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FIG. 1. Measured Schottky signal for the uncooled beam.
The solid line is a fit to the theoretical model from Ref. {3].
The inset shows the Gaussian velocity distribution measured by
laser fluorescence. The characteristic velocities + v, for Lharoe
density waves are indicated.
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(a) Schottky spectra measured at various detunings

(shown between figures) dunng laser cooling. Dashed lines
indicate the noise floor of the measurement; each vertical tick

mark 1s one decade in relative power.

The asymmetry in

peak heights is probably due to a slight difference in laser
powers, leading to larger diffusion past one laser. The nonzero
resistivity of the vacuum chamber may also play a role. (b) The
corresponding velocity distributions, measured by LIF. Each

spectrum contains about 107 fluorescence counts.
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Table 5-1
ASTRID Design Parameters
Circumference 40 m
Length of Straight Sections 7.83 m
Vacuum Chamber Diameter 100 mm
Maximum Magnetic Rigidity 1.87 T-m
Betatron Tunes: Vertical 2.73
| Horizontal 2.29
Transition Y 4.58
Chromaticities: Vertical 157
Horizontal -3.4
Betatron Acceptances: Vertical 60 ® mm-mrad
) Horizontal 320 © mm-mrad
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Figure 5-2 ASTRID lattice functions for one superperiod (one-fourth of the
ring) ; solid line -Bx, dot-dashed line -By, dotted line-nx
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LETTERS TO NATURE

FIG 2 Colour.coded images of crystal-
hne structures of laser-cooled Mg "
ons. The intensity increases from vio-
let to blue. yellow and red. Individual
1ons could be resolved in these images -
The ions arrange themselves m
minmum energy configurations. a, For
fow 1on density {A = 0 291 the ions form
a string along the field axis; b, increas-
Ing the ion density changes the
configuration to a zig-zag (A = 0.92). At
stll hugher 1on densities the ions form
ordered helical structures on the sur-
face of a cylinder: ¢, two interwoven
helices at A=1.9; d three interwoven
hehces at A =2.6. Experimental images
are displayed above, visualizations
below.
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FIG. 3 Images and intensity profiles of (a) string, {b) one shell @
{p/a=1.05, total ion number in the ring N = 5% 10%), (c) one +100 %
shell plus string ( p/a=1.8, N =1 x10°),(d) two shelis { p/a= =
2.7.N =2 x10%),(e) two shells plus string (p/a =34, N =3 x 160 €
10°) and (f) four shells (p/a=6.2, N~8x10%). The ions 1 i
are not individually resolved. The structures can be identified o
with the help of the radial intensity profiles {right). The images 1o s
are colowr-coded as in Fig. 2. integration times are longer é’
than 3 min each.
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leads to a harmonic confining potential'® of the form ¢ = W,r-/ r;
with the potential depth Y, =g U%:/4mO%r . where g is the
ion charge, m the ion mass, r the distance from the field axis
and ry half the distance between opposite electrodes. The oscilla-
tion frequency in this harmonic potential, w... = (2¢,/mr)"'".

[ DetectoL

—_1@ ~ Laser beam

\ 38
- d—— & & S mm

7 /i Electro ,/

o 4 " A S ——

Atomic oven

lonization

FIG. 1 Quadrupole storage ring, with the atomic beam oven and electron
gun. The storage ring consists of four circular electrodes. and the diameter
of the toroidal storage volume is 2R =115 mm. The insert shows an enlarged
cross-section with opposite electrodes having a separation of 2ro=5mm.
The laser beam enters the storage volume tangentially. Resonance fluores-
cence is detected with a photomultiplier tube or an imaging photon detector
system.
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Viultiple-shell structures of
laser-cooled “‘Mg" ions in
a quadrupole storage ring
G. Birkl, S. Kassner & H. Walther

Max-Planck-Institut fir Quantenoptik, Garching bei Munchen, Germany

THE possibility of creating ordered ion beams in high-energy
storage rings' by means of electron and laser cooling has opened
up a new era in accelerator physics. The enhanced luminosity and

suppressed momentum spread in such systems create the highest
“possible phase-spacg density. The first experimental results were
obtained by cooling 'Li* beams to temperatures of a few kelvin
or even to sub-kelvin temperatures™, and the ordered structures
have been studied theoretically™” by methods of molecular
dynamics. Predicted configurations for the lowest ion densities
have been observed in low-energy quadrupole storage rings® and
linear traps®. Recently we showed that at slightly higher ion
densities helical structures are obtained'®. Here we present a series
of new experimental results on ordered ion structures in a quad-
rupole storage ring. In order of increasing ion number, a linear
chain of ions, a zig-zag structure, helical structures and finally
multiple concentric shells could be observed. The experimental
results agree with molecular dynamics calculations.

