

BNL-101822-2014-TECH AD/RHIC/RD/40;BNL-101822-2013-IR

Fracture Toughness Requirements for RHIC Cryogenic Design

S. Kane

May 1992

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AD/RHIC/RD-40

RHIC PROJECT

\$

•

يەن -

Brookhaven National Laboratory

Fracture Toughness Requirements for RHIC Cryogenic Design

Steve Kane

May 1992

FRACTURE TOUGHNESS REQUIREMENTS FOR RHIC CRYOGENIC DESIGN

by Steve Kane

ABSTRACT

This paper provides a brief overview of fracture toughness and summarizes the results of research conducted in the past decade on cryogenic fracture toughness of wrought and weld austenitic stainless steel materials. This research has found that various composition elements have a significant effect upon material fracture toughness at 4K. Nitrogen is a strengthener and has been found to increase fracture toughness. Oxygen manifests itself in weld materials as inclusions and has a severe detrimental effect upon fracture toughness. This one factor largely accounts for the difference between wrought and weld material. This is found to be dependent upon the weld process, with TIG clearly excelling as the conventional process most consistently producing welds with low oxygen (inclusion) content.

Weld materials enhanced with manganese and higher nickel contents than standard compositions have demonstrated improved fracture toughness. Ferrite, both measured and calculated, and carbon content has significant deleterious effects upon austenitic stainless steel weld fracture toughness. Again, TIG welding demonstrates superior fracture toughness with commonly occurring ferrite content, while other processes require much lower ferrite numbers for similar fracture toughness. A relationship between yield strength and fracture toughness stress intensity factor (K_{IC}) shows that Type 316L weld metal can meet the needs of RHIC, but quality controls are required to meet the necessary fracture toughness with a 95% confidence level. Magnetic field effects are found to be inconsequential to fracture toughness for austenitic stainless steels.

Discussions with the National Institute of Standards and Technology indicate Type 316L is the weld material of choice for cryogenic applications and has superior fracture toughness well worth the minor price differential. Fracture mechanics analysis also shows Type 316L weld metal will meet RHIC requirements with proper quality controls. However, all research is based upon pure austenitic stainless steel welds and does not address welds contaminated by welding to ordinary carbon steel. A backup strip of austenitic stainless steel, and some quality controls, are necessary to meet fracture toughness requirements for the RHIC dipole design.

WHAT IS FRACTURE TOUGHNESS?

Fracture toughness is the term applied to a material mechanical property. This property is the material's resistance to catastrophic fracture in the presence of a defect. Defects are always present in any manufactured article. They may be occur as a result of the manufacturing process (dents, gouges, weld under-cut) or may be embedded within the material (cold lap, weld inclusion). Generally, fracture toughness decreases as a function of material strength and temperature. Steels are usually strengthened with carbon. Carbon tends to form martensite which has superior strength but poor ductility. Thus fracture toughness is a measure of ductility, or a material's ability to deform in a ductile manner without fracture. The cause for deformation may be from several sources. Generally, materials deform when the stress the material is subjected to stresses beyond its elastic limit. Materials fail or fracture when the stresses exceed the ultimate strength. Materials with very high yield strengths usually have ultimate strengths very near the yield strength, hence very little deformation is associated with failure of

'high strength' materials. They appear to be 'brittle' and fail by fracture. Stresses in a material can be magnified by stress concentrators such as notches, cracks, or voids (defects). This magnification will cause the stresses near the defect to exceed the ultimate stress even though the adjacent material is subjected to very low stresses. If the material is ductile or has good fracture toughness, the crack or notch tip will deform and blunt, thereby reducing the stress concentration and the potential for fracture. However, if the material has poor ductility, hence poor fracture toughness, the crack or notch tip will not blunt and will propagate by fracture. Therefore the stress concentration is not reduced and the defect propagates uncontrollably to failure.

Martensitic transformation is generally a temperature and stress related phenomena. As temperature decreases or stress increases, martensite transformation increases. The temperature which triggers this transformation in ordinary steels is quite high, approximately -40 to -20°F. Charpy V-Notch impact testing was developed to obtain a *relative* measure of a material's fracture toughness. It was quick and cheap, hence its adoption by the manufacturing community. Material development and research in the past 30 years has resulted in identification of other properties to better describe fracture toughness. Lateral expansion quantifies the deformation associated with impact testing and is preferred for low yield strength materials like austenitic stainless steels. Critical stress intensity factor, $K_C K_{IC}$, was also identified for materials for *slow loading and linear elastic material behavior*. It is a measure of the material's ability to carry load or deform plastically in the presence of a stress concentrator (notch). Its relationship is best described by:

$$K_{lc}$$
 or $K_c = C\sigma \sqrt{a}$

where C is a function of the crack geometry, σ is stress and a is defect size. It is a direct function of material stress and defect size and configuration.

FACTORS AFFECTING CRYOGENIC STRENGTH

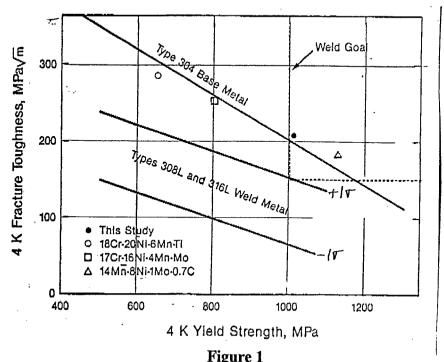
Austenitic weld material strength has been found to behave similar to wrought plate of the same composition. Below room temperature, strength increases as temperature is lowered. Some of the factors affecting cryogenic strength in wrought materials also affect weld materials.

MARTENSITIC TRANSFORMATION

Many austenitic stainless steels are metastable, tending to transform from a face-centeredcubic (FCC) structure to a more stable body-centered-tetragonal (BCT) martensite at low temperatures. Low temperature, mechanical stress, and the presence of a magnetic field will increase the driving force for transformation. Mechanical deformation may also facilitate transformation by promoting the nucleation of the martensite phase. The martensite is more brittle than FCC austenite. The reason for the brittleness is that when the body-centered-cubic (BCC) structure of ferrite is deformed there is a tendency for microcracks to be formed in the crystal. The intense stress concentration at the tip of such a crack causes it to extend, thereby producing rapid fracture. Testing has also showed that martensite will be transformed from metastable austenite phase not only by cyclic stressing but also by *static loading*¹. Increasing amounts of transformed martensite generally act to increase tensile and yield strengths but decrease toughness at given temperatures.

NITROGEN

Austenitic stainless steels strengthened with nitrogen are becoming more common in industrial cryogenic applications. The nitrogen bearing austenitic steels which are commercially


available have an austenitic microstructure which is highly stable. Unstable austenitic steels have the potential for transforming to hard martensite under deformation, particularly if interstitial nitrogen content is high. Some of the commercially available austenitic stainless steel, such as 304, have an unstable microstructure and transform partially to martensite on deformation. These steels are hardened considerably by cold deformation. Other commercially available austenitic stainless steel contain up to around 0.2% nitrogen. These steels are no longer unstable under deformation and therefore do not work harden to the same extent, but the austenite is itself strengthened by the nitrogen.² The material specification for Type 304 stainless steel is shown in the following table. Note the minimum Charpy V-Notch (CVN) absorbed energy is 100 joules.

r	Watchar Specification for Type 304 Stanless Steel						
	Material	Cr	Ni	С	0.2% Sy (MPa)	Su (MPa)	Charpy (J)
	304	19	9	<0.08	240	590	100 min

	Table 1
Material S	pecification for Type 304 Stainless Steel

FACTORS AFFECTING CRYOGENIC STRENGTH & TOUGHNESS IN WELD METAL

Generally the toughness in austenitic stainless steel weld metal at cryogenic temperature is significantly lower than the base metal. Metallurgical factors causing low toughness in weld metal are well known to be precipitates such as carbides, nitrides, and intermetallic compounds. The presence of delta ferrite and non-metallic inclusions are also well known detractors to toughness. Weld toughness is affected by many factors. The effect of strength is shown in Figure 1. Toughness is adversely affected by increasing strength. However, weld material has always had a lower toughness than wrought material.

Comparison of the Weld and Base Metal Strength-Toughness Relationship

Nitrogen

The strengthening characteristics of nitrogen become more evident at lower temperatures. Figure 2 shows how 316L weld strength increases by a factor of 2 as temperature is decreased from 298k to 76K, and increases by a factor of 2.5 at 4K for the same 0.20% nitrogen. But varying nitrogen from 0.05% to 0.20% at 4K yields a three-fold increase in strength.

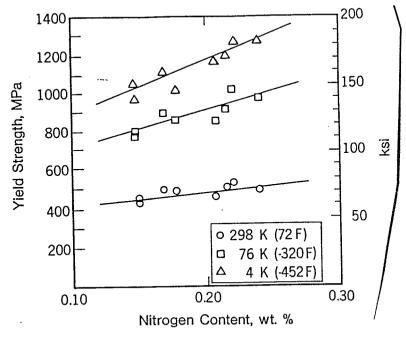


Figure 2 Yield Strength versus Nitrogen Content for Type 316LN Welds

This is most graphically demonstrated by the following equation developed by Simon and Reed³ for Type 316 weld deposits at 4K:

$$\sigma_{\rm v}(MPa) = 316 + 2370N + 54Mo + 790d^{-1/2}$$

where N and Mo are in weight percent and d is the grain size in micrometers. The standard deviation of the data for this fit was 40 MPa. Similarly for Type 304 welds at 4K:

$$\sigma_{v}(MPa) = 180 + 3200N + 33Mo + 32Mn + 13Ni$$

where the standard deviation was found to be 31MPa. The strength prediction is nearly equal for compositions near 18Cr-8Ni, indicating base metal and weld strengths are controlled by the same metallurgical phenomena.

<u>Oxygen</u>

Weld material has always had a lower toughness than wrought material. The difference between weld material and wrought material are the inclusion and ferrite contents. Welds will have a higher inclusion content because of the imperfect gas shielding of the metal while molten. Studies have shown that toughness correlation with inclusion spacing is similar for wrought material, thus attributing the differences in fracture toughness to this one factor⁴. Therefore choosing the welding process that produces the lowest inclusion content or modifying the process to reduce inclusion content are required to improve weld toughness. Welding processes such as laser, electron beam and gas tungsten arc welding (TIG) can produce welds with lower inclusion contents and produce welds with toughness at the upper side of the scatter band⁵ (Figure 1).

