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Chapter 1

Introduction

The Beam Injection Tests Software Task Force was charged with studying the software needed
for the ATR tests, seen as a stepping stone or template for the larger scope of the full RHIC
control system. This report outlines our avenues of exploration so far, presents the current
analysis and implementation work in progress, and gives recommendations for the future on

the ATR and longer time scales. This first section is an overview.

Why Do Analysis?

Top-down analysis techniques have been used in major software projects for perhaps 20
years, from functional decomposition to the current obsession with object-oriented analysis.

Although such analysis is no guarantee of success, some points are fairly widely agreed upon:
- Postponing proper analysis increases costs and risks.
- Letting things grow from the low-level to high will almost certainly cause trouble.
- Effective analysis is not easy.

It is equally true that imposing a technique without regard to the cultural and technical
realities of a given project can be just as much of a failure as no control at all. The control
structure for a research accelerator does not lend jtself kindly to a very strict top-down

analysis:' the machine, during construction and commissioning, is itself an experiment to a

LT his is amazingly well paralleled in the strain between the laissez-faire, run-time adaptable programming
that “c” is designed for and the strongly typed, compile time constraints of OO purists. The glory of C++ is
that it allows you the worst of both worlds.



certain extent: the requirements for the control system will change and parts of the system
will be needed early as sub-systems come on line. Experience shows that control requirements
change faster in the early stages of operation. The task force is trying to strike a balance:
software must be built in response to perceived short and medium term needs, but longer
term goals should be investigated both to prepare for higher-level software structures and to
indicate course changes if lower-end components are seen to be inappropriate.

Here we mention a crucially important factor in a successful analysis: finding out what
you want to do should be separated from how you are going to do it. For example, a good data
design may be implemented in a flat file system, a filing cabinet or a relational database. That
is an implementation decision. Allowing the data model of a particular database manager to
drive the design is wrong. If it’s been designed to be done in a particular way, that’s the way
it will be done and you risk ruling out more effective solutions before you start. “If your only

tool is a hammer, all your problems look like nails”.

What is the relevant scope?

There is a common habit in accelerator controls systems to build a very hard-defined
line between ‘the user’ and ‘the hardware’. This often works fairly well on such ‘black-
box’ subsystems as vacuum or cryogenics (although even black boxes turn out to be not
quite as uniformly black as first glance supposed) but becomes less evident when dealing
with equipment interfaces that affect beam in more complex ways. This report assumes
that the whole range of the software systems is the appropriate scope of analysis: thus it
is appropriate that the accelerator physics group is strongly involved as their analysis also
addresses the physics of the devices this software structure interfaces with. In terms of the
analysis, the restrictions imposed by the reality of hardware and low-end software components
should be minimized. That is not to say that there should be an implementation free-for-all.
Implementation techniques, coding standards and robustness must differ at different levels
of the system; these should be in response to engineering imperatives rather than arbitrary
design constraints. A parallel exists in the data-hiding aspects of many top-down analysis

techniques: it is certainly a good idea, in terms of the complexity and understandability of



a layered system, to hide the ‘dirty details’ from higher-level users. However, this becomes
very dangerous without a complete understanding of end-use. If a low-end component hides
information that is subsequently found to be important, either disruptive re-design and re-
implementation must be undergone, or ad-hoc, pathological links put in. Or, often, the job
is deemed impossible, or not important, or both. Because accelerator control systems will be
asked to do things they were not designed to do, one must look carefully at any decision to

shield information, however irrelevant it may appear to be during initial implementation.

Techniques

The members of the group have used a number of techniques in a number of areas: a brief
summary is given here, with further discussion in the following text and in references. This
is distinctly not an exhaustive list of analysis methods.

Extended Entity-Relationship (EER) modeling is for data design. A tool (ErDraw]3])

allows data modeling to be carried out graphically and subsequently implemented on a rela-

tional database such as Sybase.

Object Modeling[1] is close to the EER model, but includes actions on the modeled data,

so that it is appropriate for implementation using OO techniques, in particular C++. A tool
which contains OM|[2] is in use.

Data flow diagrams[4] detail processes that act on identified data, where those data come

from and where they go to. The OM tool mentioned above implements these graphical
representations. We have used this technique for the highly abstract ‘conceptual framework’
for physics and engineering (Chapter 3).

Control flow. This is a more knotty area. State tramsition diagrams are often used
to express when things happen, in what order. They are fine for fairly restricted systems
(such as a Coke machine) but an accelerator control system soon becomes too complex for
such techniques. We do have Glish[7], which is firstly a rule-based language for expressing,
amongst other things, control flow. As it exists, and can implement control flow in a major
part of the system domain, we are using it. It should be emphasised that, although the

glish implementation domain does not cover the whole system, there is no obvious reason



why its descriptive power cannot be very widely used for design. Chapter 4 of this report
is heavily influenced by Glish’s way of expressing control flow. Perhaps not surprisingly;
the original Glish, a distant relative of the current one, was designed exactly to deal with
accelerator control flow, and lessons learned from its implementation influenced the design
of the SPS/LEP control system. It should also be noted that the representation of control
flow, other than textually, is a difficult problem which Glish does not address, although we

are currently implementing a control flow simulator which may well help.

How seriously should these techniques be taken? The extremes are
1. Become fanatic, pick nits and split hairs or

2. Ignore it as irrelevant and a crutch for people who haven’t the talent to do Real Pro-

gramming.

