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Transverse particle motion in particle accelerators is governed almost totally by
non-solenoidal magnets for which the body magnetic field can be expressed as a
series expansion of the normal (b,) and skew (a,) multipoles,

By +iB; =) (bn +ian)(z +iy)", 1)
0

where z, y, and z denote horizontal, vertical, and longitudinal (along the magnet)
coordinates. Since the magnet length L is necessarily finite, deflections are actually
proportional to “field integrals” such as BL = [ B(z,y; z) dz where the integration
range starts well before the magnet and ends well after it. For @n, b, Bs, and
B, defined this way, the same expansion Eq. 1 is valid and the “standard” approx-
imation is to neglect any deflections not described by this expansion, in spite of
the fact that Maxwell’s equations demand the presence of longitudinal field compo-
nents at the magnet ends. The purpose of this note is to provide a semi-quantitative
estimate of the importance of [Apy], the transverse deflection produced by the lon-
gitudinal component of the fringe field at one magnet end relative to |Apg|, the
total deflection produced by passage through the whole magnet. To emphasize the
generality and simplicity of the result it is given in the form of a theorem. The
essence of the proof is an evaluation of the contribution of the longitudinal field
B, from the vicinity of one magnet end since, along a path parallel to the magnet
axis such as path BC in Figure 2, there is no contribution to the longitudinal field
integral either from well inside or well outside the magnet.

Theorem: For any non-solenoidal magnet,

[1Apgl\  ex (1407587 ey @)
[Apol/ © L 8 ~ L
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where ¢, is the rms beam transverse emillance, p = dB/ds, () denotes the av-
erage over belatron phase, and the final approzimalion must be withdrawn if B is

anomalously large.
Proof: According to the principle of linear superposition, the fringe field at the

end of the magnet can, in accordance with Eq. 1, be written as
o0
Br = Z(BFn + AFn)a (3)
0

where Bp, (or Apy) is the fringe field that corresponds to by, (or as).

As shown in Figures la and b, for any multipole b, or a,, there exists a closed
curve C; extending from inside the body of the magnet to infinity without enclosing
any electric current. The cross angle & between the plane containing curve C; and
the horizontal plane is chosen to be

2k +1 T for a
2n+1) "’ "
g = (4)
k+11r, for b,,
n+1

where 0 < k < n is an integer, so that

B
/ Bedl =0, 5)
A

Because the magnet field at infinity is equal to zero, one obtains from Ampere’s
law,

A A A
/ Bpn,z(z:yzﬂ;z)dzzf Apnz=y= O;z)dz::/ B-di=0. (6)
D D D

Hence,

A
/ B,(z=y=0;2)dz=0. M
D

Suppose that the particle moves across the end of the magnet at a transverse

displacement z 1, as shown by-the trajectory BC in Figure 2. Using Eq. 7 and the
closed curve of integration Cs, wé obtain

c B '
/ By(s1)dz = — / By (x,)-dx,. )
B A

Hence, the transverse deflection Apy produced by the longitudinal component of
the fringe field is
~ € l'U_L-'L'_LB_L(xJ_)l .

|apy| = e =e

C
/ vy xB,(zy)dz
B

B
vy /:4 B_L(Xﬁ_)-l‘ixﬁ_
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FIGURE 1: () Front and (b) side view of the closed curve C; of integration extending from inside
the body of the magnet to infinity without enclosing any electric current.
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FIGURE 2: Side view of the closed curve Cz for integration extending from inside the body of
the magnet to infinity without enclosing any electric current.

The total deflection Ago produced by the main magnet body is
L
/ v,xBidz
0

The factor vz, can be averaged as follows. By the standard “pseudo-harmonic”
description of betatron motion, letting S =sin 9, C = cos 9,

z=+\erf C’, z’=\/%(S—C—2i). (1)

Using the results (C252) = 1/8, (C*) = 3/8, and (C3S) = 0, one obtains

Sy = ey LELE Of’ﬂ'z, (12)

and the formula stated in the theorem follows.

[Apo| =€ . (10)

Lemma 1. If the transverse closed-orbil displacement Ay of the beam from
the magnet center is much larger than the rms beam size \/BreL, the deflection
produced by the longitudinal component of the fringe field at one magnet end 15

Ayl | Au [er, (1402567 Ay [er (13)
Bpol/ = L VBLY 2 T LB

Lemma 2. If the transverse displacement of the particle trajectory from the
magnet center is the same at the two ends of the magnet, the sum of the deflection
produced by the longitudinal component of the fringe field at the two ends is equal
to zero.

Since a typical transverse emittance is€; = 10”7 mand a typical magnet length is
L = 1m, it can be seen that (|Apy|/ [Apol) is typically an extremely small number.
This validates the “standard” approximation in essentially all situations in high
energy accelerators.
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The theorem by-no means implies that fringe fields are unimportant. Espe-
cially in the intersection regions where the S-functions are large and rapidly vary-
ing, the deflections due to the transverse components of the fringe field can be
significant. What the theorem shows is that the expansion of the fringe field in
transverse multipoles—also “standard”—continues to be an excellent approxima-
tion even though that is not a priori obvious.

Another implication of the theorem is that (|Apy|/|Apo|) is independent of the
B-function at the magnet end, even though that may seem counter-intuitive. The
reason for this is that z; and vy, the main factors in €4, depend inversely on the
[-function.

Perhaps the “worst case” situation for the theorem occurs at the ends of a
quadrupole adjacent to a low-8* intersection point (IP). If 8~ is the value of the
B-function at the IP, and s is the distance from the IP to the quadrupole edge, one
has B’ =~ 2s/(* and the estimate provided by the theorem is

A
Azl ‘—L\/gi. (14)
[Apol LY38p

Some typical application: for RHIC, s ® 30m, L = 3m, " = 1m, €y = 10~" m and

the ratio yielded is about 6 x 10~7; for CESR, s ~ 0.6m, L =~ 0.6 m, $* = 0.02m,
€1 ~ 2 x 10~7m and the ratio yielded is about 107°.