Other testing⁶ has been conducted using 308, 308L, and 316L filler metal, TIG with 100% Ar shielding or gas metal arc welding (MIG) with Ar/2%O and Ar/5%O, and 304 or 317LN base plates. The results are shown in Figure 3. Calculated ferrite number for the 316L welds from the DeLong diagram was about 7%. Measured ferrite numbers for 316L weldment were 9% using TIG and 8% using MIG. Chemical composition was consistent using the different processes, but differed drastically in oxygen content (0.005 - 0.076). Lateral expansion properties would meet ASME requirements at 173K but only the TIG weld shielded with pure Ar would meet the requirement at 77K. Impact energies at 4K were also significantly affected by oxygen content despite an observed decrease in strength at 4K due to oxygen.

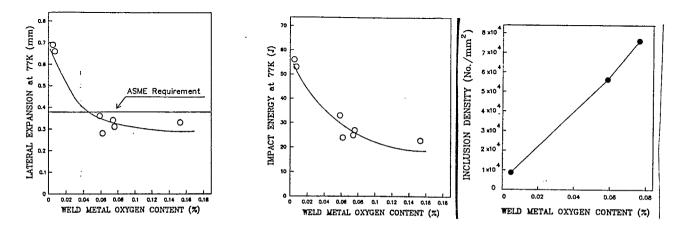


Figure 3 Results of Oxygen Content Investigation⁶

Measured ferrite number for 308/308L welds ranged from 5 to 18%, and oxygen content ranged from 0.007 to 0.15%. 308/308L welds were similarly affected by oxygen content with steep declines in lateral expansion and impact energy. Impact properties began to stabilize when oxygen content reaches 0.06% oxygen.

Testing revealed a relationship between ferrite number and oxygen content for meeting the ASME lateral expansion requirement. However, it was found that the low oxygen TIG weld could meet the ASME requirement quite safety even with a relatively high ferrite content, while the high oxygen content welds cannot meet the lateral expansion requirement even with a ferrite number of just 5%. This accounts for the ASME recommendation for a ferrite number lower than 3 for weldments other than TIG.

The study by J.H. Kim also found an excellent correlation between lateral expansion and impact energy at 173K and 77K. This relationship is described by:

$$LE(mm) = 0.12 \times C_v$$
 (Joule)

Thus, the ASME lateral expansion requirement is equivalent to an impact energy of 32 joules (23.6 ft-#).

Fractographic analysis of the 77K Charpy V-Notch specimens revealed increased brittleness with decreased oxygen content. This is attributed to retained delta-ferrite. Thus fracture will follow the brittle ferrite phase, but the whole fracture process requires high energy for continuous brittle fracture in the tough austenite matrix. High oxygen welds initiate by micro voids and propagate by micro void coalescence so easily that the whole fracture occurs in a fully dimple mode at low energy. Therefore it is possible to increase impact toughness in low oxygen welds by decreasing ferrite, but ferrite control would not be effective in high oxygen welds because ferrite has a negligible role in the fracture process.

This effect was also studied by Whipple and Kotecki⁷ who produced a series of 316L welds using TIG, MIG, and Shielded Arc. The toughness at 4K was found to be inversely proportional to the inclusion content, with the highest toughness found in the TIG welds (181 MPa).

Other research⁸ found the 4K K_{Ic} of Type 316L stainless steel weld composition increased significantly when inclusion contents in MIG welds were decreased. The study showed an increase of 18 MPAVm per micron increase in average inclusion spacing. Other studies have shown that toughness increases with Ni content and decreases with increasing strength and inclusion content. This, then, accounts for the lower toughness in welds when compared to base metals of comparable strength and Ni content. T.A. Siewert and C.N. McCowan's study⁸ used specimens made from one inch thick welds formed by multiple passes using varying shielding gas composition over 304 plate with 316L electrode. The electrode composition was 0.02 C, 1.73 Mn, 0.35 Si, 0.008 P, 0.009 S, 19.2 Cr, 13.1 Ni, 2.15 Mo, and 0.04 Cu. The ferrite number of the welds ranged from 5 to 7 measured in accordance with ANSI/AWS Standard 4.2-74. Material properties are shown in Table 2. One may see the inclusion density had little effect on yield strength, which varied less than 4%, but there is a trend toward decreasing ductility with increasing inclusion content. Note, too, the KIc values and how they compare with the KIc value of 151 MPaVm calculated using the equation below. Clearly, minimizing inclusions will assure minimum toughness properties. Inclusions were spherical MnSiO₃type inclusions with diameters less than 1 µm. The strain testing revealed heavy surface textures during straining at 4K. This is attributed to the coarse dendritic crystal structure of welds, and can result in stress concentrations that initiate failure. Note that fracture toughness increased by 35% as the inclusion content decreased by 65%. It is concluded that the wide scatter for toughness property data of weld metals are attributed to the varying inclusion contents when several welding processes are used.

σy	%El	%Ra	K _{Ic}	02 wt %	Inclusions per mm ²	Inclusion spacing (µm)
736	47.9	46.6	179	0.004	19,300	7.0
747	22.3	23.7	150	0.048	37,700	5.0
743	10.2	13.1	132	0.072	55,200	4.3

Table 2Inclusion Effect on Impact Toughness8

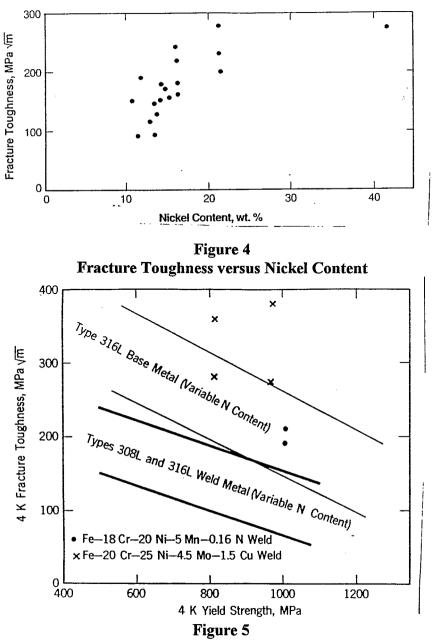
Fractographic examination of CVN specimens revealed smaller void sizes in the cross sections of the tension specimens when compared to the ductile dimple sizes on their fracture surfaces. This implies that the dimple growth process is caused by local flow during fracture. Voids,

however, were observed to be linked by crack-like features. Voids nucleated at inclusions near the ferrite-austenite interface to form the intervoid cracking. Cracking in the ferrite or at the ferrite-austenite interface was not observed in this study.

Ferrite

Toughness is usually measured by energy absorption or lateral expansion during a Charpy V-Notch (CVN) test and is widely used at 76K as a screening test. Studies have shown that CVN can be predicted for 76K with a 95% confidence level by the formula:

$$CVN(J) = 19 - 1.4FN - 890C^2 + 1.4Ni$$


where FN is the ferrite number calculated by the Schaeffler Diagram, and C and Ni are by weight percent. This relationship demonstrates the deleterious effects FN and carbon have on impact energy, while nickel has a positive influence. Ferrite content is especially important. Ferrite occurs when the composition is adjusted to develop metastable austenite. Ferrite in small quantities is normally desirable in stainless steels welds because it inhibits the formation of low melting point compounds (such as FeS and FeP) that promote hot cracking in fully austenitic alloys. However, ferrite should be minimized for best toughness in cryogenic service. Therefore, welding alloys for cryogenic service are either ferrite-free or very low ferrite. The ferrite-free alloys are produced with very strict controls on the impurity contents that promote hot cracking.

Nickel

Nickel also has a significant, though non-linear, effect on toughness. Figure 4 shows that increasing nickel from 10% to 20% provides the greatest improvement in toughness. Thus a weld with 20% nickel should exhibit the greatest attainable toughness for an austenitic stainless steel. NIST had performed work to determine the best weld material for 316LN, which is recognized as the candidate material for demanding cryogenic applications⁹. Two commercially available compositions - 18Cr-20Ni-5Mn-0.16N and 20Cr-25Ni-4.5Mo were evaluated using gas metal arc welding. Inerting gases were more inert than normal to reduce oxygen content, and the gas used for the 20Cr-25Ni-4.5Mo electrode was augmented with nitrogen to increase the nitrogen in the weld metal. Figure 5 shows that the strength was comparable to 316LN base metal and the fracture toughness was as high as or exceeded that of the 316LN base metal. This toughness is clearly higher than the toughness achievable with 308 and 316-based welding compositions and standard welding procedures.

Manganese¹⁰

Significant testing and statistical analysis was conducted on Type 308 and 316 weld metal applied to Type 304LN stainless steel plate by multilayer welding using several techniques. Impact energies for carbon steels is nearly directly proportional to the lateral expansion, and testing at 77K showed an almost linear relationship for Type 316Mn weldment. Additionally, it has been demonstrated that the relationship remains linear below 122K. The ferrite numbers measured on the test samples did not correlate with Szumachowski's constitution diagram. The results of the testing at 4.2K is provided in Table 3. Note that the Type 316 welds resulted in consistently high impact energies.

Fracture toughness versus Yield Strength

Table	e 3
4.2K Lateral Expansion a	and Absorbed Energy

Type Filler	Weld Process	Electrode Diameter	Lateral Expansion	Impact Energy (J)
308Mn	TIG	5 mm	0.31 mm (0.012 in)	29(J) (21.4 ft#)
308Mn	MIG	1 mm	0.53 mm (0.021 in)	68(J) (50.2 ft#)
308N	TIG	4 mm	0.10 mm (0.004 in)	9(J) (6.6 ft#)
308N	MIG	1.6 mm	0.06 mm (0.002 in)	7(J) (5.2 ft#)
316Mn	TIG	2.4 mm	1.08 mm (0.043 in)	80(J) (59.0 ft#)
316Mn	MIG	1.2 mm	1.12 mm (0.044 in)	78(J) (57.5 ft#)

Through multiple regression analysis, a prediction formula for absorbed energy at 4.2K was found to be:

$$vE = 90.6 - 4.56(FN) - 44.2(\%C) - 824(\%O).$$

Note that this study also found oxygen content to be a significant detractor to fracture toughness. Testing found that calculated ferrite number was only reliable if a ferrite indicator or Magne Gage did not detect ferrite. If ferrite was not detected, ferrite number was calculated using a modification of the Ni equivalent for the Szumachowski's constitution diagram. If ferrite was detected, then measured ferrite is used in the prediction equation. This report did not consider the effects of welding conditions nor post weld heat treatment. The predictions were found to be within five joules of the test data.