The right answer is between these two, and a function of the people involved and the work

to be done. That of course doesn’t help a lot.
What is to follow

We give a brief summary of the remaining chapters in this report.

Chapter 2 describes the design methods that the task force has been using and would
expect to use in the work that will follow.

Chapter 3 discusses the physics and engineering model that serves as a template for a
data flow analysis of the accelerator.

Chapter 4 discusses the definition of machine events and introduces a way to model control
flow. Since the data flow model of the previous chapter shows only static data transforms
with no sequencing information, we must find a way to include temporal dependencies in
our analysis. The work discussed in this chapter is preliminary in nature and needs to be
addressed by all groups cooperatively.

The fifth chapter discusses the beam threading application within the context of the
physics and engineering data flow model of chapter 3.

Chapter 6 describes a method to detail all the interconnections between devices in the

accelerator. The control system needs to know how certain devices are “wired-up”, and the



specification of such lists requires a general structure in which to do this. The “general device
definition” tables provide this structure.

Chapter 7 discusses the requirements for graphical user interfaces. One principle of the
design is that no GUI should drive the application; applications should be able to run whether
a console operator interface is present or not.

The beam threading application was just one of many that the control system must be
ready to perform next summer. Chapter 8 lists the requirements for the control system
specified by Mike Harrison and Waldo MacKay.

Chapter 9 is the concluding chapter and includes itemized recommendations for imple-
menting the analysis methods discussed in this report.

The appendices provide some detailed information about the data currently known that
will be used by the control system. Appendix A discusses accelerator configuration data,
especially including the NameLookup table, the generic cross reference for device names.
Appendix B discusses the current status of the ADO configuration database. Appendix C
describes the work being done to develop front end tools for database data entry from PC
(and UNIX). Appendix D provides a definition of the naming convention for RHIC and ATR
that is currently being used.

Final note: This document is a compilation of the efforts of eight people, and the text that
follows illustrates the different styles of the authors. Consequently, there is some repetition
of themes and perhaps some inconsistencies as well that the reader will encounter along the

way. We hope the ride is not too bumpy.



Chapter 2

Design Methods

One of the goals of the ATR commissioning task force has been to develop a common language
to describe both the functionality and data structure of applications appropriate for any level
of the control system, from the front end computers to the operator consoles. Although we
have not tried to be too strict about the use of such tools so far, we have settled on a
specific set of ideas. We are using both the data flow and object diagram techniques from
the methodology known as the Object Modeling Technique (OMT) of Rumbaugh et. al.[1].
We will define these two modeling techniques more explicitly below though one should read
the relevant chapters of Rumbaugh’s book for more detailed presentations of these ideas. In
addition we have been using the Erdraw tool[3] provided by Victor Markowitz’ group at LBL
to facilitate entity-relationship modeling.

The use of a common set of descriptive languages that are fairly simple to learn allows
designers, programmers and managers to participate in the evaluation and evolution of control
system design. However, even if we have agreed on a common language there are potential
problems with the use of certain words that are interpreted differently by different groups of
people. For example, the word “Event” is used in different ways. In such cases we should
agree on a common definition of these special words (so e.g., make “Event” the superset, and
qualify with e.g., REL Event, MagTick Event, Glish Event...) or use different words. In
addition, centralized documentation of the design effort using specific tools that implement
methods such as OMT is also crucial. We have purchased a copy of the Select OMT[2]
software tool for a PC and have been using it to develop models of the high level beam
threading application. This is discussed in detail in Chapter 5.



Data Flow Diagrams

The three basic elements of data flow diagrams, DFD’s, are processes, denoted by ovals
and named by verbs, data stores, denoted by parallel lines and named by nouns, and finally
data flows, denoted by arrows. Data flows are usually named as well unless it is understood
that an entire data store is being transferred. Data flow diagrams are used to describe
the functionality of a set of processes. Specific data elements flow out of a data store and
are transformed by a named process which in turn passes data on to other processes or data
stores. Data flow diagrams are not intended to model control flow, i.e., the temporal sequence
in which the various transformations of data are taking place. These diagrams provide the
necessary details for an understanding of what data and processes are needed. If drawn in
sufficient detail, a data flow diagram should provide a clear explanation of what an application
is supposed to do. A simple example of a data flow diagram is shown on the next page in
Figure 2.1.

The structure of data flow diagrams is usually hierarchical; a specific process in one DFD
can be exploded into many other processes and data flows at a lower level. This nesting of
DFD'’s is necessary because most applications are sufficiently complicated that without the
ability to hide the details of some of the component processes, one would not be able to

understand the application as a whole.
Object Diagrams

Object diagrams, OD’s, in the Rumbaugh methodology provide models for both the
data stores and the processes used in the data flow diagrams. They are designed with the
aim of implementation in object-oriented languages such as C++. A given object in an
OD contains both the list of attributes (and their data types) as well as methods that are
associated with that object. The choice of which methods to include in the object should
be clear from the data flow analysis. Relationships (association, inheritance, etc.) between
objects are modeled by connecting directed lines between objects. The usual 1-1 and 1-
Many relationships familiar from Entity-Relationship modeling techniques are supported by
the object diagram technique.
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Given a complete specification of an object diagram, one can generate C++ code for
the classes(objects) as well as the SQL code needed for database table creation via the code
generation tools provided with the Select OMT toolkit.

