

BNL-102205-2014-TECH RHIC/AP/97;BNL-102205-2013-IR

Experimental Study of Transition Crossing at AGS

J. Wei

May 1996

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Experimental Study of Transition Crossing at AGS

Jie Wei, BNL, May 4, 1996

- I. Introduction
- II. Results of Experimental Study
- * measurement of nonlinear momentum-compaction factor $lpha_1$
- * effects of chromatic nonlinearity
- * γ_T -jump and enhancement of nonlinearity (α_1)
- * reduction of nonlinearity using sextupoles
- III. Comparison with MAD and TIBETAN Simulations
- st evaluation of $lpha_1$ and dispersion using MAD
- * longitudinal simulations using TIBETAN
- IV. Conclusions

talk at 1996 APS/AAPT Joint meeting

Personnel:

July 27, 1994: Feburary 2, 1995:

L.A. Ahrens L.A. Ahrens

J.M. Brennan M.M. Blaskiewicz

W.W. Mackay J.M. Brennan

S. Peggs D-P. Deng

T. Satogata W.K. Van Asselt

D. Trbojevic J. Wei

W.K. Van Asselt

A. Warner ...

J. Wei

Acknowledgements:

E. Gill, M. Harrison, K. Reece, T. Roser,

C. Saltmarsh, M. Syphers, S. Tepikian, ...

AGS operation crew

I. Introduction

Transition energy: energy at which particles of different momenta have the same revolution frequency.

(No longitudinal focusing, non-adiabatic synchrotron motion, emittance growth, instabilities, beam loss)

Single-particle effects:

- mismatch in phase switching timing, non-linear bucket
- * chromatic nonlinear effects

Multi-particle effects:

- bunch mismatch due to beam self fields
- combination of self fields and nonlinearity
- microwave instability

Cure:

- avoid transition energy (un-conventional machine lattice)
- \star γ_T -jump by pulsing quadrupoles (distort lattice, enhance α_1 , increase dispersion)

History:

- Discovery of the transition energy
 N.M. Blackman and E.D. Courant, Rev. Sci. Instr. 20 596 (1949)
- Discussion on chromatic nonlinear effect
 K. Jøhnson, Proc. CERN Symp. High-Energy Accel. and Pion Phys. (1956)
- First successful transition crossing on CERN PS and BNL AGS (1960s)
 - ... still, beam loss at 1 on AGS.
- Still needs to cross transition in newly designed machines Relativistic Heavy Ion Collider (RHIC)
 (superconducting magnets, slow ramping rate, enhanced chromatic effects)

Fermilab Main Injector

- More recent theoretical studies:
 K. Takayama, S.Y. Lee, J. Wei, et. al.
- More recent experimental studies:
 - P. Faugeras, et. al., second order effects in SPS, 1979
 - J. Wei, M. Brennan, ei. al., experiments done at AGS since 1993

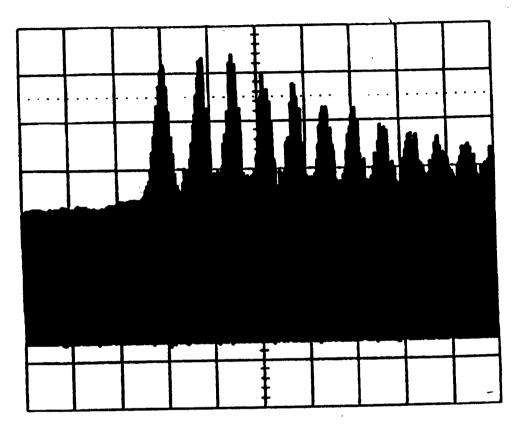
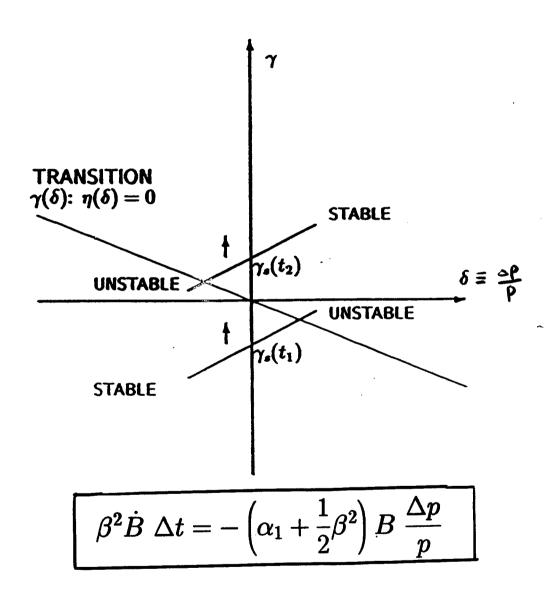
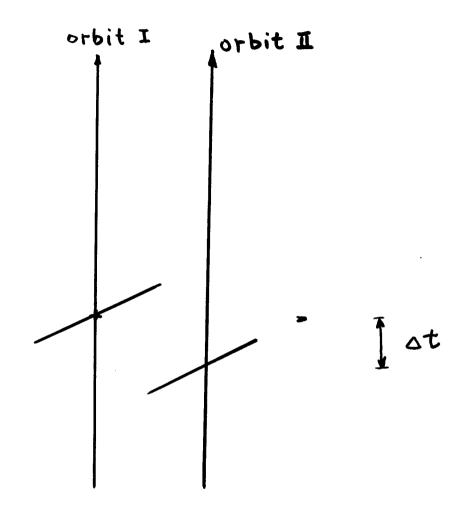


