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It has been shown that noise from the rf source causes growth of the longitudinal
emittance of the bunched beam’. Particularly harmful is the phase noise, which directly
displaces the beam along the phase axis of the phase space. Because of technical and
financial constraints in lowering the rf source noise, feedback techniques are used to reduce
the rf noise.

If the phase difference between the beam and an rf cavity is compared and used to
drive a phase-shifter or VCO, the effective rf noise the beam sees can be made much
smaller in certain frequencies. This is the principle of phase loop feedback and the following
is a discussion of its effect in rf noise reduction.

Fig.11is a block diagram of a beam phase loop. Here the phase comparator output
is used to drive a phase-shifter. It is also common for a VCO to be the phase changing
element. The results are equivalent because frequency modulation and phase modulation
are only different by a differentiation operator. With proper choice of transfer functions, the
conclusions are identical. In the actual realization, the phase loop may also be nested in a
radial loop that provides automatic closed orbit error correction. The additional feedback

should not change the phase loop performance with proper loop parameters.
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Fig.1Block diagram of a beam phase feedback loop.

In Fig.1,B is the beam transfer function, 7 the 1f phase noise from the rf generator,
r the phase noise on the rf cavities which is also the phase noise the beam actually sees, b
the beam phase with respect to the rf, and d the noise of the phase detector. The feedback
loop has a frequency dependent gain of K, which is determined by both the rf paths of the
ring, such as cavities and phase shifters, and a loop compensation amplifier designed to
achieve the desired overall loop dynamics.

To carry out the algebra for Fig.1, we obtain the expression for the rf phase noise

seen by the beam:
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From the above we see that the rf noise seen by the beam consists of two
components, that from the source noise n and that from the phase detector noise d.

To fully evaluate Eq.1, we need to determine the beam transfer function B first.

For a single particle seeing a vectored rf phase ¢ when circulating the ring, we have

the following equations of motion:
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where p is the particle momentum, Q the charge, V the vectored rf peak voltage of the ring,
C the circumference of the ring, w the particle angular revolution frequency, w, the angular
rf frequency, and % the harmonic number. 7 is the frequency slipping factor.

The above three equations can be combined into a second order nonlinear equation

in phase:
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is the small phase angle synchrotron oscillation frequency squared.
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Expand ¢ to the first order, we get the linearized second order equation for small
phase excursions. The corresponding transfer function of beam in the frequency domain via

Laplace Transform is:
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For the phase noise caused beam emittance growth, we are only concerned with the
noise spectrum at g, 3w, Sw,...L.

For a single particle at small synchrotron oscillation phase angles, because of the pole
at w  in Eq.4, we can see from Eq.1 that both the phase detector and the rf source noises
have been completely suppressed at the synchrotron oscillation frequency .

In reality, our cavity rf voltage is sinusoidal. Because of the finite phase spread
caused by the bunch emittance, there will be a spread in synchrotron oscillation frequency
within the bunch. This modifies the beam transfer function. Instead of having a pole at W,
the beam transfer function is related to the beam dispersion integral and its approximate

absolute value is®>:

@, (6)
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where § is the angular frequency spread in synchrotron oscillations within the bunch. We
can see that Eq.5 yields the limit of Eq.6 when § approaches zero.

For a bucket that is 80% full, |B| is around 3. According to Eq.1, if K > > Ithen the
phase detector noise is reduced by a factor of (B-1) and the rf source noise is reduced by

K(B-1) at the synchrotron oscillation frequency w,.
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For frequencies at 3w, Swy, efc., the beam transfer function B is of the order of unity
according to Eq.4. The physical interpretation is that the beam does not follow the rf phase
change at frequencies much above the synchrotron oscillation frequency due to its inertia.
The beam thus sees a hundred percent of phase modulation present in the rf source.

If we set B equal to 1 in Eq.1, we have:

r=-Kd+n M

Thus we see that the =f phase loop has no effect in suppressing high frequency source
noises. Also, the phase detector noise is enhanced by a factor of K. This is to be expected
since at higher frequencies, the loop is practically open because the beam transfer function
is a direct feedthrough and the phase detector does not see any error signals other than the
noise generated by itself.

In summary, the phase loop can suppress if source noise quite effectively at the
synchrotron oscillation frequency. The effectiveness of such suppression is determined by
the beam synchrotron oscillation frequency spread and the total loop gain. The noise
introduced by the phase detector at the synchrotron oscillation frequency depends on the
bunch synchrotron oscillation frequency spread. At higher frequencies, the phase loop is not
effective in suppressing rf source noise. Further, the phase detector noise can be increased
by the phase loop gain.

In choosing the parameters for the low level rf system, the rf source noises at and
above three times the synchrotron oscillation frequency need to be minimized since they

cannot be suppressed by the phase loop. The phase detector should be designed carefully



to avoid noise contributions at and above the synchrotron oscillation frequency. The gain
of the phase loop should roll off quickly above the synchrotron oscillation frequency to avoid

enhancement of noises contributed by the phase detector.
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