When ordered structures in storage rings are simulated®”, a
cylindrically symmetric, static harmonic potential is usually
assumed to describe the confining field. The pseudopotential of
a low-energy quadrupole storage ring is closer to the theoretical
model than the confining field of a high:energy storage ring,
where the ions are subjected to periodic squeezing and pulling
in the focusing sections, Coulomb explosion in the drift sections
and shear forces in the bending sections. The principle and first
realizations of quadrupole storage rings are described in refs
11-13. In the ring the ions can move freely along the axis of
the quadrupole field and are radiallv confined by annlviea -
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Motivation -

Condensed Matter Physics

1. Systematic (relatively easy to control) study of transition from
A 1D to 2D to 3D in the ground state; i.e., a careful
study of the change in symmetries associated

with change of density and with (easily changed)
focusing.

2. Study of transport properties in the crystal.

3. Study of the stochasticity temperature. Special to beams vs.
particles in traps. Stochasticity for a many-body
system vs. usual 1 particle stochasticity studies.

4. Study of a suspended phase; interaction of a solid with a "gas”
phase (A special aspect is that the gas phase

(especially) absorbs heat at a steady rate from the
lattice).

5. Study of phase transitions (sharp or not?) in this system (which

could, well, be different than the situation in
traps).

6. A wnew state of wmatter



Accelerator Physics

1. In the course of getting crystals have learned many things that
are useful more generally:

1. How to do laser cooling, with two lasers,
induction units, RF cavities, etc

2. How to cool in three dimensions.

3. How to measure velocity distributions using
fluorescence.

4. New methods of laser cooling (like adiabatic
fast passage) are being considered.

2. Very fine beams should be useful for a variety of things such as,
(after extraction) for very fine fabrication of semi-
conductors (ion implant), to study nuclear levels
that are close together (but can't use thick targets

because of Landau straggling), for atomic physics
~ (marginal, channeling is a possibility).

3. Development of diagnostic techniques for crystalline beams
(Schottky scans, etc.) will be generally useful.

4. Study of intra-beam scattering and various mstab1ht1es ina
controlled environment.

5. Useful for high luminosity colliders?



Questions :

* Does the crystalline structure exist
* What ore the effects of shearing

AG focusing . straight /bending section
* What ore the ground- state structuves ?
* \What machine s wost suitable ?
* How long con o crystal last ?
+ What s the ’.me(t{n’s temperature "o

+  What cooling method can be used ?



Theoretical approaches

+ derive e.%uod'ions o]‘ motion (n beam rest from

* use molecular dynamics wethod for simulatio




Eqw\ﬁons of motion (n beam rest tram

* pnon- relativistic motion (n the rest fram
* Sfra\'sktforuard to o\doe‘t MDD method

+ U’)'S‘M\Uzo\‘t\'or\ : X =Y = Z = o
Derivation :

* Wse general relatiwvity 'fofma(iSm‘
EOM (n tensor form

* find the Transformation

« EO™M (n lab '(mmé = EeM in rest fran
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Molecular dynamics and numerical results

¥ \°"3'““5e force.  Ewald-type summation
Coulomb Pofen'h'al includes tmage charges

assume perfectly conducting long pipe

cosh (2 Z;; k/L) Jo (@ P.',‘ kA )~
exp (2k) =\

$ (x;¢p) = -\:.'— + -E- ‘ dk
\j L}
+ 2 [ log (F8/L) + €],

* \- D Peh’od\'c condition in Gzvmuthal direction
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N "T 1}
Ny’ l \/ ‘
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* integrate the eguations &f motion
4 4N ovder Runse-kuﬂ-a olsorc'ﬂwn

potential by (5§ +th order Grauts -Leguerre
* start With vondom distribution (mpose

periodic reguirement and drift correcton

+o  reach sround ctate



S‘toraﬁe r\'ng mode| :

