ¥ = 22.8 so that the effects of the magnetic nonlinearity < would have
to be considered. Also the required matching voltagve for the transfer from the AGS to the h=360
buckets would be considerably reduced at this lower y. In addition the space charge impedance
would increase and hence there would less likely to be a cancellation between it and the broad
band impedance. Hence this option is not worth considering.

Now the primary reason for suggesting the y = 23.875 injection was the fact that one

could in principal then transfer to the h = 2520 system just by increasing the h = 360 rf voltage to
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600 Kv. At larger values of Y one would have to perform some bunch rotation manipulations in
order to effect he transfer with only 600 Kv available in the h = 360 system. These should be
easier to perform without losses than for Au ions since the proton bunches will be relatively
smaller. The choice of y within the limits of the AGS extraction energy could be dictated by
where the expected cancellation between the space charge and broadband impedance occurs. The
stability threshold could be quite large if one could inject near the null. Then a transfer to the h =
2520 system would insure stability throughout the acceleration and storage cycles.

As an alternate strategy for obtaining stability of the proton bunches one could excite one
of the storage cavities at some fraction of the h = 360 cavity voltage. This would constitute a
“Landau” cavity by providing an additional spread in the Synchrotron frequency within a bunch.
The use of the seventh harmonic is of course dictated by the ratio of the frequencies of the two rf
systems. Stabilization using the sixth harmonic was carried out on the ISR at CERN. However in
more extensive tests ratios of 3 and 4"V were used. An important parameter is (1+ kn) where n is
the ratio of the cavity frequencies and k = V,/V, . Here V, is the Landau cavity voltage and V,
that of the accelerating rf system. In their tests the phase of V| was opposite to that of V, at the
bunch center and k was chosen so that 1 +kn ~ 0. This produces a large frequency spread since
w, = 0 at the bunch center and increase almost linearly fot a bunch that occupies a fraction of the

Landau cavity period. In figure 3 we have plotted the synchrotron frequencies for V, = £V, /7,
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V,=300Kvat y =v3 y, = 39.5 (where the bunch length is a maximum) and a ¢, = 180.

A 0.5 evsec bunch would have a half width of = 39° or 219° in the figure. The fact that
slope of f, vs the bunch length is falling rapidly at the edge of our nominal bunch size is a
potential drawback of using such a large value of n. Observations? and calculations®® for the
case of n=2 indicate that if the slope becomes zero at the bunch edge local Landau damping is lost
and the instability threshold is lowered. Now for k == 1/7 the bunch shape will of course be
altered so that our stability analysis that assumes a particular distribution would no longer apply.
For k= - 1/7 the bunch will have a flat top and steep edges while for k= 1/7 the density will be
peaked at the center.

We note that for k= -1/7 the incoherent space charge tune shift would be zero at the
center of the bunch and for an inductive wall impedance it would be come negative at the edge of
the bunch i.e. larger amplitude particles would have a lower synchrotron frequency. This
variation would of course be superimposed on that due to the Landau cavity. For k =+ 1/7 the
incoherent space charge tune shift would be maximum at the center of the bunch and much
greater than without the Landau cavity. The shift would decrease toward the edge of the bunch
and again is negative for the inductive wall. Hence the variation of frequency with amplitude
would be the same as that due to the Landau cavity (and to the accelerating rf cavity). However

as noted above the stability threshold depends upon the third power of the bunch length and
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inversely with the frequency spread. It can be shown® that for short bunches S/S, = 2.34 ®_3*
where S_is the spread for k =-1/7 and S, for +1/7 and @, is the bunch length for k=0. Hence for
a given Landau cavity voltage the negative sign is most likely to give the larger stability limit. As
noted above the choice of a negative k was used operationally at the ISR

One additional option in operating with a Landau cavity for proton bunch stabilization
would be to increase the accelerating voltage V, to 600 Kv and V, to 85.7 Kv. Then a 0.5 evsec
bunch half width will be about 30° and hence occupy a smaller fraction of the effective rf bucket.
The absolute frequency spread will actually be larger since Q, the synchrotron frequency with V,
= 0 will be V2 larger while the slope of Qs vs bunch length is much smaller at the edge of the
bunch than at the center. The edge of the bunch will also be further away from the region Whel_"e
this slope is zero than for the V, =300 Kv case. Thus any effects due to a near zero slope will be
reduced. Note also that while the real frequency shift given by equation 6 will only increase by
2V (for V; = 0) the spread with V; = 85.7 Kv will be > 0.9 v"2. Hence one would not expect the

stability threshold to be lowered by this increase in V,.

Conclusion
Although the proton bunches and the heavy ion bunches are expected to be potentially

unstable at the design intensity per bunch it has been shown that for the anticipated impedances of
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the higher order resonant modes in the accelerating and storage cavities it should be possible to
suppress the growth of any coupled bunch instabilities. Once the value of the effective broadband
coupling impedance is known it should be possible to control any such instabilities at several times
the design intensity using the methods outlined above. At some point it may become necessary to
employ feedback to aid in suppressing any dipole or quadrupole mode that arises as the bunch -

intensity is increased™®.
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HOM dampers performances (two damping loop-longitudinal modes only). MAFIA results.

Figure 2

2 DAMPERS DAMPING FACTOR
NO HOM INSTALLED INSTALLED
N FIMEZ  |RJkQ] | Q1 | RQIQT [R.KQ] | RuR,
1 27.7 1120 17900 62.6 1120 1
2 104.7 166 29250 5.7 1.3 128
3 197.9 54 22800 2.4 1.4 38.6
4 269.2 86.3 21400 4.0 7.0 123
5 279.0 105.0 20400 52 10.1 10.4
6 3243 342.5 31400 10.3 14.5 23.6
Table 1
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