Figure. 1. The envelop of the longitudinal pick-up signal during transition showing more than 100% amplitude modulation. The abscissa is time (5 ms per division).


(AGS. low intensity)

For high intensity proton.

1.5 Tp loss at 60Tp intensity


II. Results of Experimental Study

1. Measurement of nonlinear momentum compaction factor α_1

- using "pencil" beam with small $\Delta p/p$;
- vary $\Delta p/p$ by displacing the radial orbit;
- determine transition timing (Δt) by measuring the minimum beam loss when varying the time of phase switching.

$$\frac{C}{TC} = \left[1 + \alpha' 2 + \alpha' 2 + \cdots \right] \cdot \frac{\lambda^{L_0}}{2}$$

Beam loss vs. syn. phase switching time

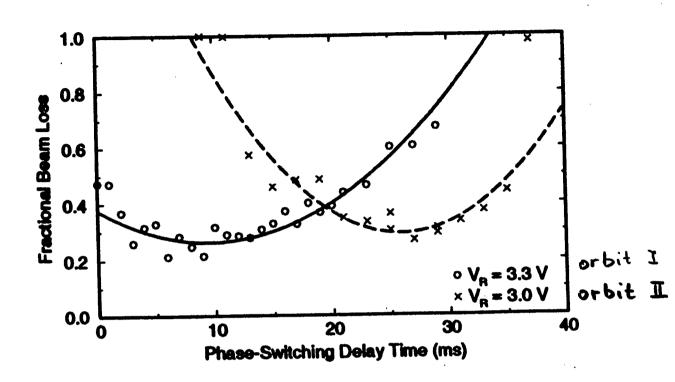


Table 1: Measured AGS γ_t , α_1 , and momentum aperture at various γ_t -jump quadrupole (I_Q) and sextupole (I_S) settings.

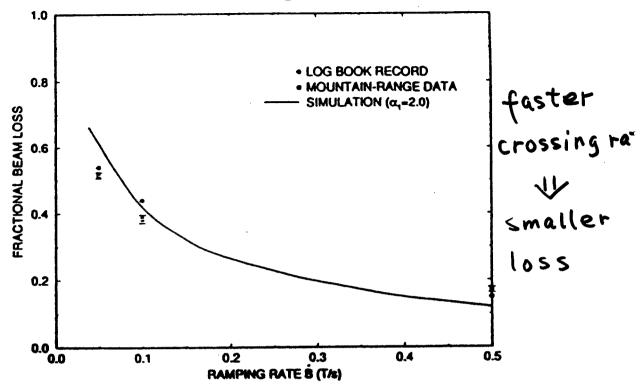
(I_Q,I_S) (A)	(0, 0)	(1700, 0)	(1700, 100)	
. <i>Yt</i> 0	8.45	10.12	10.12	·
α_1	2.5	90	16	·
$\Delta p/p _{ap}~(\times 10^{-3})$	±7.9	±4.7	±4.3	momentum aperture

nominal 17 jump sext. on

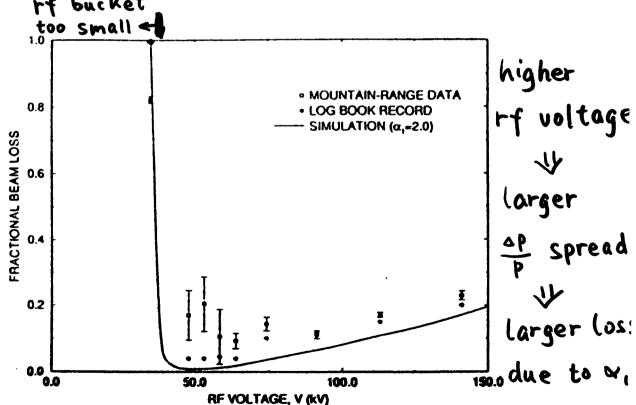
2. Effects of chromatic nonlinearity (%)

non-adiabatic time:

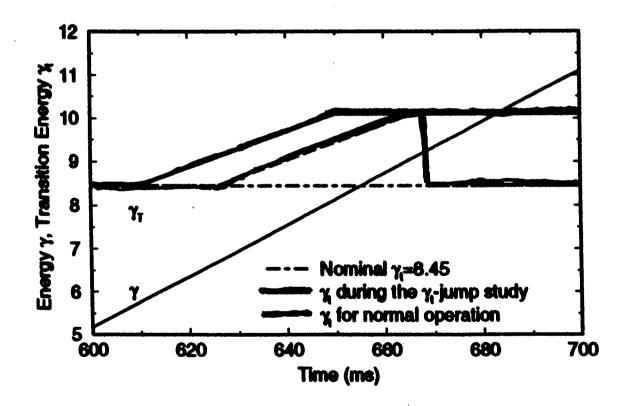
$$T_C = \left(rac{\pi E eta_s^2 \gamma_T^3}{qeV |\cos\phi_s| \dot{\gamma}_s h\omega_s^2}
ight)^{rac{1}{3}}$$

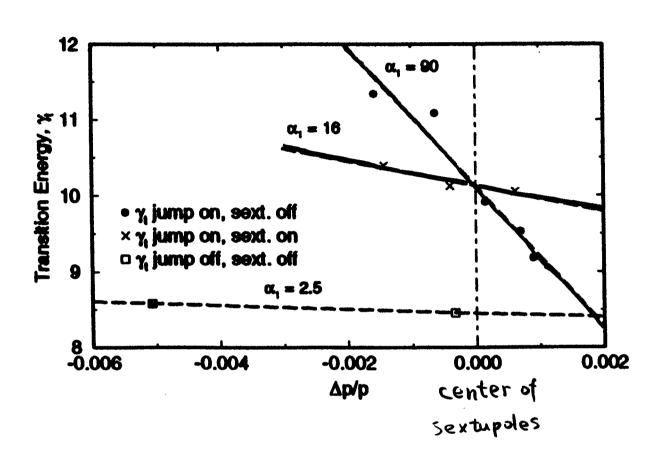

nonlinear time:

$$T_{nl} = rac{\left|(lpha_1 + rac{3}{2}eta_s^2)
ight|\hat{\delta}(0) \,\, \gamma_{t0}}{\dot{\gamma}_s}$$


$$rac{\Delta S}{S}pprox egin{cases} 0.38\,rac{T_{nl}}{T_c}, & ext{for } T_{nl}\ll T_c \ e^{rac{2^{1/2}}{3}\left(rac{T_{nl}}{T_c}
ight)^{3/2}} & -1, ext{ for } T_{nl}\geq T_c \end{cases}$$

(Growth in longitudianl beam emittance)

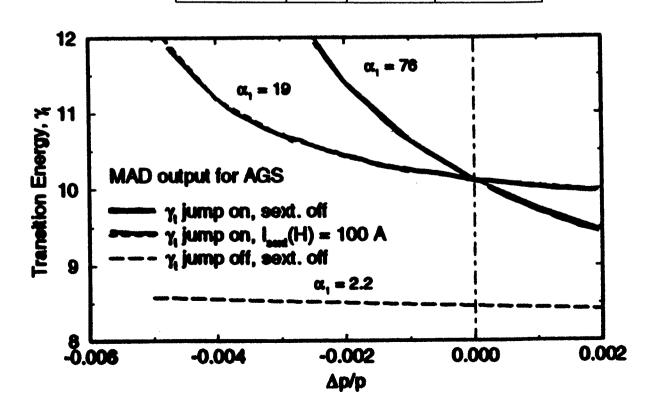

f R Beam loss vs. crossing rate \dot{B}


* Beam loss vs. peak rf voltage

- 3. γ_T -jump and nonlinearity enhancement
 - γ_T -jump improves crossing efficiency by increasing the effective crossing rate
 - γ_T -jump usually distorts lattice, enhancing α_1 and dispersion