Data Dictionary

The data dictionary is principally composed of the elements of Object diagrams. These
form the basic data structures that are transformed by the processes listed in the data flow
diagrams. Using the case tool it is possible to associate objects in the OD and the DFD via
the data dictionary. A clean analysis of the application should in principle lead one to define

objects which are properly isolated in the DFD.
Control Flow

Control flow, timing and sequencing are discussed in the Introduction as well as in Chapter
4. The glish interpreter provides a succinct language for simulating and Jor implementing

control flow. We will be using glish to construct models of control flow.
Entity Relationship Modeling

Markowitz has implemented a methodology known as the Extended Entity Relationship
(EER) model in a tool called erdraw[3]. We have been using this tool to design databases
prior to the existence of the ATR task force. (See section IT of Chapter 5 for a more extensive
discussion of EER modeling.) erdraw provides a visual interface to define data objects and
their relationships to other objects. It does not support object methods as in the OMT
methodology (nor any of the other design techniques such as DFD, etc.). However, erdraw
does generate SQL code for SYBASE including all the referential integrity constraints in the
ERR model. Finally, the last great advantage of erdraw is that it is freely available from
LBL.

Since the Select OMT tool also provides ER modeling in the version we have purchased,
we will be evaluating whether we can work completely within the OMT methodology or not.

The SQL generated by Select OMT, while ANSI compatible, is not tailored for SYBASE

10



nor does it generate the code needed to enforce referential integrity, a nice feature of erdraw.
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Chapter 3

Physics and Engineering
Conceptual Design

I. Motivation

‘The motivation to develop a new system for RHIC is the desire to provide a system which
goes beyond the functionality of available systems and provides support for the operator in
understanding and improving the machine.

Traditionally control systems have a well separated data acquisition level and application
level. The data acquisition level provides basic read and write functions, data conversion,
alarms (limit checking) and networking. A general display and editing facility (Parameter
page) is also included. In some cases accelerators have been commissioned just with these
tools. However, the lack of better tools promotes twiddling of the machine without under-
standing. ‘

The application level provides the necessary operational support that makes the com-
missioning less painful. Application programs use knowledge of the accelerator to automate
complicated operating sequences. Examples are beam threading, orbit correction, tune cor-
rection and chromaticity correction.

Often the application level is designed and written as a collection of independent programs
with little or no interaction. They are merely tools for better twiddling. In a well-designed
control system application programs are embedded in an environment that promotes the
understanding of the machine.

Operation in such an environment follows this diagram.

12
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Figure 3.1: Preferred Operational Environment

Instead of twiddling until something works, the operator first plans what he wants to
achieve in the next step. The commands are given on a high level. For example, the operator
sets the tune or the orbit of the machine to the desired value and not the magnet currents. The
control system then calculates the dependent parameters like magnet strength and current
and predicts the effect of such a change on all observables of the machine. This calculation
is based on a model of the accelerator which includes all knowledge accumulated so far.

If the change is consistent with the limits of all parameters (i.e. the magnet current can
be delivered by the power supplies, the beam position stays inside the beam pipe, the tune
does not cross an integer resonance... ), the operator commits the change.

The control system implements the new settings and measures the response of the ma-
chine. If the measurements differ from the prediction, the control system aids the operator

in understanding the machine behavior. If the reason for the difference is understood, it is
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taken into account by repairing the machine or updating the model.

If the reason for the difference cannot be quantitatively assessed, the machine is corrected
by applying “trims”, changes in the machine settings not included in the model. These
changes force the measurable behavior of the machine to agree with the model. For example,
orbit errors caused by misalignment of quadrupoles are corrected by powering correction
dipoles whose design strength is zero. The control system aids the understanding of the
machine by separating trims from settings and documenting the machine operation for later
off-line analysis.

Experience has shown that a large amount of the useful application level programs are
written during the commissioning phase of the accelerator when experience with operating
the machine is translated into operation procedures. At such times there is great pressure to
produce quick and dirty solutions. A coherent system can only be produced if an environment

is in place that supports the described operating philosophy.

II. Definition of terms

For each accelerator parameter we define a data object which contains the following data:

Parameters are the set points that describe the desired state of the accelerator. Pa-
rameters are a function of time. The parameter value at any time is obtained by specifying
the values at step-stones and using the appropriate interpolation method. In most cases the
step-stones will coincide with the events on the accelerator event line. The control system
can modify future step-stones, while present and past step-stones are not changeable.

All quantities that describe the state of the accelerator are parameters. The parameters
are therefore redundant. A system of processes ensures that the parameters are consistent
(this is discussed later.) This allows the operator to describe his goal directly. He can set any
parameter and leave the task of finding the corresponding hardware settings to the control
system.

Measurements are the actual readings from the machine hardware. (For most param-
eters a direct measurement is not available.) They are conceptually independent from the
parameters with the same name. Although some hardware devices include the setting and
measurement of an accelerator parameter in one module, this is the exception.

Trims are changes to the accelerator parameters that enforce desired behavior. Trims

14



are only used in objects where a measurement is available. The goal of the operation is to
make the parameter and the measurement the same.

Method data are data that determine how to convert dependent parameters. Meth-
ods often change during operations. For example, given the desired orbit the method data
describes which correction dipoles are used to move the orbit.

Accelerator knowledge is configuration information about the accelerator. This data
changes only when the machine or the control system is reconfigured. Examples are lattice

information, host names, power supply names and magnet data.

