¢ Brookhaven

National Laboratory
BNL-102182-2014-TECH
RHIC/AP/74;BNL-102182-2013-IR

A Proposed Flat Yet Hierarchial Accelerator Lattice Object Model

N. Malitsky

October 1995

Collider Accelerator Department
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

RHIC/AP/74
Oct. 1995

A Proposed Flat Yet Hierarchical Accelerator Lattice Ob ject
Model

N. Malitsky and R. Talman, Laboratory of Nuclear
Studies Cornell University Ithaca NY, 14853

and

F. Dell, S. Peggs, F. Pilat, T. Satogata, S. Tepikian, D. Trbojevic, C.G. Trahern,
and J. Wei, RHIC Project Brookhaven National Laboratory Upton, Long Island, NY

and

L. Schachinger, Berkeley, CA, 94708

ABSTRACT

A computer generated, standard machine file (SMF) is proposed.. Its
purpose is to facilitate communication of “flat” lattice descriptions between
different users and processes, especially for model-based control. “Essen-
tial” parameters, possibly time dependent, of the physical elements in the
lattice are recorded. Though fully-instantiated, a hierarchical lattice view
is retained. “Objects” in the model are closely associated with physical el-
ements, not computer constructs. Dual intersecting lattices can be consis-
tently described even though they share elements. Though object oriented,
class member functions are concerned with data storage and retrieval, not
with beam or particle evolution or with theoretical lattice functions. This
assures the segregation of data needed for all control and modeling pro-
grams, from algorithms specific to particular programs. For the same rea-
son, logical data specific to particular programs is segregated from physical
data. Different representations of the same model are optimized for differ-

ent purposes: efficiency, rapid interchange, editability, commercial database
access, etc..

This manuscript has been authored under contract number DE-FG02-95ER40920 with the U.S. Depart-
ment of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or

reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

]

1. Motivation and Informal Considerations

For communicating between different accelerator modeling or control processes it is
essential to have a lattice modelJr in which every physical element in the accelerator has
its own independent identity, name, and parameters. This can be called a “fat” or “fully-
instantiated” view of the accelerator. On the other hand, the “theoretical”, or “nominal”
or “design” accelerator, typically exhibiting much greater symmetry than this, is most

usefully viewed with a hierarchical organization.

The lattice model proposed here preserves both of these views. Predicated on the
assumption that the accelerator is usefully analysed and operated as if it were almost
ideal, we consider it important that the extra structures required for an instantiated lat-
tice description be as inconspicuous as possible. Since the definition of what constitutes
“essential” data is not particularly controversial, this report is more concerned with es-
tablishing terminology for describing the model than with the model itself. A computer
file containing the data for this model will be called a standard machine file SMF, even
though it may take the form of computer language structures, especially when internal to
a computer program. This model is considerably more limited in scope and less ambitious

than object models that encompass beam dynamics; e.g. Michelotti and Iselin$.

To enhance the ability to communicate between processes, it is important to be able
to segregate data that is common to most modeling codes (because they describe physical
characteristics inherent to the elements) from data that are peculiar to particular codes
(perhaps because they control processing algorithms.) To some extent this can be handled
simply by maintaining but ignoring irrelevant data, but the structures advocated here

attempt to make this segregation “natural”.

Fully hierarchical descriptions have typically been expressed using the Standard In-
put Format (SIF!,commonly also known as Mad Input Language, in one of its states of

T A “attice model” , as the term is used in this report, is a collection of numerical values of all parameters,
possibly time varying, of the physical elements that influence particle orbits in the accelerator. No particle
or beam parameters are included.

fL Michelotti, Towards C++ Object Libraries for Accelerator Physics, in AIP 292, Proceedings of
Workshop on Stability of Particle Motion in Storage Rings, Brookhaven, 1995.

§ F. Iselin, The Design of MAD Version 9.0, Preliminary Draft, July 28, 1995

3

evolution starting from Transport) or by many variant, high level, languages. Since fully-
instantiated formalisms have evolved independently in each lattice program and control
system, they have not been standardized to the same degree. The intention here is to
provide a mechanism for “remembering” the original design hierarchy, while at the same
time supporting the individualizaﬁon of some or all elements. This is consistent with a
principle according to which data should not be discarded needlessly, especially if doing
so clouds the original design structure of the lattice—this is what happens when small
symmetry breaking alterations formally break design symmetries. The goal then is to have
a single data set that retains both a highly symmetric view attractive to designers and the
fully-instantiated view necessary for control. (A tiny preview of terminology to support
these dual views: an individual elemeﬁt will have a generic name appropiate to its ideal,
hierarchical existence and a lattice namet appropriate to its flat, individual existence. If
the modeling program is part of a “model-based” control system, the generic name has
presumably been selected by an accelerator designer and the lattice name has been chosen
by a member of (or committee of) Project Management.)