<u>Ferrite</u>

Weld compositions may vary widely within the broad but clearly specified compositional ranges for Types 308 and 316 weld metal. Weld metals with unrestricted compositions have been developed for cryogenic service, including some with high manganese contents. Weld microstructure is determined by composition. It can be single phase (fully austenitic) or two-phase (austenite and delta-ferrite) with ferrite number (FN) up to 12. Type 308L and 316L weld compositions usually contain a small amount of ferrite to prevent fissuring. Unrestricted compositions are more resistant to fissuring and do not contain ferrite. NIST data show an inverse relationship between yield strength and fracture toughness. Welds with FN>7 show relatively low toughness, but welds with lower FN contents fall randomly within the one sigma scatter band of +/- 44MPa¹¹. This is shown graphically in Figure 1. Thus ferrite should be reduced to the lowest level consistent with fissure resistance.

Austenitic stainless steel welds generally fail by a ductile fracture mechanism typified by the formation and growth of voids that eventually compose the fracture surface. Therefore, toughness improvements must increase the resistance of the weld metal to the nucleation and growth of voids. Voids nucleate most readily near phase boundaries, as a result of interfacial separation, fracture within the second phase, or matrix separation caused by strain concentration. Hence toughness may be improved by eliminating or minimizing other phases such as delta ferrite, chromium carbides, and inclusions.

The growth and coalescence of voids relates to the strength, ductility, and strain-hardening behavior of the matrix. As matrix strength increases, less energy is dissipated by plastic deformation during void growth, thus reducing toughness. Increased matrix strength also tends to activate additional void nucleation sites, hence alloying with interstitial elements such as carbon and nitrogen tends to reduce fracture toughness.

Test data available to date indicates the strength-toughness characteristics of welds may be increased by eliminating delta ferrite, avoiding chromium carbides, and reducing the width of columnar grains. These actions will raise the trend line of the weld strength-toughness characteristics closer to that of wrought stainless steel.

Relationship between Yield Strength and KIC

The National Institute of Standards and Technology (formerly National Bureau of Standards) has been compiling cryogenic mechanical property data for structural alloy welds for 4K service for the past two decades. Their work to date demonstrates¹²:

1) there is an inverse correlation between yield strength and fracture toughness for stainless steel welds at 4K, and

2) The welds have significantly lower toughness than base metals of comparable strength The toughness of Types 308L and 316L welds is described by:

$$K_{L_a}(MPa\sqrt{m}) = 270 - 0.16\sigma_v(MPa)$$

For AISI Type 304 austenitic stainless steels with varying carbon and nitrogen contents, the empirical relationship is given by:

$$K_{I_{z}}(MPa\sqrt{m}) = 500 - 0.3\sigma_{v}(MPa)$$

One may see the obvious disparity between the equations for welds and base metal. Welds generally fall about 40% below base metals in their σ_y versus K_{Ic} performance (See also Figure 1).

Charpy Impact Testing for Determining 4K Toughness

Charpy V-Notch impact testing (CVN) at the operational temperature is required to ensure the toughness of materials by the ASME Boiler and Pressure Vessel Code and the Japanese Industrial Standards Pressure Vessel Code, among others. There are two methods for conducting 4K Charpy tests. One method uses a sacrificial glass dewar. This method requires a correction factor to account for the energy required to break the glass and the gap between the glass and the specimen. The other method is described as the flow method, wherein the specimen is wrapped in foam and Kapton tape and liquid helium is then transferred into the envelope. The values measured by both tests correlate very well as long as the initial temperatures are the same. The correction factor from the glass dewar method can be determined at room temperature because the factors involved were found to be independent of temperature. The Charpy values should correlate with the fracture toughness parameters J_{Ic} or KIC if the Charpy tests are to be used to determine material properties. This correlation was not found for 4K tests because the specimen temperature rises significantly during 4K Charpy impact testing. The temperature rise is caused by adiabatic heating during high strain rate deformation and the low heat capacity of the material at 4K. Further study found a low correlation factor between the fracture toughness parameters and the Charpy results for the test data available for 304/308/316 materials¹³. Thus 4K Charpy tests are not a reliable indicator of 4K fracture toughness.

Discussion with NIST

Mr. Siewert and Mr. Ralph Tobler, both of the National Institute of Standards and Technology [formerly NBS] were consulted directly. Mr. Siewert and Mr. Ralph Tobler have written numerous papers concerning 4K impact and fracture properties of austenitic stainless steels. About five years ago, Mr. Tobler and Mr. Siewert began separate investigation of austenitic material properties — Mr. Tobler investigated base metals and Mr. Siewert investigated weldment. Mr. Siewert was hired specifically to investigate weldment because of his background in the welding industry. Mr. Tom Siewert (303-497-3523) was consulted regarding NBS testing of austenitic weldment at 4K. Reference 12, entitled *Strength-Toughness Relationship for Austenitic Stainless Steel Welds at 4K* was received without a date . Mr. Siewert put the date at approximately 1986. Mr. Siewert has recently published a paper in the ASTM Journal of Test & Evaluation entitled *Charpy Impact Near Absolute Zero* (Vol.19, Jan 1991; pp. 34-40)[copy provided]. The paper summarizes the NBS testing for the past 15 years regarding austenitic weldment at 4K. He generally discussed several aspects of austenitic weldment at 4K. The following is a summary of his comments:

- Type 316 and type 308 are both compatible with 304 plate. NIST's recommendation has been to use 316 for welding 304 for cryogenic applications.
- Type 316 weld material has demonstrated superior material properties at cryogenic temperatures, hence NIST testing for the past 5 years has concentrated on that type.
- Type 316 has more nickel giving it much better impact properties and making it much more fissure resistant, thus minimizing hot cracking. The 10% increase in cost is insignificant when compared to the gain in material toughness.
- NIST had done some work for SSC. Apparently SSC had wanted to use nitronic for beam tube. He said nitronic is terrible material for cryogenic applications because of the very low toughness despite the great "book" strength. NIST recommended 316.
- Mr. Siewert was asked why all NIST testing concentrated on developing impact energy when the ASME wants to know lateral expansion for austenitic material. He said lateral expansion is of dubious merit and that the lateral expansion is a "fuzzy" property. Likewise, Charpy energy is also somewhat "fuzzy". He and the NIST have been recommending K_{Ic} be used as the governing design parameter for impact toughness.
- Mr. Siewert does not view Charpy impact energy and testing at 4K as very useful. ASTM E23 does not address it in the procedure. The testing is near impossible today to validate. During Charpy impact testing¹³ the adiabatic heating of the test specimen during deformation can drive local temperatures to 200K! Thus, even if one could keep the specimen at 4K up to the moment of impact, the material would not be at 4K during the test. This is attributed to the heat capacity of the material at cryogenic temperatures. This testing may provide acceptable data for projectile impact tests, but cannot provide valid data for a large structure at 4K. Ralph Tobler (NBS) has coauthored a paper discussing this issue and Mr. Siewert provided a copy.
- Mr. Siewert is also on the ASTM Committee for Standard E23, the Charpy impact testing standard. His committee has been at odds with the ASME for the past few years. The Standard E23 is under revision now and will contain a statement that the test procedure is not valid for testing materials below 76K. He does not know what ASME will do when the ASTM standard is revised. The new standard should be issued this year.
- The RHIC dipole situation was presented to Mr. Siewert. Two 304 half shells are wrapped around a carbon steel core and then welded. Mr. Siewert said that the root of the weld would contain very high ferrite and would probably hot crack. This would be very bad from a fracture standpoint because the cracks would form initiation sites for catastrophic fracture. He recommended that an austenitic backing strip be used to prevent any ferrite formation.

Magnetic Field Effects

Magnetic effects were also researched. In short, the magnetic effects would be negligible from a fracture standpoint. A more detailed discussion is provided in Appendix A.

FRACTURE MECHANICS ANALYSIS

Fracture mechanics analysis was conducted to the greatest extent possible. Some data is either not available or is grouped together with weld processes and/or materials that are not applicable to the RHIC dipole longitudinal weld situation. The applicability of the fracture mechanics formulae was validated by:

$$B \ge 2.5 \left(\frac{K_{lc}}{\sigma_y}\right)^2$$

where B is material thickness

The resultant found the thickness of the coldmass shells exceeded the minimum thickness required for plain strain conditions for K_{IC} below 50 MPa \sqrt{m} .

Fracture Mechanics Design Criteria

Fracture mechanics design criteria were also evaluated. These consist of the Through-Thickness-Yielding criterion and the Leak-before-Break criterion. Through-Thickness-Yielding means that in the presence of a large sharp crack in a large plate, through-thickness-yielding should occur before fracture. Leak-before-Break means that a surface crack should grow through the wall thickness of the vessel and leak before the vessel fails by fracture. Calculations were performed using the NIST relationship between K_{Ic} and σ_y and by iterating K_{Ic} over a range for expected values of σ_y at 4K. These calculations indicate σ_y must be about 1100 to 1200 MPa with a corresponding K_{Ic} of 94 MPa \sqrt{m} for K_{Ic} as a function of σ_y . This is not likely considering the average 4K σ_y for 308/316 welds being between 700 - 800 MPa. Thus K_{Ic} should have the minimum values indicated in Table 5. The calculations are provided in Appendix B.

Winimum KIc Required at 4K for Various Yield Strengths						
Yield Strength (MPa)	700	800	900	1000		
K _{Ic} (Leak-before-Break)(MPa√m)	60	68	77	85		
K _{Ic} (Through-Thickness-Yielding)(MPa√m)	49	56	63	70		
K_{Ic} (Calculated from σ_v)(MPa \sqrt{m})	158	142	126	110		
K_{Ic} (Calculated - 2sd)(MPa \sqrt{m})	70	54	38	22		

 Table 5

 Minimum K1c Required at 4K for Various Yield Strengths

It would appear that the welds would possess more than adequate fracture toughness. However, the calculated K_{IC} has a standard deviation of 44 MPa \sqrt{m} . Thus the welds would have marginal fracture toughness for a confidence factor of only 95% for the 700 - 800 MPa 4K yield strength range (Calculated K_{IC} - 2sd in Table 5).

Fracture mechanics analysis also was conducted to determine the critical crack size. In fracture mechanics design, critical defect size is required to establish quality controls to prevent the critical size defect from occurring or going into service. The calculations considered a through thickness crack of width 2a, and a semi-elliptical shaped surface defect

measuring 'a' in depth and 2c wide. These calculations are contained in Appendix C. Sensitivity study reveals higher K_{Ic} is required as the crack width (2c) becomes very large in comparison to the crack depth (a). The equation for K_{Ic} for a surface crack is prescribed by

$$K_{lc} = 1.12\sigma_y \sqrt{\frac{\pi a}{Q}}$$

where:

$$Q = \left[\Phi_o^2 - \left(0.212 \left(\frac{\sigma}{\sigma_y} \right)^2 \right) \right]$$

and Φ_0 is the elliptical integral. Iterating over a range of crack depths (a) and stress ratios (σ_y), the worst case for a surface crack with depth equal to the shell thickness and width 20 times the shell thickness requires a K_{IC} of 56 MPa \sqrt{m} .