IIL Data flow diagram

The goal is an environment where new parameters of the accelerator can be easily in-
cluded in the control system. Below we define a “Parameter object” which handles a single
accelerator parameter and uses the above items. In this object stubs are provided to define

the following processes:

1. calculation of all dependent parameters, if the new parameter is changed.

2. update of the new parameter if a parameter on which the new parameter depends

changes.
3. measurement (and generation of an alarm) of the parameter, if possible.

4. prediction of trims.

For the description of the control environment we will use data flow diagrams. (See
Chapter 2.) The control flow is not presented in these diagrams. At this level it is assumed
that processes are infinitely fast so that sequencing becomes unimportant. The sequencing
will be investigated in the implementation phase.

The diagrams will not contain the user interface. It is assumed that all data in data stores
is available for display. It is also assumed that all commands to the system can come either
from a graphical user interface or from a sequencing mechanism. We plan to use glish as such
a sequencer.

IV. Parameter conversion using the data objects

15



For simplicity we first describe an object that includes no measurements and therefore no

trims:
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Figure 3.2: Simplified Parameter Object

A set-request from the operator or sequencer or a higher level object is first checked for

semantics and for range in the “validate and sequence” process. Method data is used for this

check.

If the request is valid, the parameter is set in the parameter data store. The “validate

and sequence” process administers the step-stones in the parameter store. The parameter

is passed on to the “calculate lower parameter” process. Method data is used to determine

which lower level parameters are used to do the change. The process may need also other

parameters and accelerator knowledge for the calculation.

The calculated parameters are sent to appropriate object(s) which internally have the

same structure as this object. The design is recursive. The lower level object returns the set
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parameter, or in the case of error, an error message and the best achievable parameter value
which is passed to the validate and sequence process.

The validate and sequence process checks the success of the set operation. It updates the
parameter value in the data store and returns the value or best value to the next higher level.

The “model” of the accelerator resides in the “calculate lower level parameter” and “cal-
culate this level parameter” processes. It is important that these modeling processes occur
on each level and are by design independent from each other. This allows implementing new
parameters and extensions of the model in a flexible way. In implementation the same pro-
gram or process might be used for the different levels. An optics calculation process might
be set up as an “persistent” client and serve different parameter objects.

The accelerator knowledge data store provides the basic information for the model. Tt
contains lattice information, magnet data, etc. Although this data changes not very often, it
is a part of the data flow.

The recursive design suggests that parameters can be organized as a tree, where each
object is a node with all internally used objects as leaves. However, it turns out that there is
no natural structure for this tree. Whatever parameter is set by the operator or sequencer is
the top level. The tree structure must therefore be dynamically configured for each operator
or sequencer command. This configuration is contained in the method data stores. The
device definition database can be used as a tool to define these connections. For more on the

device definition database, see Chapter 6.

V. Treatment of measurements

The system described so far allows the generation of a consistent set of redundant pa-
rameters. If the model used is correct, the parameters give a complete description of the
machine. Unfortunately, real life is often disturbingly different than what it ought to be,
and the measurements of parameters differ from their desired values. The parameter object
therefore contains measure and trim processes. (See Figure 3.3 at the end of the chapter.)

In addition to the parameter store the parameter object contains a trim store. The goal
of operations is to predict the best trim, so that the machine behaves as described by the
parameter. The trim is predicted on the basis of past experience. The “Predict Trim” process

calculates the trim for the future step-stone from the measurement of the past or present and
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the parameters and trims that lead to those measurements. The “combine” process combines
the parameter value and the trim value into a “parameter to be installed” value. In most
cases the combination means just adding the two values, but more complicated combinations
are possible. Instead of the desired(requested) parameter, this “parameter to be installed” is
passed to the “calculate lower parameter” process. The returned values from the dependent
parameter objects need to be “un-combined” before they are sent to the validate and sequence
process for interpretation.

An example is the orbit correction procedure. The procedure starts with a request for a
centered beam (zero beam position) in the next step-stone. Using the latest measurement
of the orbit, the best trim is predicted to be the negative value of the measurement (i.e. a
linear machine is assumed.) The “combine” function adds the trim to the desired orbit. The
desired orbit can be nonzero for injection bumps and background minimization. The “orbit
to be installed” is therefore the negative value of the measured orbit. The “calculate lower
parameter” process calculates the strength of the corrector dipoles using traditional orbit
correction techniques. Which method and correctors are used is defined in the method data
store. The Twiss functions of the machine are also installed as a parameter object and the
correction process can use their values.

The calculated corrector strengths are sent to magnet strength objects. If the required
strengths cannot be produced by the magnet power supplies, a magnet strength object returns
the maximum strength possible and an error. The “un-combine” process subtracts the trim
values and returns the expected orbit after correction to the validate and sequence process.

‘The validate and sequence process reviews the results. It may decide a value is close
enough or totally out of whack and pass this information on to the calling process, or it may
modify the method data for the “calculate lower level parameter” process and try again. The

method data for the “validate and sequence” process determine this action.