The proposed ability to “remember” design configurations is very limited; for example,
changing the sequential order of physical elements or the global geometry is not allowed,
and (other than a modest degree of “gangability”) no form of “intermediate” organization
other than partial expa.hsion of the hierarchy is recognized. ,

To enforce the feature that “instantiated deviations be as inconspicuous as possible” our
policy requires that only deviations from nominal fralues be recorded in fully-instantiated
form. Before leaping to the conclusion that this constraint is capricious and arbitrary
one should admit that it reflects operational practice in many cases. Especially during
commissioning, one commonly has insufficient information to define meaningful deviation
from design values. On the other hand, it is probably natural for hardware readout by a
control system to recover total values (even though deviations from design would probably
be preferable.) In this case, with the original design hierarchy being always known, devia-
tions can be recovered as the instantiated total value minus the generic value. Furthermore,
if there are deviations large enough to perturb operations severely they should probably

be incorporated into the “ideal” lattice description—e.g, if the field integrals of all lattice

§ The term “site wide name” or SiteWideName is also used for what we call the LattName.

dipoles are, say, 1% too great, that fact can be incorporated in the design so that there will
then be no systematic deviation of that parameter. In our model all undefined deviations
default to zero. This policy is consistent with a realistic approach in which deviations from

the ideal are only included as they gradually become known, or conjectured, or are under

investigation.

To recapitulate: maintaining nominal values in the generic description and only devia-
tions from these values in the instantiated description—we have magnet strengths typically
in mind—is an appropriate conceptual contraint, which can, in any case, be removed if
required. Rather than “starting from a clean slate”, in accelerator operation one is usually

pressing forth on small salients from pre-established conditions into the as-yet unexplored.

There are many other examples of input to accelerator modeling programs taking
the form of deviations; for example “per magnet” measured field expansion coefficients
and measured survey locations. It is also natural to express the element strength changes -
recommended by the correction algorithms of a modeling program in the form of deviations
from nominal (though nominal is commonly zero in this case.) Another type of deviation is
Monte Carlo generated, internal to a modeling program. Finally, an even more ambitious
generalization that is well represented by a deviation is a “ramped” or “dynamic” lattice

parameter, such as hysteretic field strength, extraction octupole, bumper strength, RF
frequency, etc.

It is intended, even for a single lattice, that there be more than one representation
of the model being discussed.t As well as being required to be “equivalent” each valid

representations will provide some of the following features:

e computer generated;
e human editable;
e computationally efficient;

e rapidly interchangeable—hence probably binary;

t We use the term “equivalent representations” to refer to differently organized datasets that describe the
same lattice.

e capable of being output from one process and “piped” as input to another
process. A process that accepts such a file as input and generates a revised file
(normally of the same format) as output is called a “Blter” 8

e Sophisticated “book-keeping” in the face of multiple lattice variants—this prob-
ably implies manageability by a commercial database management system.
(Naturally, in this case, the data for the model described here will constitute

only a small fraction of the data being managed.)

The ideal lattice representation would be optimal for all of these, but it is assumed that
several representations, each one optimized for a different purpose, will be used in practice.
With disciplined adoption of the model, generation of translators from ofie representation
to another should not be difficult.

What are the intended benefits of the object-oriented approach advocated here? Quite
apart from any particular implementation, disciplined analysis of the problem in order to
minimize the complexity of the data structures is presumably a good thing. The con-
cept of representing the flat, instantiated, lattice strictly in the form of deviations from a
generic ideal lattice is one product (which everyone may not agree with) of this discipline.
Furthermore, the explicit spelling out of data structures in any particular implementation
makes the data structures more easily accessible by other programs, especially if they are
written in the same language. This should facilitate incorporating the powerful features of
modern methodologies and programming languages. An “access library” capable of taking
advantage of this feature and able to describe an arbitrary new element (such as an internal
target, a beam-beam effect, or a real-time effect) has been described?;it permits coding to

be done without understanding or disturbing previous coding. It can also be used together

§ This functionality is copied from the writefile/readfile feature of Teapot. The filter functionality has
been developed for the particular ideosyncratic needs of the RHIC project at BNL. The “thick” file, newly
introduced in this report, will replace the thin fort.7 “machine file” accepted by those filters. An SDS?
format will also be supported. (The most important .modification is that element splitting into thinner
elements, presumably for purposes of sympectic integration, though anticipated, is not performed at this
level. Subsequently intended splitting of a thick element into N +1 thin elements is specified by new “element
splitting” attribute N.) The purpose of most of the language features is to permit heterogeneous filters to
process the same lattice files. It should not, however, be inferred that the language is intended to be in any
way specific to Teapot; quite the contrary. The purpose of references to Teapot is to lend concreteness. The
sort of flow of information envisaged is shown in Fig. 1 which applies to the RHIC accelerator. Though the
shaded box is emphasized in this report, it is primarily intended as an example implementation of the object
model.