Similar calculations were conducted for a through thickness crack. Maximum critical defect size is shown in Figure 6. This demonstrates the significance of K_{Ic} . These calculations also are contained in Appendix C.

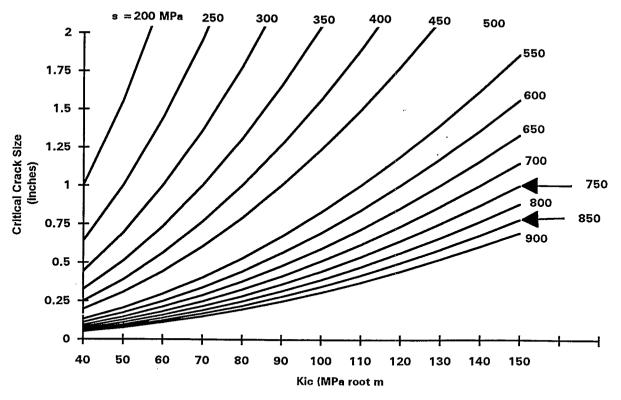


Figure 6 Critical Crack Size for Various K_{Ic} and Material Stresses

Finally, it has been previously established that a Charpy absorbed energy of at least 32 joules is necessary to meet the ASME minimum lateral expansion of 0.015 inches (0.38 mm).

Reference 9 provides an equation for 76K CVN as a function of ferrite number, calculated from the Schaeffler Diagram (ferrite potential if negative), carbon content, and nickel content.

$$CVN(J) = 19 - 1.4FN - 890C^2 + 1.4Ni$$

This equation was iterated for several expected values for FN, C, and Ni. The results, contained in Appendix D, indicate that a CVN of 32 joules is not possible with FN greater than 2, C greater than 0.03%, and Ni less than 12%. This equation obviously does not address the oxygen content previously discussed.

Discussion of Fracture Mechanics Analysis

The analysis shows that 308L/316L weld material nominal 4K mechanical properties exceed fracture mechanics design criteria. The data scatter, however, would require a weld with nominal properties at the upper band shown in Figure 1. This is possible with TIG welding, or by using other compositions, namely 18Cr-20Ni-5Mn-0.16N (Figure 5). This should be sufficient to negate the ASME requirement for 4K impact testing when considering the questionable outcome of the 4K testing and the fact that the ASTM Standard will be changed in the near future to limit the applicability of the procedure only down to 76K. Testing in the last few years has shown that austenitic stainless steel properties at 4K do not exhibit a detrimental decrease in fracture toughness. Since the ASME already allows the use of these materials to 20K without the need for impact testing, RHIC should not be at risk by not requiring impact testing for materials operating at 4K. However, the issue becomes that of quality controls. Maximum defect size has been calculated, but there is no procedure in place to detect these defects. MIG welding is also questionable. Clearly TIG welding offers the best assurance that the inclusion content has been minimized, but there needs to be some type of testing to validate the chemical composition, particularly with regard to ferrite number carbon, nickel, sulfur, phosphorous, and oxygen regardless of welding process. This would apply to the filler material and a sample of the finished weld. The impact test was developed as some relatively simple means for verifying all these requirements. If the establishment of the quality controls is considered to onerous, perhaps a 76K impact test should be considered. Another investigation would be required to determine the necessary impact value at 76K to assure 4K properties. RHIC also may consider leaving this effort up to the dipole contractor. as some of the candidates have qualified fracture mechanics and weld engineering departments. Finally, all these discussions and data apply to uncontaminated weld metal, or weld metal applied to austenitic stainless steel plate. The deleterious effects of carbon and ferrite have been thoroughly discussed here. The weld testing performed by C. Czajkowski¹⁴ was only qualitative in nature, but was able to show significant magnetization of the weld root material. Since we know the ferrite number for 308 weld metal must be at least 5 -18%, the weld root for the tested weld must have a significantly higher ferrite number. Thus it cannot possess adequate fracture toughness.

CONCLUSIONS

This research leads to several conclusions.

- Impact testing at 4K does not yet provide consistent results. It may be difficult to impose 4K impact testing on a contractor because the ASTM standard will not be applicable to temperatures below 4K. Impact testing also will be complicated because of the difficulty in obtaining a sample with contamination representative of the actual coldmass longitudinal welds.
- 2) The preferred weld metal for 4K applications is Type 316L. Some other materials offer superior fracture toughness at similar 4K yield strengths, such as 18Cr-20Ni-5Mn-0.16N.
- 3) The preferred weld processes for 4K applications are laser, electron beam, and TIG.
- 4) Type 316L will have sufficient fracture toughness thereby exceeding the ASME requirements if the oxygen content is minimized. This cannot be achieved with conventional MIG processes.
- 5) Other quality controls must be imposed if impact testing will not be conducted, especially for a contaminated weld root. These controls must be capable of detecting critical flaw size and chemical composition, particularly with regard to ferrite number, carbon, nickel, sulfur, phosphorous, and oxygen.
- 6) In all likelihood, it probably will not be possible for the weld root material to meet the fracture toughness criteria, especially with respect to ferrite number. The high stresses in the longitudinal weld will exacerbate the fracture toughness problem because of the additional martensitic transformation potential and the higher stress/yield stress ratio.
- 7) The incorporation of an austenitic stainless steel backing strip of sufficient thickness to prevent contamination of the weld material will minimize the quality controls necessary to assure weld fracture toughness. The use of the TIG weld process will probably reduce the requirement for quality controls to verification of oxygen content. This will be relatively easy to accomplish if the backing strip is used, thus assuring uncontaminated weld material in the sample as well as making the sample representative of the actual weld.

References:

¹R.P. Reed, Acta Mettalica 10, 865, 1962

²U.R. Lenel and B.R. Knott, Metallurgical Transactions A, Vol.18A, May 1987 (847)

- ³N.J. Simon AND R.P. Reed, NBSIR 88-3082, National Bureau of Standards, Gaithersburg, MD; 71 (1988)
- ⁴T.A. Siewert and C.N. McCowan; Advances in Cryogenic Engineering (Materials), Vol. 38b, 1992, 109
- ⁵T.A. Siewert, D. Gorni and G. Kohn; Advances in Cryogenic Engineering (Materials), Vol. 34b, 1988, 343

⁶J.H. Kim, B.W. Oh, J.G. Youn, G. Bahng, and H. Lee, Advances in Cryogenic Engineering (Materials), Vol. 36B, 1990

⁷T.A. Whipple and D.J. Kotecki, NBSIR 81-1645, National Bureau of Standardddds, Boulder, CO (1981) 303

⁸C.N. McCowan and T.A. Siewert, Advances in Cryogenic Engineering (Materials), Vol. 36b, 1990, 1331

⁹T.A. Siewert and C.N. McCowan; NISTIR 3944, 1990 (233); and T.A. Siewert, R.L. Tobler and C.N. McCowan; Journal of Engineering Material and Technology 108, 1986 (340)

¹⁰T.Mori and T. Kuroda, Cryogenics 25:243, 1985

¹¹D.T. Reed, H.I. McHenry, P.A. Steinmeyer, R.D. Thomas, Jr., Welding Journal 59, 1980, 104

¹²R.L. Tobler, T.A. Siewert, and H.I. McHenry; Cryogenics, 1986

¹³ H. Nakajima, K. Yoshida, H. Tsuji, R.L. Tobler, I.S. Hwang, M.M. Morra, and R.G. Ballinger; International Cryogenic Materials Conference, Huntsville, AL, 11-14 June 1991 (FZ-6)

¹⁴C. Czajkowski BNL Memorandum to M. Linden, Subject: Magnetic Evaluation of Two Stainless Steel Welds, 31 January 1991

APPENDIX A Discussion of Magnetic Effects

....

.

MAGNETIC FIELD EFFECTS

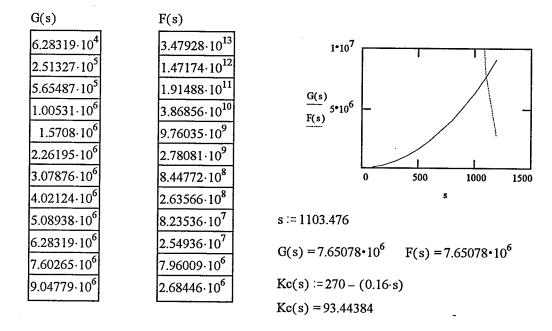
An increase in the fracture toughness of 304 specimens tested at 4.2K in an 8T magnetic field is observed relative to the fracture toughness of specimens tested in 0T. This increase is partly ascribed to the differences in martensitic transformation ahead of the crack tip during the Jic tests¹⁵. The characterization problem is complex because these metastable austenitic steels can undergo strain-induced martensitic transformation at cryogenic temperatures. Permeability measurements showed high permeability α' phase forms near the fracture surface and decreases with distance from the fracture surface. The amount and extent of α ' formation was qualitatively larger for the specimens tested in the 8T field. Various studies of the effects of pulsed and steady magnetic fields on the martensitic behavior of steels of various compositions found the amount of transformations was shown to be enhanced in the presence of a field. The extent of transformation was shown to be a function of field strength and independent of frequency and number of applied pulses. The volume of ferromagnetic α' formed during deformation in a magnetic field has a direct effect on the crack tip stress intensity. The plates would tend to resist separation in a measurable fashion since the magnetic flux is contained within the ferromagnetic material. The formation of martensite around the crack creates a closing load on the crack during Jic tests on CT specimens in a solenoid field with the loading direction parallel to the solenoid axis. The magnitude of this effect was found to be approximately a 1 MPa m1/2 reduction in crack tip stress intensity, representing a 2 - 3% improvement if measured fracture toughness. Testing has also shown that 304L and 304LN had higher strain hardening rates when tested in an applied field¹⁶.