VI. Initial List of parameters
An initial list of parameter objects used for the ATR.
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Other parameter

Other parameter

Parameter Parameter used for used to Directly
changed to set calculation of calculate this measurable
this parameter lower parameter | parameter from

lower parameter
beam position correction dipole | Twiss parameter | magnet strength | yes
strength

beam size quadrupole Twiss parameter | magnet strength | yes
strength

Twiss parameter | quadrupole Twiss parameter | magnet strength | no
strength

Dispersion quadrupole Twiss parameter | magnet strength | yes
strength

Energy Dipole strength no

Dipole Strength | Dipole field Energy Energy yes

Quadrupole Quadrupole Energy Energy no

strength field gradient

Correction Dipole field Energy Energy no

dipole strength »

Dipole field Magnet current no

Quadrupole Magnet current yes

field gradient

Magnet current | Power supply yes
current

Power supply WEFG tables Step-stone time | Step-stone time | yes

current intervals intervals

WEG tables Power supply Step-stone time | Step-stone time | yes
current intervals intervals

Step-stone time | Magnet current | Power supply Power supply yes

intervals gradient, mag- current current
net current
2nd order gradi-
ent

Magnet current | Step-stone time | Power supply Power supply yes

gradient intervals current current

Magnet current | Step-stone time | Power supply Power supply yes

2nd order gradi- | intervals current

ent

current

Table 3.1: Sample parameter object list for ATR
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Chapter 4

Control Flow and Machine Timing

Within accelerator control systems control flow at the “high” or “application” level does not
often appear to be explicitly considered - at least, not in the early days, although formal
systems are often introduced later in an accelerator’s life. Of course control flow is around,
in the procedural flow within programs, in the actions of operations crew and, in theory,
in the procedures they are supposed to follow. Practically every accelerator does, however,
have a hard-nosed control flow system, called the event train, or timeline or some such
expression: hardware triggers broadcast over the machine(s) from a small number of sources
and co-ordinating the actions of many component devices. Time scales are typically at the
microsecond level for beam-related operations and at the millisecond level for the magnetic
machine. Arranging that these triggers go out at the correct times and cause appropriate
actions on reception tends to be complex and often hidden from the “high” level control:
where high level must control things, such as in the count-down sequence for a collider fill,
some pretty hairy code tends to get written.

Further control flow exists at the low-end device level, in hardware timing chains and in
the operation of realtime processes; again very often hidden from on high. Such hiding of
control flow may be appropriate and certainly layering is needed by rational implementation
schemes: central realtime event distribution is not possible directly from current workstation
and network implementations. We believe that this level of control flow should be understood,
and where it is buried out of the understanding and/or control of high level operation it should
be done as a decision based on a complete design.

Tn our case we have an opportunity to integrate tools to aid such problems into the control
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system design. The first step is to break away from implementation constraints and see if
the operation of the accelerator, in terms of its control flow, can be described in terms of
well-understood events and the processes they communicate with. This is potentially a big
deal: most texts on formal analysis will recommend some kind of state analysis when you
get to the control flow part of the problem. While this may be fine for a Coke machine, and
even for a nuclear power station if you have the time and effort to do a state analysis, we do
not believe it is relevant for an accelerator. That’s no reason to ignore flow control and hope
it will go away: it won’t: it may become a serious problem instead.

[Of course, we believe that such an analysis can and should be done, and we point to
existing colliders and the sequencing that has been applied to them to prove it.]

As it happens, we do have a language in which we can try to express such control flow; it
uses the notion of “events” and has familiar application in accelerators, although the domain
of application is being expanded. It is rule-based so we do an end-run around the problems
of a state analysis while admitting some of the interesting uncertainty of research accelerator
control. (And, of course, we have code that will actually implement this expression of control
flow, so that an analysis will go to implementation almost directly, at least in processes
running at the workstation level. This does not mean that all control flow must be mediated
by Glish.)

[An aside. A graphical mechanism for describing control-flow, called Petri net theory,
exists and is possibly useful in this context. I have looked at it a bit, and it addresses the sort
of problem Glish is designed to deal with. It does not implement sequencing however: it is a
theoretical system to describe event flow, with a graphical notation for a better understanding
of what is happening, and a fairly large body of theoretical work which enables one to identify,
for example, state machines and potential live- or dead-lock in a given system. The other
place to look for tools to deal with this is undoubtably in network design and maintenance.
Telephone companies do it.]

To start, then, we look at what an “event” is. After that, we can see if the control
constructs of Glish are up to the job a describing accelerator operation.

Events. What is an event?

Glish has a direct answer - an event is a name/value pair, where the event name is an

ASCII string and the value is an arbitrarily structured, but named and typed, data record.
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These events can be sent from process to process. The connection is at root asynchronous:
a receiving process in general will not know exactly when a given event may arrive, and
indeed may know very little a priori about the identity or value of an arriving event. For the
accelerator, we have to change this definition - hardware events are typically not named with
an ASCII string and have very restricted value sets, but the principle is the same. So we start
off by abstracting, and presume that particular sorts of events will be seen as specializations
of the abstraction.

Given this, the definition of event can be: An identified piece of data which comes into
existence at a specific time and may be communicated to event consumers.

And its environment? It will connect to event source(s). Probably not necessarily all
known a priori, but an event cannot be identified without at least one source being identified.

It will probably go to event consumers, but can be identified before any of its consumers.

By a “source” we do not mean a physical source (such-and-such a module, or program),
but the “conceptual” source... “such-and-such” happening: a calculation finishing, an error
condition arising (or perhaps being detected), an operator intervention happening, a kicker
firing.

Now a look at the types of events we see in an accelerator. From this we may find
out how to characterize the general event, and from this the specific characteristics of the
specializations:

Event types are :
1. - Machine ticks: synchrotron tick, turn, injection, luminosity delta. ..

2. - State change : Injection warning, hand-over to ops, start low-beta squeeze, current

out-of-tolerance. . .
3. - Time ticks : millisecond, hour...
4. - Information : B-field, intensity, orbit. ..

