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ABSTRACT

RHIC-5

Diffusion equation is used to evaluate the beam loss in the presence of

aperture limitation resulting from the intrabeam scattering.

We discuss the ef-

fect of different boundary conditions. Satisfactory beam intensity can be

maintained within the proposed RHIC operation time.



I. Introduction

Intrabeam scattering (1BS)! has become one of the important topics in the
heavy ion collider design study. Detailed calculation of the emittance &y, mo-
mentum spread O and bunch length Og blow up due to IBS has been performed by
G. Parzen.Z2 Fig. 1 summarizes these results, where we have plotted Op, €y and

1 s, . . g . . .
Og Vs« t3. It is tempting to argue that Og, €. and Oy satisfies certain statisti-

N
cal random diffusion process. In fact, the situation is not véry simple. First,
the Einstein relation of Brownian motion is not satisfied at all. However Fig. 1
shows that within this limited region of time scale, the Einstein relation is

not a very bad approximation after all.

With the diffusion equation in mind, we would like to ask the question of
beam survival rate in these diffusion processes. Section 2 reviews briefly the
Fokker-Planck equation and Section 3 discusses the transversed and longitudinal
losses and the Conclusion is given in Section 4.

2. 'Fokker-Planck diffusion equation

For Markovian Processes, the distribution function p(y,t) satisfies the

Fokker-Planck equation.3
P _ 3 1 92
5t - " by (Alp) + 5'5;5'(A29) (1)
where
A = A%Eo [<Ay>/At] (2)
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A, = & <(Ay)“>/At (3)
2 pes0 [ Y ]

Higher order contributions in eq. (1) are neglected. For dynamical system where

. . . . . 4
a Hamiltonian governs the motion of dynamical variables, one has



A, . (4)

=13
ATrwh
With this relation, eq. (1) becomes
A
p_23 (23

A special interesting situation is Ay = <Ay>/At = constant = D, then
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Eq. (5) then becomes

%y%p 7

The fundamental solution of eq. (7) is
\

°(y,t) = Ztys Y/ by (0)> (8)

On the other hand, another interesting situation is that A; = 0. We have

then A, = <(by)2>/At = D(t). The fundamental solution in this case is

1 e-y2/2<Ay2(t)>
Wam<Ay©(t£)>

o(y,t) = (9)

3. Applications
3.1. Transverse phase space
The Fokker-Planck equation for the transverse phase space is given
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where € is the emittance of the beam and

d<e>

D=-3—* D(t)
Let us define new variable T and y as
=1 =L -
T= 2 [ Dt = (<ep>=<e,>)
a 0
y = e/eo
The diffusion equation becomes then
P2, 0
e (y 3 (10)

Besides the fundamental solution of equation (8), there are alternative solu-
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tions to equation (10). Teng,? MacLachlan® and Ruggiero’ used the sink boundary

condition

o (y=1,7) =0 (11a)
and initial condition

p (y,m=0) = o (v) , (11b)

where p,(y) is the initial distribution.

The solution is given by

12
Jo(kn/§3 e
o (y,t) = b 5

n=1 3700
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g o (yI (A" dy (12)
where J, and J; are Bessel functions and A,'s are given by

Io(A,) =0



Due to the aperture limitation, the number of particles confined is given by

1 AT/ L
MD = [o6y,D dy =2 P XT,00 Loy 3,007 ay (13)

Table 1 summarizes the result calculated with boundary conditions (1la) and
(11b). While the loss rate calculated from the fundamental solution in eq. (8)
is also shown for comparison. With the Courant-Snyder invariant, the fundamental
solution of eq. (8) is a Gaussian distribution of the phase space variables x
and x'. The loss rate shown on the last row of Table 1 is therefore determined
by the available phase space, /gba/dx.

Since the aperture acts only as a beam scraper, which gives no
dynamical action to the diffusion process, I believe that eq. (1lla) is incor-
rect. The similarity between the diffusion process here and heat conduction is
inappropriate, because the heat loss is proportional to the temperature gradi-
ent. In the present situation, the diffusion process comes from the interaction

between beam particles alone.