RHIC-TEAPOT INTERFACE DEFINITION

.. : 2
Same format, lattice output(2)

Specified by ,
BNL. Keyed |
by element !
index. !

t

-
RHIC E teapot

Figure 1: Flow of information back and forth between a modeling pro-
gram and an accelerator control system. The SMF described in this report
is shown as the shaded “tpot thick flat” data set. The number (2) in
parenthesis indicates two formats. They are the Ascii representation and a
C+-+ header representation (or an essentially similar self-descriptive stan-
dard (SDS) format). Though not shown, filter processing of this file is also
possible.

with other mathematical or physical libraries (e.g. differential algebra.) Another purpose
ié tb make the accelerator description accessible to modern operating systems, integrated
environments (such as COMMON POINT*), real-time control systems, distributed systems
(such as CORBAS?), databases (object-oriented or relational) and user interfaces.

A sensible strategy for reading this report might be to glance now at Appendix A.1
which contains a SIF description of a “toy” lattice and Appendix A.2 which contains the

same lattice (with a few extra instantiations) transcribed into the Ascii representation of

7

the model—explained in Section 3. The same lattice in its C++ representation—explained
in Section 4—is given in Appendix A.3. To insure that legitimate C4++ language is being
used it is expressed as a valid C++ header file. But this is not intended to imply that
compiling the lattice description into the code is either necessary or a good idea. The
explanation of the C++ implementation is brief and cryptic. This takes advantage of
one of the tenets of the Object Model Technique, (OMT)® religion, “a good model can be
ﬁnderstood and criticized by application experts who are not programmers” ,§ The next

section gives the rationale, rules, and terminology of the object model.

2. Overview of Features

The important features of the proposed lattice model are listed informally here. In
this report some organizational features are drawn from Rumbaugh et al®. The first step
in the Object Modeling Technique is supposed to be the generation of an Analysis Model
which specifies what the system must do. The broad outline of this has already been
given. Here we give more detail, defining terms, and describing examples by an Ascii
“shorthand” (resembling SIF) intended to facilitate human (as contrasted with computer)
intelligibility. Except for occasional preview examples, implementation mechanisms will be
described later. Though the lattice description is to be called a “Standard Machine File”
(SMF), this is not intended to imply that it is implemented as a true file of any particular
- computer language—“data set” would be more accurate.

The more important (and most likely to be ambiguous) terms are placed in quotation
marks to indicate that they are being defined implicitly by their use in the accompanying
sentences (or that their meaning is admittedly vague.) Technical language elementst are
indicated in italic print; especially important are those starting with a capital letter since
they are names of classes in the C++ representation described in Section 4. Material in
typewriter type represents actual entries in an Ascii SMF.

The following terms (with examples drawn from the Ascii representation) will be used:

t By and large, abbreviations are avoided. The only exceptions are the words generic, element, attribute,
parameter, lattice which are abbreviated to gen, elem, attrib, param, latt, but only when they are prefixed
as adjectives to other words.

e Parameter’s (typical names 1d, kqi,...)

o ElemAttribute’s (such as the arc length L through the element) can be strength,

position, etc.—physical properties an accelerator element can have t

e GenElement's, (typical names $quadhf, $sextl,...) GenElement definitions
include the assignment of element type (such as QUAD) and ElemAttribute’ s

e Line’s (typical names before “line expansion” “fullcell, ring, ..., same

names residual after expansion +fullcell, +ring, ...)

e LattElement’s, in one-to-one correspondance with “physical” elements in the
lattice, have the generic names and nominal values of GenElement's and (op-

tionally) “per element” attribute deviations and LattElement names (such as

qf311, fred,...)

The proposed data set has various forms of organization. One is into “model levels”,

indicated by Roman numerals and containing the following categories of definitions:

I. Parameter names are introduced and assigned numerical values.

II. GenElement's are defined and their attributes are assigned (eventua,lly§) nu-

meric values.

II1. Line's are defined. Unlike elements, for which two “kinds” are recognized, there
is only one kind of line. Like GenFElement's, Line’s are generic. A Line can
contain another Line nested within it, and so on. Line expansion is discussed

below.

IV. LattElement s are listed (eventuallyi) sequentially, augmented as appropriate
by all nonvanishing deviations from inherited generic values. Though primar-
ily intended as a flat description it retains line names to permit hierarchical

reconstruction.

t It is also possible for an ElemAtiribute to have logical character such as vacuum chamber SHAPE which
might be ellipse, rectangle, etc. In the C++ implementation of Section 4, strings (ellipse for example)
can be macro-replaced by numbers so that a single attribute type (numerical) is sufficient. ’

§ “Eventually” means “after complete processing”. In this case, an attribute may be assigned a parameter
that will eventually be replaced by a number.