( B, = 8, v
B, = B, * B. X
Bz = O

= \eeference orbit

ZeB,R = m et By

* e%uaﬂons of motion ('n reduced units)

(%X T2+ (-rsr-n)x = =30
| ’
5+ my = - 35
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. . Weak - ‘(ocus&'ng machine

Constant Tocusin g st renq th
0O« N < |
without Coulomb torce
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with  Coulomb force % crystallization

‘ x + (=1 + -n)x:-%\é‘
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¥ 3-D crystalline structure can not

exist (n wealk - focusc'ng machine
for lack of stability
* \-D oand 2-D structure can not

exist  etither.



Ext\mple= 2-D structure can not exi'st
In weak - focusing machine

Consider G perturbation on @ particle at z=o

(¢ > = P
P = YP - (1-n=-C) x
2 = P, - rx
L Pl = ’C,Z
Cu= T35 > GG= 24 (L4 -)
3 ;o Y5
e(genvdlue problem
stebility
Y'-v = -n- ¢, (M)
1 6o <€ h W

not possible ' >
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* effect of A»G: focusfng

the crystal “breathes’ with the (attice

/\/—\ porticle

lattice

* eﬂ‘ed of shear (bendu‘ng ~ straight )

the crystal “stretches  (oith the \ottice
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Figure 1: A single-shell structure with particle positions projected (2) into the z — y
plane and (b) into the ¢ — 2 plane, where ¢ is the polar angle. The machine consists
of 10 FODO {focusing, open or drift, defocusing, open or drift) cells with constant
bending with 2, =2.7 and vy =2.3, and the particle energy is y=1.4. The number of
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Figure 2: A multi-shell structure with particle positions projected into the z—y plane.
The machine consists of 10 FODO cells with 25% bending with v, =2.8,1,=2.1, and
the particle energy is y=1.4. The calculation is done with N =1000 and L =40¢.
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Figure 3: The effect of shear. In this study N'=40, L =40¢. Motion occurs both in
the z direction (breathing) and in the z direction (shear) for a particle (with largest
horizontal displacement and no vertical displacement) through a lattice cell. Lattice
components are displayed on the figure, B is a bending section, F is a focusing section,
D is a defocusing section. The machige parameters are the same as that used in Fig. 2,
with v =14, v, = 2.8 and vy =2.1.



Lattice exoample :
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Figure 4: A zig-zag structure formed with the Heidelberg TSR machine lattice with
(a) the polar angle ¢ and (b) displacements in z, y, and z of the particle changing
with time during one lattice period. Lattice components are displayed on the figure,
and the lattice periodicity is 2.
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Iv. Conditions for melting

beam frame
lattice potential

Pﬁrtides

perodic vibration

+ lattice vibration ewmits phonons (ats crystal
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Figure 6: Vibrational density of states (a) under smooth approximation and (b) for
the exact Hamiltonian from molecular dynamics (with N=100 and L =180¢) for a 1-
D chain. The machine consists of 8 lattice periods, each containing a FODO cell and
an insertion (containing drift spaces and two quadrupole magnets), with v, = 2.07,

v,=1.38, and vy = 1.1.
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Figure 9: Two-body correlation function G5(z) at various temperatures. The machine
and beam parameters are the same as that used in Fig. 7.
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Figure 5: Break-up temperatures in the (a) azimuthal and (b) transverse direction as
functions of the inverse of the beam density. The machine parameters are the same as
that in Fig. 1. The result has been verified by comparing cases with different L and
N (N =10, 20, 50, 100, and 200) while keeping the line density A;' = N/L constant
(A, =2). |
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Conclusion

crystall(ne beam c¢on ‘form n Al ‘maol-..‘na
When beam cnergy (s below transition
energy. ‘

crystals can last long ifl lattice
periodicity s higher than twice

betatron tunes.

require coreful ring design and

effective cooling to achieve it.



