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The RHIC rf system needs to hold the colliding beams for 10 hours in relatively small
rf buckets. The 1f phase noise the beam sees will gradually increase the beam longitudinal
emittance and heavy beam loss can occur over a long period. It is therefore necessary to
investigate the rf phase noise tolerance.

Much of the theoretical work has been done by G. Dome' and D. Boussard? of CERN.
Some has been done by E. Raka® specifically for the RHIC and more studies are currently
underway*.

Computer tracking of rf noise effects is attractive as the numerical calculations carry out
difficult non-linear problems efficiently. However, due to the small amplitude of noise and long
integration time involved, interpretation of the results depends heavily on confidence of the
calculation precision and the calculation models involved. This paper intends to show that with

careful selection of parameters, both the above concern can be addressed without complicated

analytical exercises.

PRECISION VERIFICATION

Rigorous analytical approach of mathematical error analysis can be extremely involved



and unpractical to accomplish for real world problems. As physicists, however, we can convince
ourselves that if the calculation conserves certain conservation laws, it should be correct. In our
tracking, we check 1): the action variable J that is known to be constant for non-varying
Hamiltonians and 2): the exact periodicity of motion in the phase space at the end of calculation,
i.e., the particle motion contour in the phase space must not just preserve the area, but also need

be tracing out the exact contour of particles that has identical initial conditions.

NOISE MODEL

While it is well known that random number generators make "white noise", the analysis
of noise spectrum amplitude requires a good understanding of normalization between Fourier
transform pairs and deviation from the real "white noise" due to use of finite computing
resources.

In our calculation, a pseudo random number is generated every one tenth of the
synchrotron oscillation period. We label this sampling period as t,. This noise value is then added
to the rf phase. The actual noise spectrum is therefore a series of "random steps" along the time
axis. We introduce two mathematical functions to represent such a noise source.

The first one is called "sampling" function that is defined as:
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The second function is a "gate" function that is defined as:
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The series of random steps can be viewed as a convolution of the sampling function

weighed by the random number and the gate function
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The Fourier transform of the random function multiplied by the sampling function is an

infinite series of summation of white noises that are shifted by the sampling frequency
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The spectrum therefore still has equal amplitude everywhere. The Fourier transform of

the gate function is a sin(x)/x shaped (Sync) function that has a zero at x=n
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Because our noise function is a convolution of sampled random number with the gate



function, its spectrum is a simple multiplication of the two Fourier transforms. The actual noise
spectrum is no longer "white", instead, it is a continuous spectrum with sin(x)/x shaped amplitude
modulation along the frequency axis.

Now that we know the amplitude shape of the noise spectrum, we also need to know the
absolute amplitude of the noise spectrum. A simpler approach is again to use physical concepts -
-- the law of energy conservation.

Since the amplitude squared is related to energy, let’s examine the mean squared value
of our noise function. Because our random noise generator has a uniform distribution of values
in a given interval, the mean squared value should be identical to that of a linear function as the

time sequence in mean squared value calculation does not matter:
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Therefore, our noise function’s mean squared value is simply its peak deviation divided
by three. This power is distributed in the spectrum according to the [sin(x)/x]* shaped curve. Up
to now we only used unity mathematical functions to represent both the random noise and its
spectrum. To find out the amplitude relation between the random series and our noise spectrum,

we let A7 be the amplitude of the noise spectrum squared:
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where A, is the peak deviation from mean of our random numbers. Thus:

, Al e ®)
4= 3n

Therefore knowing the peak deviation of our random noise series, we can get the value

of absolute power density at a given frequency.

A TRACKING EXAMPLE

In the following tracking example, particles are tracked for 12 x 10° synchrotron
oscillation periods. For the RHIC colliding operation, the synchrotron oscillation is about 300 Hz
so the equivalent real time is about 11.1 hours.

To verify the computation accuracy, no noise was introduced at first and three particles
were tracked for 12 x 10° synchrotron oscillation periods. Any deviation from the original
contour conflicts with known physical conservation and caiculation algorithm and integration
steps were modified till all three particles are on the original contour after 12 x 10° synchrotron

oscillation periods. The result is shown in Fig.1.

Next 100 particles were placed uniformly in the phase space that is equivalent to 90% of



the bucket height (the inner circle in Fig.2), as we expect this would be the bucket size for the
RHIC colliding mode operation.

A random series with 0.0005 radian peak deviation and changes every 1/10th of
synchrotron oscillation period was introduced. According to Equations 5 through 8, the phase
noise has a continuous sync function shap?:d spectrum and the first zero is at 10 times the
synchrotron oscillation frequency. According to G. Dome', in a synchrotron with sinusoidal rf
voltage the diffusion of the rf phase space is caused by spectrum power densities at the
synchrotron oscillation frequency and its multiples. According to the normalization relation given

in Eq. 8, the peak values of phase noise at these frequencies are:

freq.in f 1 2 3 4 5 6 7 8 9 10

A,/10% in
radV2nHz | 7.17 | 6.81 | 625 | 551 | 464 | 3.68 | 2.69 | 1.71 | 0.81 | 0.00

Table 1. Peak phase noise value A, at multiples of synchrotron oscillation frequency.

Fig.2 shows the phase noise effects after 12 x 10° synchrotron oscillation periods. For this
given noise, about 40 percent of the beam is lost (shaken out of the separatrix). About 40 percent

of the original particles remain in the original phase space area --- the area enclosed by the inner

circle.
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Figure 1. Accuracy check shows that all three particles are still on the original contour at the

end of calculation.
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Figure 2. 100 particles were uniformly placed in the phase space enclosed by the inner circle.
After 12 x 10° synchrotron oscillation with phase noise, about 40 percent of the particles were

lost.
PRACTICAL CONSIDERATIONS

Now that we have obtained these numbers, a natural question is how small this noise is
in terms of real world obtainability. To evaluate that, let’s expand the small amplitude phase
modulation to the first order. For an rf signal of amplitude A that has a sinusoidal phase

modulation of frequency Q and amplitude m, we have:
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where , is the rf carrier frequency. Expand the above in the first order of m, we get:
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Therefore, a small simple harmonic phase modulation shows up as two sidebands located
symmetrically about the carrier with offset Q. The amplitude is mA/2 for each sideband. Because
the value A is associated with the carrier amplitude, the value normalized to A gives half the
amount of true phase modulation amplitude.

For practical measurements, a spectrum analyzer is used. Because of the large dynamic

range involved, logarithmic vertical scale is usually used. A quantity normalized to the carrier

frequency is called "dbc" --- or db’s below carrier, defined as:
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Most rf spectrum analyzers have a finite frequency resolution of 1 to 10 Hz. So the actual
amplitude seen is the integration of the frequency interval. Substitute the above numbers into our

equation and assume a 1 Hz resolution, we have, at the synchrotron oscillation frequency:
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Considering the commercially available synthesized source of $20,000 range can generally



have -80 dbc with 100 Hz offset, this is not a particularly stringent specification. For RHIC, the
planned operation mode would have beam-rf phase lock. Rf source noise can be worse than this
and the ultimate noise the beam sees within the bandwidth of the beam phase feedback loop” will

depend on the phase discriminator. These issues will be discussed in future technotes.
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