[Is an alarm a distinct type of event? No, we think that it is a use to which an event is

put.|
The above indicates we have three main entities to define:
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1. The events, which have types as above and some properties such as rep rate, value

structure, etc.
2. the event sources, and

3. the event consumers.

From each event we will need to point to the properties that are common to all event
types, and to those properties that categorize the separate types. For many, if not all, we
will also be able to point fairly directly to the event source(s) and to some at least of its
consumers. This will show us the implementation already foreseen for many events: it may
also indicate possible difficulties due to these implementations.

Note that an event may be transmitted on several domains. Thus ”Start low beta squeeze”
may be defined as “0xFC” on the Rhic Event Line (REL), and as “LowBetaSqueeze, True”
on a glish socket: these are the same event, just the delivery mechanism is different.

In what follows, we are going to argue by example. The actual examples will have some
sense in them but they won’t be right; building the complete event definition structure is
complicated and will need thought and a lot of research into what is planned. What I'm
after here is describing a structure within which that work can be done. Note also that this
structure should not be dependent on transport mechanisms for these events. That can be
found out afterwards. We do know that we have REL, RTDL, BeamSync, glish messages and
so on but here we’re concerned with the content of events and their interrelations, not how
they get delivered.

Start with Event, whose main elements are
» Name: such as Second, CycleSecond, WarningInjection, Abort, BField.

o Type: one of
TimeTick [CycleSecond)
MachineTick [TurnTick]
External [Abort]
Info [BField]

StateChange [StartCycle,LowBetaSqueeze]
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e Derivation : one of
Primary

Derived

o A Value:
“Second” has no value
“CycleSecond” has value as an integer number of seconds from event “StartCycle”
“UnixSecond” has an integer number of seconds from Jan 1, 1970
“BField” has a 16-bit number representing the programmed main dipole field

“LowBetaSqueeze” has True or False (start and stop)

e One or more Sources, of which more later. (Note that for an event to be “synchronous”
or “asynchronous” is NOT an intrinsic property of the event, but rather of its source.
Thus “LowBetaSqueeze, True” may come from a pre-programmed table loaded into the
master event generator, or from the asynchronous push of a console button - it depends
on circumstances. The former should be used in production operation, the latter when

commissioning, tuning etc.)

® Zero or more Consumers, of which more later. Consumers are likely to be much more
dynamic than other elements. For instance, when doing injection tests the event “Low-
BetaSqueeze” will have no consumers - knowing this is a good thing because one then
knows that one can fool with that event’s source(s) and anything else that is dependent

upon the event.

o A Definition.

Just for now, we deal with the definitions as commentary; but we’ll find that def-
initions will start to group themselves. Many machine events, for instance, will be
inter-dependent (hence the “Primary” and “Derived” flags) and their definitions will
come, ultimately, from the lattice calculations. Some events - especially machine syn-

chronization - will be defined in terms of how actual signals are treated by real hardware.
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Concentrating on the definition of events is supposed to raise, and answer, real ques-

tions of where they come from, where they go to - so, for example, one can recognize if

and when simulated events will be needed, and what their characteristics should be.

¢ One or more implementations - REL, RTDL, VME Interrupt, Glish...

OK, so let’s start trying to describe some real events - remember that I'm just trying to

get a structure in mind, so reality may already have made some of the following untrue. ..

Name

Type

Value
Sources

Consumers

Diefinition

:StartCycle
:External
:Primary

:none

:AGS, simulation

:legion, including time counters, initialisations, ramp

play outs...

:Start of RHIC magnetic cycle

That makes us think of something. ..

Name

Type

Value
Sources

Consumers

Definition

:WarningStartCycle

:External

:Derived

:none

:AGS, simulation

:Things that have to be ready before the magnetic cycle starts —
function generator resets, perhaps...

:100 msec before StartCycle

-.-and the first argument: is WarningStartCycle primary, and StartCycle derived?

Name

:HoldState
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Type

Value
Sources
Consumers

Definition

Name

Type

Value
Sources
Consumers

Definition

:StateChange
:Primary
:True/false

:A event to trigger an energy hold state, in which magnet and rf
ramps hold the machine steady. (Some things may still have

to work actively...)

:ElapsedMagTicks
:TimeTick
:Derived

:Integer, number of active 720Hz ticks after StartCycle

:A count of the number of synchronous 720Hz ticks within the
cycle, zeroed at StartCycle.

...but see...

Name

Type

Value
Sources
Consumers

Definition

:CycleMagTicks
:TimeTick
:Derived

:Integer, number of active 720Hz ticks after StartCycle

:A count of the number of synchronous 720Hz ticks within the
cycle, zeroed at StartCycle and NOT counting ticks within cycle
hold states.
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Name

Type

Value
Sources
Consumers

Definition

Name

Type

Value
Sources
Consumers

Definition

Name

Type

Value
Sources
Consumers

Definition

Name

Type

Value

Sources

:WarningInjection
:External
:Primary

:None

:AGS, simulation

:70 psec before any injection

:WarningInjectionBlue
:External

:Primary

:None

:AGS, simulation

:70 psec before any injection destined for the X-line (and beyond)

:WarningLastInjection
:External

:Primary

:None

:AGS, simulation

:70 psec before the last injection

:StartAcceleration
:StateChange
:Derived

:none

:Programmed
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Consumers
Definition  :100 CycleMagTicks after WarningLastInjection

The context.