} See previous footnote.

(IV'.) This level is internal to Teapot; it is, strictly speaking, not part of the lattice
model being discussed. It is included here to facilitate discussion. ¥ Appendix

B.1 shows how an extra level such as this fits into the model. Tt is labeled (IV?)
so that the following level can be called V.

V. Definition of ganged families. Interpretation of “logical” element attributes

(such as are described by the “type” feature of the SIF).

Only level IV and (IV’) are truly flat. It would be possible to relax the requirement that
the data be listed sequentially in the order I, II, III, IV, V. On the other hand, since the
data sets are machine generated, such flexibility seems unnecessary. So level I data comes

——

first and is completed, then IT, and so on.

Some general features of the model are listed next, roughly in order of importance,

with most important first, and with some repetition of points already covered.

; Each LattElement inherits a GenElement name from level IT, implicitly acquires
a sequential index, and is (optionally) assigned a fully-instantiated name appro-
priate for flat description. GenElement names and ElemAttribute’ s assigned in
level IT are inherited by LattElement' s in level IV where instantiated deviations
are also (optionally) assigned.?

e The lattice description includes a “fatl” list of elements in one-to-one, se-
quential correspondance with “thick” elements of the actual lattice. The term
“thick” is synonymous with “physical” which is the level of differentiation at
which an element is individually positioned and powered, for example in a con-

trol system. Because of the sequential nature of the enumeration, each element

T In the (internal, but externally accessible) Teapot description some “physical” elements have been
artificially subdivided for symplectic particle tracking purposes. This data is organized in almost strictly
flat form, even to the extent that all element record formats are identical. It is available in various forms:
formatted (editable or “slow”) Ascii, unformatted (fast) Ascit, and SDS (self-descriptive standard) data sets.

§ In greater detail, there are two distinct types of attributes: numerical attributes and string or “logical”
attributes (such as SHAPE=ellipse). The term ElemAttribute subsumes both meanings.

} Another (somewhat less essential) new feature being introduced is that each attribute is also assigned an
r.m.s. uncertainty. For most parameters this feature is superfluous since no such uncertainties are available.
As usual in this language, this defaults to the parameter being known perfectly. Note that this uncertainty,
being generic, is defined in level II.

t To the extent that “Aat” refers to a data file, we define it to mean one record per element, sequentially
listed, but do not require each record to have the same format.

has a unique sequential integer index (lattice beginning is 0) which must obvi-
ously be recoverable from the lattice description. This index can serve as a key
for correlating with other files containing data such as lattice functions, power

supply currents, surveyed positions, eic.

The term “flat” also conveys the meaning that any element attribute can be as-

signed to any element. To support this feature any undefined element attribute

is zero or null by default.”

The model is “complete”; all data required for reconstruction and subsequent
beam dynamics analysis of the lattice is contained, and this must remain true
when the file is passed through a filter. Any element attribute (for example a
strength) can be assigned an instantiated deviation value whether or not the

strength was introduced generically in the original design.

A hierarchical lattice tree is based on lines as in the SIF. This provides a
mechanism for recovering the original hierarchical organization of the lattice
even after the symmetry has been broken by individualization of some of its
element names or attributes. This ability relies on the capability of defining
and naming lines as well as on the representation of attribute values as design

values plus deviations.

All language elements of the model should be “extendable”. Hence the list
of reserved GenElement's types (such as QUAD), and the lists of reserved nu-
merical ElemAttribute’s (such as ANGLE) and logical ElemAttribute’s (such as
SHAPE) can be extended in ad hoc fashion. Since such extensions tend to defeat
effective communication, it is important to have an agreed-to vocabulary of
recommended types and attributes initially—the reserved attributes defined in
the SIF will constitute the majority of “reserved” names. But this list can be
~ augmented later without important restriction; to emphasize the point, no lists
of reserved names are given in this report. Restoring the loss of consistency be-
tween written and read files implied by introducing new elements or attributes
is the responsibility of the user(s). On read-in, unrecognized elements and their

values, if any, are ignored. This is a mechanism that allows the same data file

10

11

to be used by different programs; information specific to one program can be
ignored by another.

e In the SIF, two elements whose strengths are given by the same symbolic pa-
rameters are implicitly “ganged” together. The same mechanism applies here.
A moderate further degree of “gangability” is also supported. It permits the
declaration of individual elements as belonging to a family for which one spec-
ified parameter is allowed to be varied, with the changes constrained to be the
same for all family members.T To support unequal weighting such as “equal
but opposite” element change functionality, a numerical weight (defaulting to
unity) can accompany the family designation. (Incidentally, no arithmetic op-
erations are allowed in parameter definitions.)

o Free format. Only non-zero entries need be made, and in any order, except a
numerical value must follow its corresponding symbolic name. There may be
other ad hoc syntactical rules governing the sequencing of ElemAttributes and
their values within a GenElement or LattElement definition.