Table 1
* % *
Y 5 (.65hr) 7 (2hr) 12 30 100
§ (1073)  0.93 1.15 1.56 1.98  1.10
& 10m 10m 10m 10m 10m
o 37.2m 52.1m bh 33.2m  27.8T
(£26mm good field) €, 6x9.42mT 6x8.79T 6x7.68T  6x6.62T  6x8.937
Analysis with boundary conditions in eqs. (lla) and (115"
T .096 114 .061 .019 .0033
loss rate(%) <1 <1 <1 <1 0
Analysis with the fundamental solution of eq. (8).
N
e, /(ec/y) 7.60 7.09 12.6 36 19.3
«Eba/ox 2.76 2.66 3.5 6. 14.
loss rate(%) 2.2 2.9 .2 0 0
§ is the rms momentum spread
€, is the admittance space available for betatron oscillation
N N . . e . . .
ei’ef are the normalized initial and final emittances respectively
_ N_ N
T = (sf ei)/Yea

nga/ox is the ratio of aperture to the beam rms transverse physical

size
* 10 hr operation time is assumed

+ see ref. 7 for details.




3.2. Diffusion in the longitudinal phase space

Let us define the momentum spread as

§s=2L (14)
P
The Fokker-Planck equation becomes
% _ 13 30
3t = 2 38 A 39 (15)
where
_d g2
A2 = It <§"> ,
is assumed to be a function of time only. Let A, be the aperture limit.
Defining Z and T as
)
Z =5 (16)
: a
1 & 1 2 2
T= = [A(t)de' = = (8°() - 7)), (17)
2A & 0 2A
a a
we obtain the following Fokker-Planck equation
2
3 a
== (=50 (18)
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Using the similar condition as that of eqs. (1la) and (11b), we ob-
tain the solution
m
()" 82T 4 T
T) = ‘f n o L .l
N(TD) 2 n=0Te T e (19)
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with

B = (2n+1)
n

TR

for a delta function initial distribution.

Table 2 summarizes the loss rate calculated from eq. (19) and that
calculated from the fundamental Gaussian distribution of eq. (9). We found that
the loss rate obtained in these two analysis are about the same. However in re-
ality they are very different. Fig. 2 shows the survival number as a funcfion
of parameter T in equation (17) for these two cases. Curve (A) obtained from
the boundary conditions (1la) and (11b), while (B) is equal to erf(1/2/7)
obtained from the fundamental solution of eq. (9). We feel that boundary condi-

tions (11a) and (11b) are inappropriate in this case too.



Table 2
Y 5 7 12 30 100
Aa = (Ap/p)bucket (10'3] 2.28 2,72 3,82 9.95 2.68
8(t=0) .818 .751 .678 1.261 .359
GF = 6(t=tF) .93 1.14 1.563 1.985 1.099

Analysis with boundary conditions (1la) and (11b)

T 064 .038 .016 .008 .009

o
Tt .083 .088 .084 .024 .085
loss(%) 4 5 4 0 4

Analysis with the fundamental solution of eq. (9).

Aa/GF 2.45 2.39 2.44 5.01 2.44

loss (%) 3 3 3 0 3

4, Conclusion

In conclusion, we have applied the Fokker-Planck diffusion equation to esti-
mate the beam loss due to the intrabeam scattering. Due to many particle
dynamics, diffusion equatiom should be appropriate in describing this random pro-—
cess. We discuss however the implication of boundary conditions on the beam
loss. We argue to prefer one special model to the other. The effect of the
intrabeam scattering process is found to contribute only about 5% of total loss
of beam as a whole. Details are however summarized in Tables 1 and 2 respec-

tively for transverse and longitudinal phases.

-
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Fig. 1 Bunch length, energy spread and the normalized emittance of the beam par-
ticles are plotted as a function of storage time (see ref. 2
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Fig. 2 The particle survival ratio is plotted as a function of T parameter
defined in eq. 17. for longitudinal phase space.