To try to find a context for the above discussion, we offer a story of early RHIC operation.
It is of course inaccurate, but serves to illustrate the ways in which a well-structured and
well-understood event system can tie together many levels of the machine.

The machine is running physics. Filling takes 2 to 4 hours, and luminosity lifetime and
background make a fill pretty useless after 4 to 8 hours.

1. Automated filling is not running; operations sees occasional bad injections which, if
left in, cause unacceptable background. The bad shots are rare enough that the cause is
being investigated while attempting physics running. Accordingly, operations requires mag-
net current measurements for all the injection line and the ring injection elements, together
with injector beam parameters, beam trajectories, turn by-turn measurements and immedi-
ate orbit for each injection. All data are stored for later attempts at correlation, and beam
information is fed online to displays and a beam quality program which flags bad injections.
The machine is held at injection energy, and only when the crew chief is satisfied will the
event train be let out of its injection loop and move to the acceleration and storage sequence.

2, Acceleration, beta squeeze and hand-over to physics is automated, except that a possible
hold-point may occur just after the beginning of acceleration as a new front-porch ramp is
being used, and indications of beam loss will cause an automatic hold. This may be released
by operations if the beam settles down. In any case, all main power supplies and low beta
supplies must have fast (720Hz) monitoring for the 2 seconds around the start of ramp. Beam
quality is measured by a central program using the standard beam acquisitions.

3. During the beta squeeze, quadrupole current measurements are taken together with
luminosity and background counts. Together with fill data on luminosity lifetime and back-
ground rates, these data will be used to investigate fill-to-fill variations and to provide data
that can be used to judge appropriate fill times to maximize integrated luminosity. This is
offline data; no-one is around to care for it, and operations is too busy; it must be completely

automated.
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Here’s the pseudo-code to describe the first sequence. It looks like Glish. That doesn’t

mean to say it will be implemented in Glish; some of it happens at the FEC level.

client ("ATRPowerSupplyADO", "A1lYLine") // Tell the FEC’s of the data

client ("ATRBeamPosADO") // that will be required
client ("ATRBeamLossADO") //
client ("OpsEvents") // Sent out by operations crew

// from programs or button-pushes
client ("MachineEvents") // Most of these will be
// transmitted on the REL: they

// will also be required at console

// level.
client("InjectionAnalysis") // Console program
client("InjectionDisplay™) // Console program
client("InjectionArchive") // Service program
client ("AlarmService") // Service program
client ("AGS") // For informing our injector

// what’s happening

whenever MachineEvent.InjectionWarning do

{
ATRPowerSupplyADO.GrabData()
ATRBeamPosADQ.GrabData()
ATRBeamL.ossADQ.GrabData()

}

whenever ATRPowerSupplyADO.GotData do // Just to archive

InjectionArchive->NewData(RunNumber, InjectionNumber,$value)

whenever ATRBeamPosADO.GotData,ATRBeamlLossADO do // to archive and online
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{
InjectionArchive->NewData (RunNumber, InjectionNumber,$value)
InjectionAnalysis->NewData(RunNumber, InjectionNumber, $value)

InjectionDisplay->NewData(RunNumber,InjectionNumber,$value)
}

whenever InjectionAnalysis->BadInjection do // tell everyone

{
InjectionArchive->FlagBad (RunNumber, InjectionNumber)

AlarmService->Alarm("Bad Injecton",RunNumber,InjectionNumber)

}

whenever PSSurveillance.Warning do // promote warnings to alarms for now

AlarmService->Alarm($value)

whenever MachineEvent.BeamInTransfer() do

{
InjectionAnalyis->RealBeam()

}

whenever OpsEvent.RejectInjection
{
AGS->Hold ()
RunNumber++

InjectionNumber = 0

}

...and so forth. This isn’t a prescription of what has to happen; it is intended as an
example and a template. By looking at realistic scenes like this, we can identify real questions
(when and how do we get injection warning events? What’s a RunNumber? Is it needed?)

and analyse control flow in a way that will be accessible to all sides of the system. In
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particular, such exercises now can help define the base componenets of the system - those
that must be implemented at the FEC level - so that the required functionality exists when
a new event, dependant upon the base set, must be defined and used by operations.

We could work on the other sub-sequences in our story, but this would become tiresome.
At this point we ask — Does this express a valid concern? and if so is this a mechanism to

address it.!

! Adding to the earlier note on page 2: the stress in accelerator control systems between runtime flexibility
and ‘compiled-in’ security is just the sort of problem that exercises the programming language mavens. The
subject is quite complex, and it is worth studying as it has fairly direct applicability to our problems.
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Chapter 5

Beam Threading

I. The Generic Parameter DFD for Accelerator Controls

A fundamental presumption in this paper is that the RHIC control system should be as
modular as possible, with well-defined mechanisms in place for combining various processes
in new applications, which can then themselves be used by other applications. Central to this
philosophy is a model in which each process in the system (such as high-level applications
and ADOs) can, at least in principle, communicate with any other other process. A possible
implementation, though not the only one, is a network of Glish clients.

In this model hierarchies and directed graphs of control objects naturally form, with
simpler objects being grouped in successively more complicated ways and high-level objects
intertwined in mutual dependence. There are several different functionalities which must
be embedded at the low-level; however, there is no reason to presume that their interface
should be functionally any different from the interfaces in high-level controls. Simplicity and
consistency of interfaces are equally as important as flexibility and power; reading measured
and predicted beam positions are the same sorts of requests even though the implementations
are quite different.