¢ The model supports different formats optimized for different purposes. These
include sequential-Ascii and C++ header file format. The ability to locate and
edit parameters by hand in at least one format is essential, but ease of editing

is not given a high priority (since complicated alterations should be performed

some other way).

t Correction schemes often employ “families” or “gangs” of elements (for example correlated beam ad-
justers) that are established independent of the original design hierarchy of the lattice. Such newly imposed
families can “increase the symmetry” by constraining to be equal certain strengths that would have been
independent because they belonged to elements that were generically independent in the original design.
On the other hand, “symmetry reduction” results if a newly defined family distinguishes (for example by
inclusion or exclusion) elements that were generically equivalent in the original design. The “increased sym-
metry” case can be described while respecting the original hierarchy. In the “reduced symmetry” case the
original hierarchy can be respected as regards the ideal lattice but must be violated at the level of deviations.

12

3. Implementation Mechanism for the Ascii Representation

Hierarchical organization can be recovered from the “flat” sequential level IV Asci

listing by appropriate processing of the Line’s. The fact that Line’s may be nested in

level III is the only complication.

The simplest (and least interesting) possibility would have no Line’s defined in level I11.
In that case the sequence of elements listed in level IV would be explicitly flat. The next
simplest (and not quite empty of significance since it might model an ideal accelerator)
has no deviations introduced in level IV. In that case, Line names appearing in level IV
can be “macro-expanded” by replacing the Line name by its “macro” d;;inition available
from level III. Actually “replace” in the previous sentence is not quite right—the original
Line name remains but, marked as having been expanded, it serves as memory of the ideal
hierarchy but is invisible to the flat view. At this point we expand the terminology slightly
by saying that the Line name is alive while it remains unexpanded, and ‘dead thereafter.
The simplest valid complete example of the level IV Ascii description of an ideal accelerator

would, for example, be “idealRing, a Line defined in level IIL

Practical cases are intermediate between the two extremes described in the previous
paragraph. Suppose, again starting with the simplest possibility, that the ring being
described were the “idealRing introduced above but with a single parameter changed
from the ideal. In that case the same macro expansion occurs until the LattElement whose
attribute needs changing becomes exposed. At that point macro expansion ceases and the
parameter deviation is entered. This involves (logical) concatenation of the generic and
instantiated records. Rather than requiring a parameter change, suppose the LattElement
needs to be named—same process, expand until exposed and add the name. When more

deviations or names are required the macro expansion process continues as necessary. On

read-in full expansion presumably takes place.

It is pretty clear, for practical lattices, with realistic elements, in any actual accelerator,
that at least the “upper”, and possibly all, Line’s will have been expanded in the working

lattice file. Typically then, the file will be at least hundreds of times longer than the sample
file in Appendix A.2.

13

At any stage in the expansion process the list will consist of LattElement' s and sub-lists
of LattElement’'s and unexpanded Line's contained in curly braces, { and }. Since this
looks much like the block definition of the computer language C, it seems that “pretty-
printing” level IV will recover the hierarchical structure visually. On the other hand, full
expansion, with suppression of the curly braces and “dead” names, yields a flat listing.

The workability of this scheme can perhaps best be contemplated by viewing the exam-
ple of Sections A.1 and A.2. A somewhat klunky feature of the scheme, even with Line’s
fully expanded, is that some elements are GenElement's and some are LattElements.
(This may mirror operational practice in an actual accelerator where some elements may
never acquire LattElement names.) To cure this formal defect our policy is to make a
dummy entry _ for.elements without instantiated names in the place a LattElement name
would normally appear. A fully expanded list then has a LattElement name for every ele-
ment. This has the further advantage that even the shortest possible LattElement record,
[-], is not empty. - In a fully expanded list sequential element indices can be obtained
simply by counting occurences of [- - -] pairs.

As implied by the miscellaneous examples given so far, the “language” elements are
differentiated by special prefix characters, for example as in Perl, but with some syntactical
features reminiscent of TeX. A complete data set is nothing more than a sequential stream
of tokens. The TeX conventions for expanding an input line into a sequence of tokens can
be copied directly. This includes treating end-of-line characters as equivalent to spaces
(except that comments, started by special character %, terminate at the next end-of-line)
and regarding multiple spaces as equivalent to single spaces.i

The concept of “category code” can also be copied from TeX with a few of the codes
to be interpreted much as in “plain” TeX and the remainder ada.pted to the present task.