¹⁶.B Fultz and J.W. Morris, Jr., Acta Mettalica, 34:379, 1986

¹⁵J.W. Chan, J. Glazer, Z. Mei, and J.W. Morris, Jr.;4.2K Fracture Toughness of 304 Stainless Steel in a Magnetic Field; Advances in Cryogenic Engineering - Materials, Vol. 36B, 1989

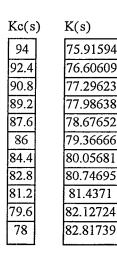
APPENDIX B

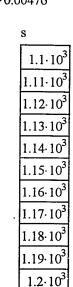
-

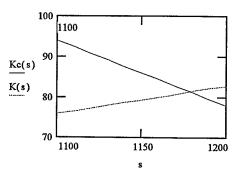

Calculations for Leak-Before-Break and Through-Thickness-Yeilding

crack5.mcd

This calculates leak before break and through thickness yield before fracture criteria. These calculations assume the weld is the weak link and the weld material follows the relationship defined by KIC = $270 - 0.16 \sigma y$.


leak-before-break criteria


B := $4.763 \cdot 10^{-3}$ Dipole shell thickness in meters s := 100, 200.. 1200



Through-Thickness-Yielding Criteria

 $B := 4.763 \cdot 10^{-3}$ Dipole shell thickness in meterss := 1100, 1110... 1200Kc(s) := 270 - (0.16 · s)K(s) := s · \sqrt{B} B = 0.00476

crack7.mcd

This calculates leak before break and through thickness yield before fracture criteria. These calculations assume the weld is the weak link and the weld material follows the relationship defined by KIC = $270 - 0.16 \sigma y$.

leak-before-break criteria

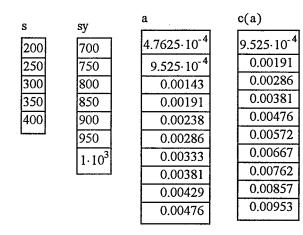
 $B := \frac{0.1875}{39.37}$ Dipole shell thickness in meters K := 60, 62.5.. 90 s := 700, 800.. 1000 B = 0.00476parameter check $\mathbf{F}(\mathbf{K},\mathbf{s}) := \frac{1.4 \cdot \left\lfloor (\mathbf{K})^6 \right\rfloor}{\mathbf{B}^3 \cdot \mathbf{s}^4} + \frac{(\mathbf{K})^2}{\mathbf{B}}$ $G(s) := 2 \cdot \pi \cdot s^2$ F(K,700) F(K,800) G(s)8•10⁶ $3.27437 \cdot 10^{6}$ $2.23218 \cdot 10^{6}$ 3.07876·10⁶ 4.03763·10⁶ $2.7062 \cdot 10^{6}$ $4.02124 \cdot 10^{6}$ F(K,700) $4.95821 \cdot 10^{6}$ $3.27352 \cdot 10^{6}$ $5.08938 \cdot 10^{6}$ F(K,800) F(K,900) 6•10⁶ 3.94953·10⁶ 6.06234·10⁶ 6.28319·10⁶ 7.3795·10⁶ 4.75149·10⁶ F(K,1000) F(K,900) F(K, 1000) 8.94259·10⁶ 5.6987·10⁶ G(700) $1.07883 \cdot 10^{7}$ 6.81265·10⁶ 1.36059·10⁶ $1.67754 \cdot 10^{6}$ G(800) 4•10⁶ $1.29572 \cdot 10^{7}$ 8.11715.10⁶ $1.99763 \cdot 10^{6}$ $1.59271 \cdot 10^{6}$ G(900) 9.63852·10⁶ 1.54942.10 2.37695·10⁶ $1.8646 \cdot 10^{6}$ G(1000) $1.14058 \cdot 10^{-1}$ 1.84488.10 $2.8251 \cdot 10^{6}$ 2.18256·10⁶ $2.18754 \cdot 10^7$ $1.34507 \cdot 10^{7}$ $3.35288 \cdot 10^{6}$ 2.55365·10⁶ 2•10⁶ 2.58333.10 1.58083.10 80 90 $2.9858 \cdot 10^{6}$ 3.97233·10⁶ ĸ 3.03877.10 1.85165.10 4.69685·10⁶ 3.48778·10⁶ s := 700 K := 59.275 Kc(s) := 270 - (0.16 s) $5.54132 \cdot 10^{6}$ 4.06937·10⁶ $G(s) = 3.07876 \cdot 10^6$ F(K, s) = $3.07905 \cdot 10^6$ Kc(s) = 158 $6.52217 \cdot 10^{6}$ 4.74134·10° $7.6575 \cdot 10^{6}$ 5.51556·10⁶ s := 800 K := 67.7453 Kc(s) := 270 - (0.16 s) 8.96719·10⁶ 6.40509·10⁶ 1.0473.10 7.4242·10° $G(s) = 4.02124 \cdot 10^6$ $F(K,s) = 4.02235 \cdot 10^6$ Kc(s) = 1421.21988.10 8.5885.10 K := 76.2095 s := 900 $G(s) = 5.08938 \cdot 10^6$ $F(K,s) = 5.08945 \cdot 10^6$ Kc(s) = 126s := 1000 K := 84.677 **Through-Thickness-Yielding Criteria** $G(s) = 6.28319 \cdot 10^6$ $F(K,s) = 6.28319 \cdot 10^6$ Kc(s) = 110 $B := 4.763 \cdot 10^{-3}$ Dipole shell thickness in meters $s := 700, 800... 1000 \text{ K}(s) := s \cdot \sqrt{B}$ **Parameter check** S K(s) 700 B = 0.00476 minimum Kic for Through-Thickness 48.31014 800 Yielding before fracture 55.21159 900 62.11304 Kc(s) = 270 - (0.16 s) Kic possible at 4K with weld $1 \cdot 10^{3}$ 69.01449 yield strength of 800 - 1000 MPa Kc(s)

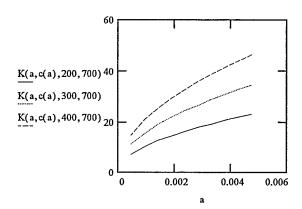
APPENDIX C Calculations for Critical Crack Size and Minimum K_{IC}

. . .

Explaination of Calculations

These calculations were performed using MathCad. The output for iterative calculations is a vertical column. If there is more than one variable upon which to iterate, MathCad fixes the second variable at its initial value, then iterates over the first variable. It then fixes the second variable at the next value in the range and again iterates over the first variable range. These successive iterations are listed consecutively in the vertical format.


. . .


crack10.mcd This file will calculate the critical crack size for various Kic, s, and crack geometries.

a := .00047625, .0009525....0047625 sy := 700, 750.. 1000 s := 200, 250... 400

$$Q(a,c,s,sy) := \left[f(a,c)^2 - \left[.212 \cdot \left[\left(\frac{s}{sy} \right)^2 \right] \right]$$

$$K(a,c,s,sy) := 1.12 \cdot s \cdot \sqrt{\frac{\pi \cdot a}{Q(a,c,s,sy)}}$$

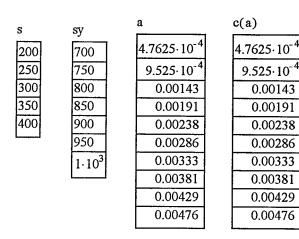
For this series of calculations, the crack is four times as wide as it is deep (4c x a) (a/2c=0.25)

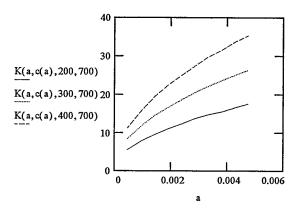
various Kic, s, and ci	rack geometries.
= 200, 250 400	<u> </u>
$c(a) := a \cdot 2$	$2\left[\left(2 + \frac{2}{2}\right)^{2}\right]$
Фо	$f(a,c) := \left 1 - \left(\frac{c-a}{2}\right) \cdot \sin(\theta)^2 \right d\theta$
Q(a, c(a), s, sy)	$\mathbf{f}(\mathbf{a},\mathbf{c}) := \int_{0}^{\frac{\pi}{2}} \sqrt{\left[1 - \left(\frac{\mathbf{c}^2 - \mathbf{a}^2}{\mathbf{c}^2}\right) \cdot \sin(\theta)^2\right]} d\theta$
1.44935	20
1.45158	
1.45341	
1.45492	
1.45619	
1.45726	
1.45818	
1.43962	
1.4431	
1.44595	
1.44832	
1.4503	
1.45198	
1.45341	
1.42772	
1.43274	
1.43684	
1.44025	
1.4431	
1.44552	
1.44758	
1.41366	
1.42049	
1.42608	
1.43071	
1.43459	
1.43788	•
1.44069	7
1.39743	
1.40635	
1.41366	
1.41971	
1.42478	
1.42907	
1.43274	
1.44935	
1.45158	
1.45341	
1.45492	
1.45619	
1.45726	
1.45818	
1.43962	-
1.4431	
1.44595	