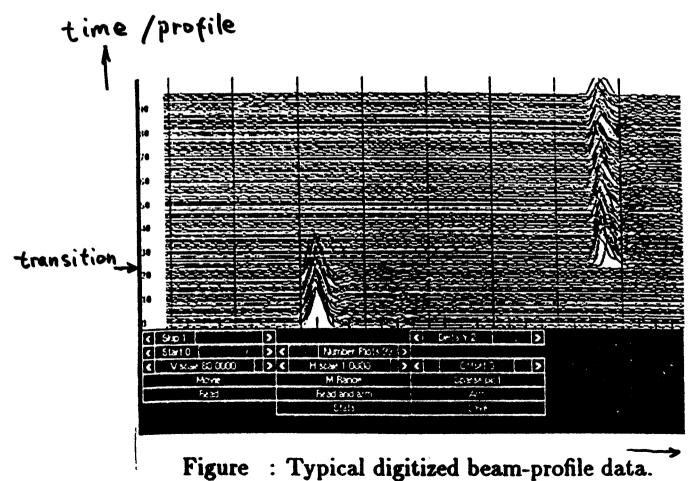
4. reduction of nonlinearity using sextupoles

Nominal operation:
$$\alpha_1 = 2.5$$


Sextupoles on :
$$\alpha_1 = 16$$

III. Comparison with MAD and TIBETAN Simulations

1. α_1 and dispersion evaluation using MAD


Table 2: MAD calculation of AGS γ_{t0} , α_1 , α_2 and maximum dispersion $\eta_x|_{max}$ at the γ_t -jump quadrupole and sextupole settings corresponding to Table 1.

(I_Q,I_S) (A)	(0, 0)	(1700, 0)	(1700, 100)
7t0	8.45	10.12	10.12
$lpha_1$	2.2	76	19
$lpha_2$	8.9	-2.7×10^3	-1.6×10^3
$ \eta_x _{max}$ (m)	2.2	8.6	8.6

2. Longitudinal simulation using TIBETAN

- Using experimentally extracted α_1 and machine parameters, simulate transition crossing using TIBETAN under the same experimental condition
- Compare simulated mountain-range plots with experimental digitized beam profile data, using the same post-analysis codes (GT_ANALY)

time

IV. Conclusions

- Although γ_T -jump in AGS improves transition crossing efficiency for high intensity beams, it enhances chromatic nonlinear effects (α_1) .
- The sextupoles can be excited to greatly reduce α_1 , hence improving longitudinal crossing at transition. However, the current scheme results in large dispersion.
- An optimization in γ_T -jump scheme and sextupole arrangement can greatly improve AGS operation at transition.

References

- 1. K. Jøhnsen, Proc. CERN Symp. High-Energy Accel. and Pion Physics (Geneva, 1956), Vol.1, p.106.
- 2. K. Takayama, Part. Accel. 14, 201 (1984).
- 3. W. Hardt, et al., Proc. 7th Int. Conf. on High-Energy Accel., Yereran, 329 (1969).
- 4. E. Ciapala, et al., IEEE Trans. Nucl. Sci. NS-26, 3571 (1979).
- 5. P. Faugeras, et al., IEEE Trans. Nucl. Sci. NS-26, 3577 (1979).
- 6. S.Y. Lee and J. Wei, EPAC Proc. (Rome, 1988), p.764.
- 7. J. Wei, Ph.D thesis (1990), revised Nov. 1994.
- 8. J. Wei, Proc. 3rd EPAC, Berlin, 643 (1992).
- 9. J. Wei, A. Warner, et al., EPAC 1994, London, p.976 (1994).
- 10. L.C. Teng, FN-207/400 (FNAL, Batavia, 1970).
- 11. L. Thorndahl, ISR-300/LI/69-38 (CERN, Geneva, 1969).
- 12. A. Sørenssen, Part. Accel. 6, 141 (1975).
- 13. L. Ahrens, et al., AD/No.265 (BNL, 1986).
- 14. S.Y. Lee and K.Y. Ng, Proc. Fermilab III Instab. Workshop, 170 (1990).
- P. Yamin, et al., Proc. 1987 IEEE Part. Accel. Conf., 87CH2387-9, p.194.
- 16. W.K. van Asselt, Proc. 1995 Particle Accel. Conf. (to be published).
- 17. M. Brennan, Proc. 1995 Particle Accel. Conf. (to be published).
- 18. H. Grote et al., MAD 8.13, CERN/SL/90-13 (1990).
- 19. J.P. Shan, et al., Particle Accelerators 45 1 (1994).
- 20. J. Wei, J.M. Brennan, et. al., Proc. 1995 Particle Accel. Conf. (to be published).