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1 Introduction

Rotating coils are commonly used to measure the magnetic field coefficients (@n, by,) inside
straight magnets [1]. They can also be employed to determine the multipole coeflicients

(Gn,by) (cf. Ref. [2]) in helical magnets.

We use a cylindrical coordinate system (r, 8, s) where s designates the coordinate along
the longitudinal magnet axis. The area of a flat rotating coil ranges from r; to r; and
from s; to s;. The magnetic flux through the coils is

8(0) = N / ? / ” By(r,0) dr ds (1)

where N is the number of coils windings. For rotating coils one has 8 = wt and the induced
voltage

v=_% (2)

St

is proportional to the angular velocity w.

We will present formulae for the magnetic flux through a rotating coil for straight and
helical magnets. Assuming the induced voltage is parameterized in terms of ordinary mul-
tipole coefﬁcientls (@n,by,) conversion formulas will be given to obtain the helical multipole

coeflicients (@,, b,,).

2 Straight Magnetic Fields

The azimuthal field in straight magnets can be expressed in multipole coefficients (a,, b,,)
as [2]

By = B"i (r_ro>" [bn cos ((n + 1)9) ~ aysin (5 1)0)]. (3) |

n=0

By is the main magnetic field and ry a reference radius. The magnetic flux (1) becomes

®(0) = NBo(sz — s1) i K. [bn cos ((n + 1)0) — a, sin ((n + 1)9)] (4)

n=0
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where the coefficients K, are defined by

(n+1) (n+1)
To T2 T
— _“ - = 5
o n‘“[(“}) (7‘0) ] &)

and result from the integration over r in (1).

3 Helical Magnetic Fields

The azimuthal helical field can be written in terms of helical multipole coefficients (n, bn)

(cf. Ref. [2]) as

n=0

Bo= 2% futua ((n + D) [En cos ((n +1)(0 — ks)) = ansin ((n+1)(0 - ks))](g)
with

_ M4 1) 1

= . 7
(n+1)»H1 rpkn (7)

Jn

Here B, denotes the transverse component of the main field close to the magnet axis.
This field is vertical at the location s = 0. The magnetic flux (1) can be expressed as

®(8) = NB, f: R, [i;,, cos ((n + 1)0) — énsin ((n + 1)0)] 8)
n=0

with new coefficients
R, = %— /rz % a1 ((n + l)kr) dr. 9)

The integral in (9) can be computed numerically. In (8) new magnetic multipole coeffi-
cients

An = NnTn ann)
In = Falnt5 (10)
by, = —@nSp + bnTx.

are used for which

Sp = (n_—:_l-)_k [cos ((n + l)ksz) — cos ((n + 1)k31)]

_ 2 . (n+1Dk(sz—s1) . (n+1)k(sz+ s1)
i 2 sin 5 sin 5

(1)




and

T, = (_n——:T)k [sin ((n + 1)k32) — sin ((n + l)ksl)]
2 . (n+1)k(sz — s1) cos (n+ 1)k(sz + s1)

=T Dk 2 2

have been defined.

(12)

4 Conversion

We assume now a device that parameterizes the voltage (2) in terms of multipole coeffi-
cients (an, by, ) for straight magnets. If the measured magnetic field has helical symmetry,

the coefficients (én,b,) in Eq. (8) can be derived as

o ﬁ(sz —s1)- a1, —b,5,

" R. SE+TE (13)
5 f(_n(sz —s1)- @nSn + 0. T,

" R, 52 4+ T2

We consider three special cases.
(a) Measuring coil of one helical wavelength with s; = s, sp = s + .
From equations (11) and (12) we obtain

Sp=T,=0 (14)
and with (10)
b=0. (15)

a

The magnetic flux (8) is therefore zero and the coefficients can not be obtained.

(b) Measuring coil of half helical wave length with s, = 0, s, = A/2.
In this case one has

——2_ ifn even
= ("'H')k ! =
Sn { 0 i n odd and T.=0.

Only coefficients with n even (i.e. helical dipole, sextupole etc. coefficients) can be
measured. For those we have '

Ku(n+ 1)

&n =+ bna
Z _ _Kn (n + ].)7!'
"~ "R, 2 ™



(c) Infinitely short measuring coil with s; = s, s = 5 + ds.
Expanding (11) and (12) to first order in ds we obtain
Sp = —sin ((n + l)ks) ds,
(17)
T, = + cos ((n + 1)ks) ds

and

&:f(—ﬁ +ancos ((n+1)ks) + bysin ((n + 1)ks) |,
o () (o)),

b==" [— a, sin ((n + 1)ks) + by, cos ((n + l)ks)] .

|

If in addition s = 0, the (@y, b,) can by obtained from the (@n, bs) by multiplication with
K,/R,.
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