The suggested category code definitions (with examples in parenthesis) are:

0. \ prefix to reserved name in this language (\III)

1. {'Start of expanded Line (as in +ring{"fullcell “fullcell})
2. } End of expanded Line (as in +ring{’“fuilcell “fullcell})
3. § Prefix to GenElement name ($quadhf, $sext1)

} Unlike TeX, two or more consecutive end-of-line characters (i.e. blank lines) are also equivalent to spaces.

14

4. + Prefix to dead Line name (as in +fullcell) (The + is mnemonic for

gravestone)

5. eol End-of-line

6. Not used at present

7. © Prefix to alive Line name (" fodo) (The up arrow is mnemonic for “look
above”)

8. _ Prefix to LattElement name (_qf311, _qd312). Underscore _ alone serves
as dummy name for no-name LattElement’s

9. Available

10. Space }
11. [Beginning of GenElement or LattElement record
12. | End of GenElement or LattElement record

13. Available

14. % Start of comment lasting to next eol

15. Letter

Miscellaneous conventions. FElement type names are to be upper case and fixed
length (e.g. QUAD, not quad or QUADRUPOLE). Element attribute names (such as ANGLE) are
also to be upper case and full length. Parameter, GenElement and LattElement names are
case sensitive, begin with a letter, and can consist of any combination of upper and lower

case letters, numbers and (for element names only) underscores.

4. C++ Implementation

This document is loosely based on the Object Modeling Technique®, particularly on
its object model. The previous sections have contained the data requirements and can be
considered to be the first stage of the object-oriented methodology, namely the Analysis
Model. The next stage, Object Design, describes the structure of the objects in the system
and their relationships. It should not depend on a particular programming language;
rather it should be based on classic data structures or container classes (such as Vector,
Dictionary, etc.) that can be provided by most object-oriented languages as part of their

predefined library. We use (with minor modification) conventional object diagrams and

15

notations of this methodology. For example, a diamond indicates aggregation and a triangle
inheritance. We introduce one ad hoc notation—a “switch” between objects—which means
that an object of the class can be initialized one way or (exclusive) the other. For the sake
of clarity, the examples in this section are implemented in C++; the data structures are
shown in Appendices.'r

In the model each accelerator program is considered as a sub-class of the Pac (Platform
for Accelerator Codes)® class. The internal data structures and methods of such codes,
being determined by particular algorithms and developer’s styles, may be different. But,
as if derived from the Pac class as regards lattice description, each code inherits the ability
to communicate with other codes via a common data set of class Lattice.

The structure of the class Lattice being in one-to-one correspondanc: with the SMF

described in Sect. 2, data is organized in the following levels:

o Level I: vector of Parameter’s. Instances of class Parameter include the name
and value (Appendix B.1) and share the static member Dictionary < String,
Parameter*> collection that services the unique set of their names.|

e Level II: vector of GenElement's. In accordance with the proposed flat de-
scription, each physical element (class GenElement) has the same internal
structure and can be implemented as a direct sum of linear spaces of design

attributes (class ElemAttributes) and their r.m.s. uncertainties (class Error)

(Appendix B.2.1):
double lg = 0.6;
double kql = 0.3789;
Error quadhf rms = kq1*0.01*K1,;
GenFElement quadhf = Iq*L + kq1*K1 + quadhf rms;

Here L and K1 are SIF attributes, and GenElement object quadhf is an el-
ement with length equal to 0.6 m and gradient 0.3789 m~1. In this example

{ Inthe figures some of the so-called “classic data structures” such as Vector, which is a fixed-size collection
of values of uniform type, List, similar except the number of elements is unknown in advance, and Dictionary
appear. Also the use of class templates is indicated. For example, Vector<Parameter> is a class generated
by template Vector<class T>.

The word collection is used here to reduce ambiguity that might result from the fact that the more
idiomatic word store can be either a noun or a verb. The word static associated with Dictionaries in the
figures also carries the connotation that they are global.

the quadrupole gradient is defined with 1 percent uncertainty. Notationally,
boldface quantities like L and K1 can be thought of as “unit vectors” along the
axes of element length and quadrupole strength, the * operator is overloaded
to connote “multiplication” by a “scalar” (not to be confused with pointer) and
the + operator is overloaded to connote vector addition. Because each physical
element has an arbitrary number of attributes, it seems useful to implement
its data as a dictionary (associative array) linking some predefined basis vector
ElemAttribID (such as L, K1) with its corresponding attribute value ElemAt-
tribValue. The instance of class ElemAttribValue can be defined by numerical
value or by Parameter (Appendix B.2.2). Additionally it includes a pointer to
some (potentially time varying) strength that describes the real physical pro-
cesses (magnetic field ramp, power supply ripple etc.) The class GenElement
serves as base class for all different types of physical elements, such as Sbend,
Quadrupole, etc (Appendix B.2.3). These classes have the same structure and
only differ by variable fype. An element may have an associated map—that
this is optional is indicated by tiny open circle attached to the map object in
Appendix B.2.1.