1.44832 1.4503 1.45198 1.45341 1.42772

K(a,c(a),s,70	0)	K(a,c(a),s,800)		K(a,c(a),s,900)		K(a,c(a),s,1000)
7.19704	K(a,c(a),s,750)	7.18699	K(a,c(a),s,850)	7.18012	K(a,c(a),s,950)	7.17522
9.02666		9.00686	7.18325	8.99335	7.17748	8.98373
10.87703	7.19151	10.84244	8.9995	10.81891	8.98816	10.80217
12.75283	9.01575	12.69717	10.82961	12.65942	10.80987	12.63263
14.65902	10.85797	14.57466	12.67659	14.51766	12.64495	14.47729
10.17815	12.72213	10.16393	14.54356	10.15423	14.49584	10.1473
12.76563	14.61245	12.73762	10.15865	12.71852	10.15049	12.70492
15.38245	10.17032	15.33352	12.72722	15.30024	12.71118	15.27657
18.03522	12.7502	17.9565	15.31539	17.90312	15.28746	17.86523
20.73099	15.35548	20.61168	17.9274	20.53107	17.88266	20.47398
12.46563	17.99181	12.44823	20.56771	12.43634	20.50021	12.42785
15.63464	20.66513	15.60033	12.44175	15.57695	12.43176	15.56028
18.83958	12.45605	18.77965	15.5876	18.73889	15.56795	18.7099
22.08855	15.61574	21.99214	18.75744	21.92676	18.72324	21.88035
25.39018	18.80655	25.24405	21.95649	25.14532	21.90169	25.0754
14.39407	22.03537	14.37397	25.19019	14.36024	25.10753	
18.05332	25.30951	18.01371	14.3665	17.98671	14.35496	14.35044
21.75407	14.38301	21.68487	17.99901	21.63781	17.97632	17.96747 21.60434
25.50566	18.03151	25.39433	21.65923	25.31884	21.61973	
29.31805	21.71593	29.14932	25.35318 -	29.03531	25.28989	25.26526
16.09306	25.44425	16.07059	29.08713	16.05524	28.99168	28.95458
20.18423	29.2249	20.13995	16.06223	20.10975	16.04933	16.04429
20.18423	16.08069		20.1235		20.09814	20.08824
	20.15984	24.24442	24.21575	24.19181	24.1716	24.15438
28.51619 32.77858	24.27915	28.39172	28.34571	28.30733	28.27496	28.24742
	28.44754	32.58993	32.5204	32.46247	32.41368	32.3722
17.62907	32.67443	17.60445	17.5953	17.58763	17.58116	17.57563
22.11071	17.61552	22.0622	22.04419	22.02913	22.01641	22.00556
26.64318	22.084	26.55844	26.52703	26.5008	26.47866	26.4598
31.23792	26.59648	31.10158	31.05117	31.00912	30.97367	30.94349
35.90713	31.16272	35.70048	35.62431	35.56085	35.50741	35.46197
19.04157	35.79305	19.01498	19.00509	18.99682	18.98982	18.98385
23.8823	19.02693	23.8299		23.79418		23.76873
28.77793	23.85344	28.68639	23.81045 28.65247	28.62413	23.78044	28.57985
33.74081	28.72748	33.59354	33.5391	33.49368	28.60022	33.42279
38.78413	33.65959	38.56093		38.41011	33.45539	38.30331
20.35629	38.66091	20.32787	38.47865	20.30845	38.35239	20.29459
25.53125	20.34065	25.47524	20.3173	25.43705	20.30097	25.40984
30.7649	25.5004	30.66704	25.45444	30.60049	25.42236	30.55314
36.07045	30.71097	35.91301	30.63078	35.80625	30.57492	35.73047
41.46198	35.98361	41.22337	35.85481	41.06213	35.76531	40.94796
21.59111	41.33025	21.56096	41.13541	21.54036	41.00042	21.52567
27.07998	21.57452	27.02057	21.54975	26.98006	21.53243	26.9512
32.6311	27.04726	32.52731	26.99851	32.45672	26.96448	32.4065
38.25849	32.5739	38.0915	32.48884	37.97826	32.4296	37.89789
43.97707	38.16638	43.72398	38.02976	43.55297	37.93484	43.43187
22.75903	43.83735	22.72725	43.63069	22.70554	43.48752	22.69005
28.54481	22.74154	28.48218	22.71543	28.43949	22.69718	28.40906
34.3962	28.51032	34.28679	28.45893	34.21238	28.42306	34.15945
40.32798	34.33591	40.15196	34.24625	40.0326	34.1838	39.94788
46.35591	40.2309	46.08913	40.08689	45.90886	39.98683	45.78121
	46.20862	**************************************	45.99079	L	45.83987	h-manutan - manad
	L					

•


.


.

crack11.mcd This file will calculate the critical crack size for various Kic, s, and crack geometries. a := .00047625, .0009525...0047625 sy := 700, 750...1000 s := 200, 250...400 c(a) := a f π

$$Q(a,c,s,sy) := \left[f(a,c)^2 - \left[.212 \cdot \left[\left(\frac{s}{sy} \right)^2 \right] \right] \right]$$

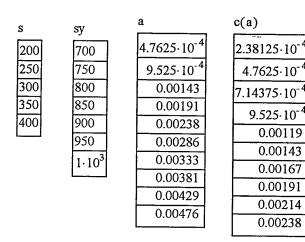
$$K(a,c,s,sy) := 1.12 \cdot s \cdot \sqrt{\frac{\pi \cdot a}{Q(a,c,s,sy)}}$$

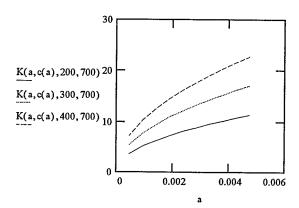
For this series of calculations, the crack is just twice as wide as it is deep $(2c \times a)(a/2c=.5)$

		•
Q(a,c(a	.),s,sy)	
2.45009	1	
2.45233	1	
2.45415		
2.45566	4	
2.45693	-	
2.458		
2.45892	· ·	
2.44036	-	
2.44385		
2.4467	4	
2.44906	-	
2.45104		
2.45272		
2.45415		
2.42846		
2.43348		
2.43759		
2.44099		
2.44385		
2.44626		
2.44832		
2.4144		
2.42123		
2.42682		
2.43146		
2.43534		-
2.43863	•	
2.44143		
2.39818		
2.4071		
2.4144		
2.42045		
2.42552		
2.42982		
2.43348		
2.45009	-	
2.45233		
2.45415		
2.45566		
2.45693		
2.458		
2.45892		
2.44036		
2.44385		
2.4467		
2.44906		
2.45104		
2 45272		

2.45272 2.45415 2.42846 Φо

$$\mathbf{f}(\mathbf{a},\mathbf{c}) := \int_{0}^{\frac{\pi}{2}} \sqrt{\left[1 - \left(\frac{\mathbf{c}^2 - \mathbf{a}^2}{\mathbf{c}^2}\right) \cdot \sin(\theta)^2\right]} d\theta$$


						· .
K(a,c(a),s,700)))	$\underline{K(a,c(a),s,800)}$	W(() 050	K(a,c(a),s,900)		K(a, c(a), s, 1000)
5.5354	K(a,c(a),s,750)	5.53082	K(a,c(a),s,850)	5.52769	K(a,c(a),s,950)	5.52546
6.93304	5.53288	6.92405	5.52912	6.91791	5.52649	6.91353
8.34	6.92809	8.32437	6.92071	8.31371	6.91555	8.30611
9.75829	8.33139	9.73329	8.31857	9.71625	8.30961	9.70412
11.18999	9.74452	11.15233	9.72401	11.12673	9.7097	11.10853
7.82824	11.16924	7.82177	11.13838	7.81734	11.1169	7.81418
9.80479	7.82468	9.79209	7.81936	9.7834	7.81563	9.77721
11.79454	9.7978	11.77244	9.78736	11.75736	9.78006	11.74661
13.80031	11.78237	13.76494	11.76423	13.74085	11.75156	13.7237
15.82504	13.78083	15.77178	13.75182	15.73557	13.73159	15.70983
9.58759	15.79569	9.57967	15.75205	9.57424	15.72167	9.57037
12.00837	9.58323	11.99281	9.57672	11.98217	9.57215	11.97458
14.4453	11.99981	14.41824	11.98702 14.40818	14.39977	11.97808	14.3866
16.90186	14.4304	16.85854		16.82904	14.39266	16.80803
19.38164	16.878	19.31641	16.84247	19.27206	16.8177	19.24053
11.0708	19.34568	11.06165	19.29224	11.05539	19.25504	11.05091
13.86607	11.06576	13.8481	11.05824	13.83582	11.05297	13.82706
16.68	13.85618	16.64874	13.84142	16.62742	13.83109	16.61221
19.51658	16.66279	19.46657	16.63713	19.4325	16.61921	19.40824
22.37999	19.48903	22.30467	19.44801	22.25346	19.41941	22.21705
12.37753	22.33847	12.3673	22.27676	12.3603	22.2338	12.3553
15.50274	12.3719	15.48265	12.36349	15.46892	12.3576	15.45912
18.64881	15.49168	18.61386	15.47518	18.59002	15.46363	18.57302
21.8202	18.62957	21.76429	18.60088	21.7262	18.58084	21.69908
25.02159	21.7894	24.93738	21.74354	24.88013	21.71156	24.83942
13.5589	24.97517	13.5477	24.90618	13.54003	24.85814	13.53455
16.9824	13.55274	16.96039	13.54352	16.94535	13.53707	16.93462
20.42874	16.97029	20.39046	16.95221	20.36435	16.93956	20.34572
23.90283	20.40767	23.84158	20.37624	23.79986	20.35429	23.77015
27.40978	23.86909	27.31753	23.81885	27.25481	23.78382	27.21022
14.64529	27.35893	14.63318	27.28335	14.6249	27.23073	14.61898
18.34309	14.63863	18.31932	14.62867	18.30307	14.62171	18.29148
22.06556	18.33001	22.02422	18.31047	21.99601	18.29682	21.97589
25.81801	22.0428	25.75185	22.00886	25.70679	21.98515	25.67469
29.60594	25.78157	29.5063	25.7273	29.43856	25.68946	29.3904
15.65647	29.55102	15.64353	29.46939	15.63468	29.41255	15.62835
19.60959	15.64935	19.58417	15.63871	19.56681	15.63126	19.55441
23.58908	19.5956	23.54488	19.57472	23.51472	19.56012	23.49322
27.60062	23.56474	27.52989	23.52846	27.48171	23.50311	27.4474
31.65008	27.56165	31.54356	27.50364	31.47115	27.46319	31.41966
16.6062	31.59137	16.59247	31.5041	16.58308	31.44334	16.57637
20.79911	16.59865	20.77215	16.58736	20.75373	16.57946	20.74059
25.02	20.78427	24.97312	20.76213	24.94113	20.74664	24.91832
29.27487	24.99418	29.19986	24.9557	29.14875	24.92882	29.11237
33.56998	29.23355	33.457	29.17202	33.38019	29.12911	33.32558
17.50447	33.50771	17.49	33.41515	17.4801	33.3507	17.47303
21.92419	17.49651	21.89577	17.48461	21.87636	17.47628	21.8625
26.37339	21.90855	26.32398	21.8852	26.29026	21.86888	26.26622
30.85843	26.34618	30.77935	26.30561	30.72549	26.27728	30.68713
35.38587	30.81487	35.26677	30.75001	35.18581	30.70478	35.12825
	35.32023	LI	35.22266		35.15472	h
			<u></u>		•	


.