Level II: hierarchical tree of Line’s and GenElement’s. Design of this structure
is presented in Appendix B.3. A tree consists of a collection of nodes, instances
of class Line. A physical element is considered as a leaf in this hierarchy
and defines the corresponding Line’s member. The interior node, subtree, is

initialized by concatenation of GenFElement's and Line’s:

Quadrupole quadhf = lq*L + kql*K1;
Sextupole sextl = Is*L + ks1*K2;

Line fullcell = quadhf * sextl *...;
Line ring = fullcell*...;

Level IV: vector of LattElement’s. This structure represents a flat list of ele-
ments in one-to-one correspondence with actual physical lattice elements. The
data of LattElement is implemented as a superposition of design attributes

(GenElement* genElement) and their deviations (ElemAttribute deviation).

16

e Level V: definitions of “families” and “ganging” is being worked on.

In addition to physical data, the classes Parameter, GenElement, and Line include
also a static collection of pointers to their instances. The set of these collections can be
regarded as a “distributed” database that serves several purposes. It provides the unique

set of object names and permits the same lattice sector to be shared by different rings; as

in

Lattice arci << “ARC1”,// Definition by
arc2 << “ARC2",// external files
ir << “IR”; -
Lattice ringl = arci *ir,
ring2 = arc2 * ir;
A C++ header file that describes the toy fodo lattice is presented in Appendix A.3.

We regard it to be obviously advantageous, in comparison with the present SIF standard

language, to have the lattice described in the same programming language as the modeling

code.

Appendix A.1. Sample Ascii (SIF a.k.a. MAD) Standard Input Format

The following SIF listing is to be compared with the listing in Appendix A.2. At the
hierarchical level the two listings describe identical lattices, but there are differences at the

flat level. The last five entries of this file are examples of instantiated deviations supported
by Mad.

TITLE

"Toy fodo lattice"
!

! Level I - define parameters

1b =4.0
1q = 0.6
1s =0.3

1d =0.15

deltheta = 0.62831853

kql = 0.3789
kq2 = -0.4132
ksi = 0.07
ks2 = -0.14

! Level II - define generic elements

bend : sbend, 1 =1b, angle = deltheta

quadhf : quadrupo, 1 = 1q, ki1 =kql

quadvf : quadrupo, 1 = 1q, ki1 = kq2

sextl : sext, 1=1s, k2 = ksl

sext?2 : sext, 1=1s, k2 =ks2

driftl : drift, 1 =1d

{

! Level III ~ define hierarchical structure -
fullcell : line =(&

quadhf, driftl, sextl, drifti, bend, driftl, sext2, driftl,&
quadvf, drifti, sext2, drifti, bend, drifti, sextl, driftl)
ring : line = (6%fullcell)

[]

! Commands

use, ring

0

!Level IV - define misalignments and measured field of
tindividual elements

ealign, bend[3], DX = -0.003, DY = -0.003

ealign, bend[4], DX = -0.001, DY = -0.001

ealign, quadvf (2], DX = -0.003, DY = -0.003

efield, quadhf[2], DKL(1) = 0.0024

efield, quadvf([2], DKL(1) = -0.0024

Appendix A.2. Thick Flat Lattice Ascii Representation of the Same Lattice

This file, written in the Ascii representation of the model described in this report, is to be
compared with the previous appendix. The main extra attribute that would have to be
included for Teapot or any other symplectic integration program would be the parameter
N for those elements requiring subdivision. As explained in the text, any element attribute
potentially appearing in level II can validly appear in level IV, but in level IV its assigned

value is interpreted as a deviation from the generic value inherited from level II.

% Tpot thick flat file (ASCII-formatted)
% Toy fodo lattice
b
\
1b 4.0
lqg 0.6
1s 0.3
1d 0.15
deltheta 0.62831853
kqi 0.3789
kq2 -0.4132
ksl 0.07
ks2 -0.14
%
\II } o
$bend [SBEND L 1b ANGLE deltheta]
$quadhf [QUAD L 1q K1 kqi]
$quadvf [QUAD L 1q K1 kq2]
$sext1[SEXT L 1= K2 ksi]
$sext2[SEXT L 1s K2 ks2]
$drift1[DRIFT L 1d]
%
\III
“fullcellq{
$quadhf $driftl $sextl $driftl $bend $driftl $sext2 $driftl
$quadvf $driftl $sext2 $driftl $bend $driftl $sextl $drifti}
"ring{"fullcell “fullcell “fullcell “fullcell “fullcell}
%
\1v
+ring
{
“fullcell
+fullcell
{
$quadhf [_qf311 K1 0.004]
$drifeil _ 1
$sexti[_fred]
$drifti(_]
$bend [_]
$drifeil _]
$sext2[_]
$drifeif _]
$quadvt [_qd312 DX -0.003 DY -0.003 K1 -0.004]
$drife1 _]
$sext2[_S_123]
$drifeil]

$bend[_ DX -0.001 DY -0.001]
$drifei _ 1]
$sext [_ 1]
$drifei _]
}
“fullcell
“fullcell
“fullcell
}

Appendix A.3. Header File, C+4-+4 Implementation of Same Lattice

This is a C++ header file representation of essentially the same lattice as described by
the previous two pages. This is intended for illustration only and does not presuppose
that compiling the lattice description into the modeling code is necessarily an economical

approach.

// fodo.h
// Toy fodo lattice
//
// Level I - define parameters
Parameter
1b("1b", 4.0),
1q("1q", 0.6),
1s("1s", 0.3),
14("1i4", 0.15),
deltheta("deltheta", 0.62831853),
kq1("kql", 0.3789),
kq2("kq2",-0.4132),
ks1("ksi", 0.07),
ks2("ks2",-0.14);
//
// Level II - define generic elements
Sbend bend("bend", lb*L+deltheta*ANGLE);
Quadrupole
quadhf ("quadhf", 1q*L+kqi*K1),
quadvf ("quadvf", 1g*L+kq2*K1);
Sextupole
sextl1("sextl", ls*L+ksi*K2),
sext2("sext2", 1ls*L+ks2*K2);
Drift drifti("drifti", 1d=L);

//

// Level III - define hierarchical structure

Line fullcell("fullcell",
quadhf*drifti*sextl*drifti*bend*drifti*sext2*driftl*
quadvi*drifti*sext2*drifti*bend*drifti*sexti*driftl);

//

// Define lattice

Lattice ring("ring", power(fullcell,5));

//

// Level IV - define misalignments and measured field of

// individual elements

Sequence fullcell _1("", ring.sequence("fullcell", 1);

//

fullcell_1[0] .define("qf311", 0.004*K1);

fullcell_1[2] .define("fred");

fullcell_1[8] .define("qd312", -0.003%DX-0.003*DY-0.004%*K1) ;

fullcell_1[10] .define("S_123");

fullcell_1[12] .define("", ~0.001%DX-0.001*DY);

Appendix B. Accelerator Lattice Object Model.

Level I
Vector<Parameter*> (parameters)
Level I
Vector<GenElement*> (genElements)
Lattice <
¥ Level II1
Line (line)
Level IV
Vector<LattElement*> (lattElements)
<> Pac
Other libraries Teapot
(accelerator methods) Level IV’

Vector <Vector<TeapotElement>> (thinElements)

Appendix B.1. Level I. Parameter.

String

(name)

Parameter

static

double

(value)

Dictionary<String, Parameter*> (collection)

23

Appendix B.2.1. Level II. Generic Element.

String (name)

int (type)

OrderedDictionary

GenElement [

ElemAttributes (values) }_

Error - (rms) <ElemAttrID, ElemA ttribValue>

——4 Map

(map)

" static

Dictionary<String, GenElement*> (collection)

Appendix B.2.2. LevelIl. Element Attributes.

ElemA ttributes OrderedDictionary<ElemA ttribID, ElemAttribValue>

String (name)
ElemA ttribID '

/L, ANGLE, K1.../ | ElemAttribKey (key)

/°—'_ double (value)

Parameter* (parameter)

ElemAttribValue —

double (weight)

double ((*tF)(double time))

24

Appendix B.2.3. LevelII. Physical Elements.

GenElement

oy

1 2 3

Drift Sbhend Quadrupole |

Appendix B.3. Level IIl. Line. —

String (name)
/ List<Line*> (subtree)
Line &
——— GenElement* (leaf)
tatic
S Dictionary<String, Line*> (collection)

Appendix B.4. Level IV. Lattice Element.

String (name)

LattElement GenElement* (genElement)

ElemAttributes (deviation)

5. References

1. Standard Input Format, Snowmass, 1984.
C. Saltmarsh, RHIC AP Note 29, 1994.
N. Malitsky, A. Reshetov, and G. Bourianoff, SSCL-675, 1994.

Ll

S.Cotter and M.Potel, Inside Taligent Technology, Addison-Wesley Publishing Com-
pany, ISBN 0-201-40970-4.

5. CORBA reference document, accessible via http as

http://www.acl.lanl.gov/sunrise/DistComp,/Objects/speclist.html.

6. J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, W.Lorensen, Object-Oriented Model-
ing and Design, Englewood Cliffs, New Jersey, Prentice Hall, 1991.