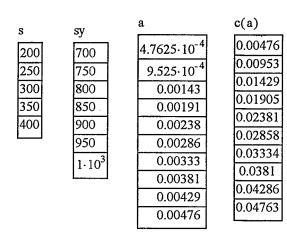
crack12.mcd This file will calculate the critical crack size for various Kic, s, and crack geometries. a := .00047625, .0009525... .0047625 sy := 700, 750... 1000 s := 200, 250... 400 c(a) := $\frac{a}{2}$ $\begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix}$

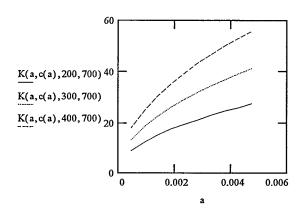
$$Q(a,c,s,sy) := \left[f(a,c)^2 - \left[.212 \cdot \left[\left(\frac{s}{sy} \right)^2 \right] \right] \right]$$

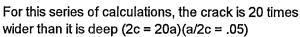
$$K(a,c,s,sy) := 1.12 \cdot s \cdot \sqrt{\frac{\pi \cdot a}{Q(a,c,s,sy)}}$$

		2	2	1 2 21	ī
	Φο	f(a,c) :=	1-	$\left(\frac{c^2-a^2}{c^2}\right)$ si	$n(\theta)^2 d\theta$
Q(a, c(a), s)	(ve			$\left c^2 \right $	
	,,,,,,,		10		-
5.84932					
5.85155					
5.85338					
5.85489					
5.85616					
5.85723					
5.85815					
5.83959					
5.84307					
5.84592					
5.84829					
5.85027					
5.85195					
5.85338					
5.82769					
5.83271					
5.83681					
5.84022					
5.84307					
5.84549					
5.84755					
5.81363					
5.82046					
5.82605					
5.83068					
5.83457					
5.83785					
5.84066					
5.7974					
5.80632					
5.81363					
5.81968					
5.82475					
5.82904					
5.83271					
5.84932					
5.85155					
5.85338					
5.85489					
5.85616					
5.85723		b			
5.85815					
5.83959					
5.84307					
5.84592					
5.84829					
5.85027					
5.85195					
5.85338					
5.82769					
<i>ا</i> ـــــ					

a, c(a), s, 70)0)	K(a,c(a),s,800)	$\mathbf{V}(z, z(z)) = 0 0 0$	K(a, c(a), s, 900)		K(a,c(a),s,100
58251	K(a,c(a),s,750)	3.58127	K(a,c(a),s,850)	3.58042	K(a,c(a),s,950)	3.57981
48187	3.58183	4.47944	3.58081	4.47778	3.58009	4.47659
38373	4.48053	5.37952	4.47854	5.37664	4.47714	5.37458
28861	5.38142	6.28191	5.37795	6.27732	5.37553	6.27405
19704	6.28492	7.18699	6.27941	7.18012	6.27555	7.17522
06644	7.19151	5.06468	7.18325	5.06348	7.17748	5.06262
33832		6.33489	5.06403	6.33253	5.06302	6.33085
61375	5.06547	7.60779	6.33361	7.60372	6.33163	7.60081
89344	6.33643	8.88396	7.60558	8.87747	7.60215	8.87284
).17815	7.61047	10.16393	8.88043	10.15423	8.87497	10.1473
.20509	8.88822	6.20294	10.15865	6.20147	10.15049	6.20042
.76283	10.17032	7.75862	6.20214	7.75574	6.2009	7.75368
0.3249	6.20391	9.31761	7.75705	9.31262	7.75463	9.30905
0.8922	7.76051	10.88058	9.31489	10.87264	9.31069	10.86697
2.46563	9.32089	12.44823	10.87626	12.43634	10.86958	12.42785
.16503	10.8858	7.16254	12.44175	7.16084	12.43176	7.15963
.96374	12.45605	8.95888	7.16162	8.95556	7.16019	8.95318
0.76747	7.16366	10.75905	8.95707	10.75328	8.95427	10.74917
2.57723	8.96107	12.56381	10.75591	12.55464	10.75106	12.54809
1.39407	10.76283	14.37397	12.55882	14.36024	12.55111	14.35044
.01074	12.56984	8.00797	14.3665	8.00606	14.35496	8.0047
0.02177	14.38301	10.01634	8.00693	10.01262	8.00533	10.00996
2.03839	8.00921	12.02898	10.01431	12.02254	10.01118	12.01794
4.06177	10.01878	14.04677	12.02547	14.03651	12.02005	14.02919
	12.03321	16.07059	14.04119	16.05524	14.03256	16.04429
5.09306	14.05351		16.06223	8.7702	16.04933	8.76871
.77533	16.08069	8.77229	8.77115	10.96827	8.7694	10.96536
0.9783	8.77366	10.97235	10.97013	13.17003	10.9667	13.16499
3.1874	10.97502	13.17709	13.17325		13.16731	15.36821
5.40389	13.18173	15.38746		15.37623	15.3719	
7.62907	15.39485	17.60445	15.38135	17.58763	17.58116	17.57563
.47844	17.61552	9.47515	17.5953	9.4729		9.47129
1.85792	9.47663	11.85149	9.47393	11.84709	9.47204	11.84394
4.24402	11.85438	14.23288	11.84909	14.22526	11.84539	14.21981
6.63811	14.23789	16.62036	14.22873	16.60823	14.22232	16.59956
9.04157	16.62834	19.01498	16.61376	18.99682	16.60355	18.98385
0.13288	19.02693	10.12936	19.00509	10.12696	18.98982	10.12524
2.67665	10.13094	12.66977	10.12806	12.66507	10.12603	12.66171
5.2275	12.67287	15.21559	12.66721	15.20744	12.66325	15.20162
7.78689	15.22095	17.76791	15.21115	17.75494	15.2043	17.74568
0.35629	17.77645	20.32787	17.76085	20.30845	17.74994	20.29459
0.74754	20.34065	10.74381	20.3173	10.74126	20.30097	10.73944
3.44562	10.74549	13.43833	10.74243	13.43333	10.74028	13.42977
6.1512	13.4416	16.13857	13.43561	16.12993	13.43141	16.12375
8.86584		18.84572	16.13386	18.83196	16.12659	18.82214
1.59111	16.14425	21.56096	18.83823	21.54036	18.82666	21.52567
1.3289	18.85477	11.32497	21.54975	11.32228	21.53243	11.32036
4.17292	21.57452	14.16524	11.32351	14.15998	11.32125	14.15622
7.02486	11.32674	17.01155	14.16238	17.00243	14.15795	16.99593
9.88634	14.1687	19.86513	17.00659	19.85063	16.99892	19.84027
	17.01753	22.72725	19.85724	22.70554	19.84504	22.69005
2.75903	19.87467	22.12145	22.71543	<u></u>	22.69718	
	22.74154				22.0710	


crack14.mcd This file will calculate the critical crack size for various Kic, s, and crack geometries. a := .00047625, .0009525...0047625 sy := 700, 750.. 1000 s := 200, 250.. 400 $f \pi$


$$Q(a,c,s,sy) := \left[f(a,c)^2 - \left[.212 \cdot \left[\left(\frac{s}{sy} \right)^2 \right] \right] \right]$$


$$K(a,c,s,sy) := 1.12 \cdot s \cdot \sqrt{\frac{\pi \cdot a}{Q(a,c,s,sy)}}$$

7

ς.

	200,2504	10, 5, anu 0 100	-					
20		+00 c(a) := a·10) f(a,c) :=	π				
		$\mathcal{O}(a) - a \cdot \mathbf{R}$)	2	ſ	/ 2	2\	1
		Φ ο	f(a,c) :=		1-	$\left \frac{\mathbf{c}-\mathbf{a}}{\mathbf{c}}\right $	$-\left \cdot\sin(\theta)\right ^{2}$	dθ
	0((-)	\\			$\overline{\mathbf{A}}$	$ c^2 $		
	Q(a, c(a))),S,SY)		10	• 2	·	/	-
	1.01493		<i>64</i> 4 5 5					
	1.01716		f(a,c(a))					
	1.01899		1.01599					
	1.0205		1.01599					
			1.01599					
	1.02177		1.01599					
	1.02284							
	1.02376		1.01599					
	1.00519		1.01599					
	1.00868		1.01599					
	1.01153		1.01599					
	1.0139		1.01599					
	1.01588		1.01599					
*	1.01755							
	1.01799							
	0.9933							
	0.99832							
	1.00242							
	1.00583							
	1.00868							
	1.01109							
	1.01316							
	0.97924							
	0.98607							
	0.99166							
	0.99629							
	1.00017		-					
	1.00346		•					•
	1.00627							
	0.96301							
	0.97193							
	0.97924							
	0.98529							
	0.99036							
	0.99465							
	0.99832							
	1.01493							
	1.01716							
	1.01899							
	1.0205							
	1.02177							
	1.02284							
	1.02376							
	1.00519							
								**
	1.00868							
	1.01153							
	1.0139							
	1.01588							
	1.01755							
	1.01899							
	0.9933							

K(a,c(a),s,70	0)	K(a,c(a),s,800)		K(a,c(a),s,900)		K(a,c(a),s,1000)
8.60048	K(a,c(a),s,750)	8.58334	K(a,c(a),s,850)		K(a,c(a),s,950)	8.56332
10.80253		10.76863	8.57698	10.74558	8.56716	10.72918
13.04044	8.59104	12.98094	10.75607	12.94062	10.73672	12.912
15.32269	10.78385	15.22641	12.95895	15.16145	12.92516	15.11549
17.65854	13.00762	17.51164	15.19097	17.41302	15.1366	17.34349
12.16291	15.26952	12.13868	17.45778	12.12215	17.37541	12.11037
15.27708	12.14957	15.22914	12.12968	15.19654	12.11579	15.17335
18.44196	15.25066	18.35782	15.21138	18.3008	15.18402	18.26033
21.66955	18.39555	21.5334	18.32673	21.44153	18.27893	21.37653
24.97295	21.59436	24.7652	21.48327	24.62573	21.40639	24.5274
14.89646	24.85806	14.86678	24.68902	14.84654	24.57254	14.83211
18.71052	14.88012	18.65182	14.85576	18.61189	14.83875	18.58348
22.5867	18.67817	22.48365	18.63006	22.41381	18.59655	22.36424
26.53967	22.52985	26.37292	22.44557	26.2604	22.38703	26.18079
30.58549	26.44758	30.33105	26.31152	30.16023	26.21737	30.03981
17.20095	30.44478	17.16668	30.23776	17.14331	30.09509	17.12664
21.60505	17.18208	21.53726	17.15395	21.49115	17.13431	21.45835
26.08087	21.56769	25.96188	21.51214	25.88123	21.47344	25.82401
30.64537	26.01523	30.45283	25.91791	30.3229	25.85032	30.23097
35.31708	30.53904	35.02328	30.38193	34.82604	30.27321	34.68698
19.23125	35.1546	19.19294	34.91555	19.1668	34.75082	19.14817
24.15518	19.21015	24.07939	19.1787 24.0513	24.02784	19.15674 24.00804	23.99117
29.1593	24.11342	29.02626	28.9771	28.9361	28.90153	28.87212
34.26257	29.08592	34.0473	33.96803	33.90203 38.93669	33.84648	33.79926 38.78122
39.48569 21.06678	34.14368	39.15722 21.02481	39.03678	20.99618	38.8526	20.97577
26.46068	39.30404	26.37765	21.00922	26.32118	20.98516	26.28101
31.94242	21.04367	31.79668	26.34688	31.69791	26.29949	31.62782
37.53276	26.41492	37.29694	31.74283	37.13781	31.66004	37.02523
43.25441	31.86203	42.89458	37.21011	42.65301	37.07696	42.4827
22.75472	37.40253	22.70939	42.76264	22.67846	42.56089	22.65642
28.5808	43.05542	28.49112	22.69255	28.43012	22.66656	28.38673
34.50175	22.72976	34.34434	28.45789	34.23765	28.40669	34.16195
40.54001	28.53138	40.2853	34.28617	40.11342	34.19675	39.99182
46.7201	34.41492	46.33144	40.19152	46.07052	40.04769	45.88656
24.32582	40.39935 46.50516	24.27736	46.18894	24.2443	45.97101	24.22073
30.55416	24.29913	30.45829	24.25935	30.39308	24.23158	30.3467
36.88393	30.50133	36.71564	30.42276	36.60159	30.36803	36.52066
43.3391	36.7911	43.0668	36.65346	42.88305	36.55787	42.75305
49.94589	43.18872	49.5304	42.96654	49.25146	42.81278	49.0548
25.80143	49.71611	25.75002	49.37805	25.71496	49.14508	25.68997
32.40758	25.77312	32.30589	25.73093	32.23673	25.70147	32.18753
39.12131	32.35154	38.94282	32.26821	38.82185	32.21016	38.73601
45.96806	39.02285	45.67924	38.87686	45.48435	38.77547	45.34646
52.97562	45.80855	52.53492	45.5729	52.23906	45.40981	52.03047
27.19709	52.7319	27.14291	52.37333	27.10595	52.12623	27.0796
34.16059	27.16726	34.0534	27.12278	33.9805	27.09173	33.92864
41.23748	34.10152	41.04934	34.01368	40.92182	33.95249	40.83134
48.45458	41.1337	48.15015	40.97981	47.94471	40.87294	47.79937
55.8412	48.28645	55.37667	48.03805	55.0648	47.86614	54.84493
<u> </u>	55.5843	1	55.20634		54.94587	L

crack15.mcd This file will calculate the critical crack size for various Kic, s, and crack geometries.

•

-

.

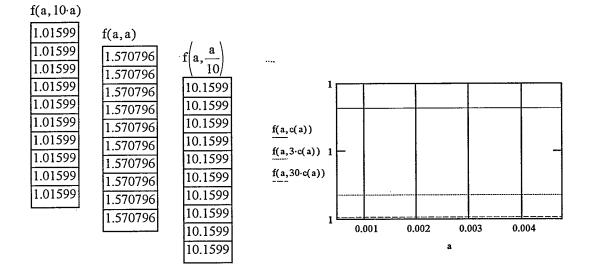
2.98943 2.96399 2.92159 2.86223 2.78591

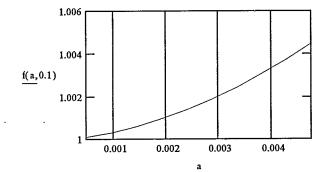
$$i = 0.1, 2...6 \quad ssy := 0.2, 0.4.. 1.0 \ a := 1$$

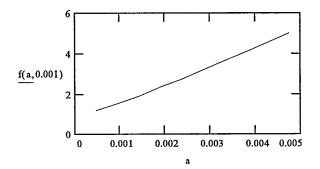
$$c(i) := \frac{a}{i \cdot 2}$$

$$0 \quad f(a, c) := \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \left(\frac{c^2 - a^2}{c^2}\right) \cdot \sin(\theta)^2} d\theta$$

$$Q(a, c, ssy) := \left[f(a, c)^2 - \left[.212 \cdot \left[(ssy)^2\right]\right]\right]$$


$$a = 1$$


$$Q(a, c(i), ssy) \quad \frac{f(a, c(i))}{1.0505} \quad \frac{5}{2.5} \quad \frac{1}{1.66667} \quad \frac{9}{2.5} \quad \frac{9}{2.4} \quad \frac{2}{0.4} \quad \frac{9}{0.4} \quad$$


dipcrk6.mcd

This file will calculate the elliptic integral to find the "free surface correction factor" for the stress intensity factor equation for a surface crack.

$$\mathbf{a} := .00047625, .0009525...0047625$$
$$\mathbf{c}(\mathbf{a}) := 100 \cdot \mathbf{a} \qquad \Phi \mathbf{o} \qquad \mathbf{f}(\mathbf{a}, \mathbf{c}) := \int_{0}^{\frac{\pi}{2}} \sqrt{\left[1 - \left(\frac{\mathbf{c}^{2} - \mathbf{a}^{2}}{\mathbf{c}^{2}}\right) \cdot (\sin(\theta))^{2}\right]} d\theta$$

crack6.mcd

~ ~

.

4

This file calculates critical crack size for a through-thickness crack 2a wide in the center of a plate under tension.

	200,250900 40,50220	(MPa) stress MPa root m	in material		
		a(K,s) := - <mark>-</mark> s	$\frac{\zeta^2}{2} \cdot 39.37$	Critical crack size (in)	
K 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220	s 200 250 300 350 400 450 500 550 600 650 750 800 850 900	$2 \cdot a(40,s)$ 1.003 0.642 0.446 0.327 0.251 0.198 0.16 0.133 0.111 0.095 0.082 0.071 0.063 0.056 0.05	$a(50, s) \cdot 2$ 1.566 1.003 0.696 0.512 0.392 0.309 0.251 0.207 0.174 0.148 0.128 0.111 0.098 0.087 0.077	a(60, s)·2 2.256 1.444 1.003 0.737 0.564 0.446 0.361 0.298 0.251 0.214 0.184 0.16 0.141 0.125 0.111	$a(70, s) \cdot 2$ 3.07 1.965 1.365 1.003 0.768 0.606 0.491 0.406 0.341 0.291 0.251 0.218 0.192 0.17 0.152

$a(80,s)\cdot 2$	a(90,s)·2	a(100,s)·2	a(110,s)·2	a(120,s)·2	a(130,s)·2	a(140,s)·2
4.01	5.075	6.266	7.582	9.023	10.589	12.281
2.567	3.248	4.01	4.852	5.775	6.777	7.86
1.782	2.256	2.785	3.37	4.01	4.706	5.458
1.309	1.657	2.046	2.476	2.946	3.458	4.01
1.003	1.269	1.566	1.895	2.256	2.647	3.07
0.792	1.003	1.238	1.498	1.782	2.092	2.426
0.642	0.812	1.003	1.213	1.444	1.694	1.965
0.53	0.671	0.829	1.003	1.193	1.4	1.624
0.446	0.564	0.696	0.842	1.003	1.177	1.365
0.38	0.481	0.593	0.718	0.854	1.003	1.163
0.327	0.414	0.512	0.619	0.737	0.864	1.003
0.285	0.361	0.446	0.539	0.642	0.753	0.873
0.251	0.317	0.392	0.474	0.564	0.662	0.768
0.222	0.281	0.347	0.42	0.5	0.586	0.68
0.198	0.251	0.309	0.374	0.446	0.523	0.606

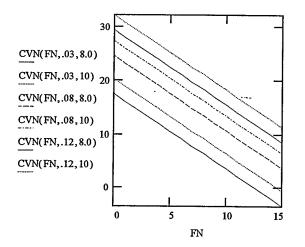
a(150,s) a(160,s) a(170,s) a(180,s) a(190,s)		a(220,s)
	1.	
7.049 8.02 9.054 10.151 11.31	12.532 13.816	15.164
4.511 5.133 5.795 6.497 7.238	8.02 8.842	9.705
3.133 3.565 4.024 4.511 5.027	5.57 6.141	6.739
2.302 2.619 2.956 3.315 3.693	4.092 4.511	4.951
1.762 2.005 2.264 2.538 2.828	3.133 3.454	3.791
1.392 1.584 1.788 2.005 2.234	2.475 2.729	2.995
1.128 1.283 1.449 1.624 1.81	2.005 2.211	2.426
0.932 1.061 1.197 1.342 1.496	1.657 1.827	2.005
0.783 0.891 1.006 1.128 1.257	1.392 1.535	1.685
0.667 0.759 0.857 0.961 1.071	1.186 1.308	1.436
0.575 0.655 0.739 0.829 0.923	1.023 1.128	1.238
0.501 0.57 0.644 0.722 0.804	0.891 0.982	1.078
0.441 0.501 0.566 0.634 0.707	0.783 0.864	0.948
0.39 0.444 0.501 0.562 0.626	0.694 0.765	0.84
0.348 0.396 0.447 0.501 0.559	0.619 0.682	0.749

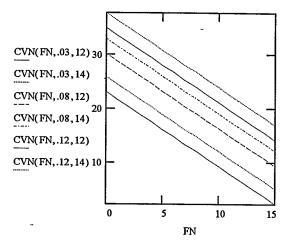
· .

. .

•-

APPENDIX D Calculations for Minimum CVN Impact Energy

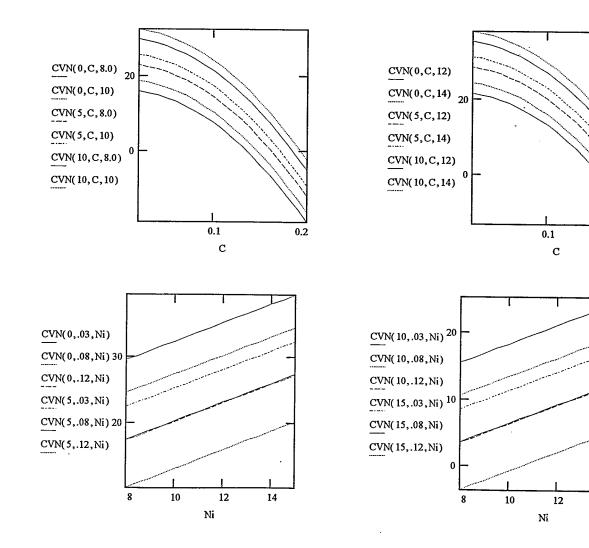

. . .


crack16.mcd

This file calculates absorbed impact energy for several compositions based upon reference 2. To meet the ASME minimum for lateral expansion of 0.015 in., CVN (J) must be at least 32.

FN := 0, 1.. 15 Ni := 8.0, 8.5.. 15.0

 $CVN(FN, C, Ni) := 19 - 1.4 \cdot FN - 890 \cdot C^2 + 1.4 \cdot Ni$



0.2

14

C := .02, .03...2