Figure 3.3 in Chapter 3 shows a DFD for a generic parameter process as developed by
the task force. This represents one process in a process graph, ranging from simple low-
level processes such as control programs just above the hardware driver level up to high-level
control points, or parameters, of an accelerator, such as the orbit and chromaticities. This

diagram can in principle encapsulate any activity within the system, from internals of drivers
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to an orbit correction algorithm to a simulation of beam image on flags.

Because a process communicates with many other processes in this representation, a di-
rected graph can be drawn which groups together related systems into new control points
and reasonable levels of abstraction. Using the terminology of Chapter 3, some of these pro-
cesses represent accelerator parameters — they are objects in the OO sense, with interfaces,
methods and local data. Mutual dependencies of accelerator parameters are represented by
this directed graph.

The orbit parameter must communicate with BPM devices, and these BPM processes
(position parameters) in turn each control a BPM driver. The orbit parameter may also
contain simulated BPM data or communicate with a simulation that produces such data,
encapsulating the simulation and real measurement interfaces within a single object. Another
less evident example is a power supply device, which contains an MADC device, a PLC device
and a waveform generator (WFQG) device, all of which in turn share the same power supply
hardware.

The generic parameter DFD of Figure 3.3 contains several processes and data stores, all
of which are only moderately self-evident within the context of any specific parameter. The
important concept here is that parameters are woven in a web of mutual dependency. The
parameter DFD is self-referential, and anything within the “Operate ...” process should itself
be described by this diagram down through the lowest levels of the system. This parameter’s
external interface (as opposed to its functionality) is encapsulated within the “Validate and
Sequence” process, which contains the decision-making resources of this process.

Figure 5.1 expands the “Validate and Sequence” process in the generic parameter DFD.
Internally, validation and processing of a request to the parameter are handled separately,
with validation including type and semantic checks as well as tests for valid limits and param-
eter constraints. Upon acceptance of a request, it is parsed and new requests are assembled
by the “Assemble command list” process.

The vaguest of the processes in this diagram is the process which actually performs
commands, and which makes decisions based on events and data received from subordinate
processes. This process must handle interrupts (alarms and notifications) and must decide
how to perform the commands listed in the data store created by assembly. Because the

command list is shared with the “Combine” process, a simple sequencer might never touch
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the low-level requests, instead only serving as a function that passes returned data upwards.
However, the capability exists in this diagram for local feedback; this process may, for exam-
ple, decide that it can attempt to correct certain error conditions locally (by registering new
low-level commands) before notifying its parents and peers.

The “Perform Command and Make Decisions” process can also be wrapped around an
application, with the “Params and Command Lists” data store representing the interface to
dependent parameters and processes.

There is nothing that precludes the param and command list data store from including
data which is relevant only to this level of decision-making. In this sense this system is
rather similar to a graphed neural-network. Without appeal to the implications this analogy
carries, a simple but powerful realization remains — this model allows decisions and control
to be robustly and flexibly placed in their appropriate position, without enforcing unnatural
hierarchical relationships.

Trims, or small changes in the model that are not well understood, can also be appropri-
ately placed. A straightforward example of this is that the trimming of a magnet transfer
function (to translate magnet current to field strengths and vice-versa) is quite different than
the trimming of a power supply response, even though both occur in the same chain of

parameter dependencies from desired magnetic field to bits sent to a power supply controller.
II. An Application Example: Beam Threading

Beam threading, or beam steering, is an example of a high-level application that must
be available during commissioning and routine operations. The basic problem involves three
steps: reading the orbit at certain positions (typically beam position monitors), calculating
an orbit correction (trim) based on this orbit, and sending the orbit correction back to
the machine. A first-turn variant of this process also includes beam loss monitor (BLM)
and current monitor readings; there orbit is extended to include any available diagnostic
information as to where the beam has gone. A simulation or prediction of the orbit produced
by the correction is often included for real-time comparison and analysis.

Here we consider beam threading to be a one-dimensional problem, completely separate

from the problem of linear decoupling. Although this is not always the case in practice, it is
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Machine Send Orbit Correction
— Monitor List Read Orbit Orbit Corrector List
Create Desired Orbit Orbit

Machine Model Correct Orbit

Simulate Orbit

Osbit Correction

Figure 5.2: Top-level DFD for a simple beam threading application.

a reasonable assumption which leads to two well-understood areas of accelerator operations.

1. The Top-Level Dataflow Diagram

First we describe beam threading in terms of a top-level DFD which defines the scope.
Such a DFD is shown in Figure 5.2. There is no “Display” process or actor in this Figure —a
passive display does not consume data and therefore is an implicit method of the data object
being displayed. External interactions are more an aspect of control flow than data flow and
must not unduly influence the data modeling.

There are two processes in the top-level DFD that interface to the actual machine hard-
ware: these processes read an orbit from the machine and send an orbit correction to the
machine. These are reasonable processes to separate because their relevant data structures
are rather different; however, separating them removes some of their mutual dependence as
an orbit construct. Alternatively, one could combine these functions to a single “Manipulate
Orbit” process. This distinction is basically one of generalization and reusability; neither

way is correct without further context and knowledge of the implementation. Here we choose
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the view of modularity and loose coupling, and keep both as separate processes even at this
application’s top level.

The “Machine” actor is buried inside a parameter hierarchy beneath the “Manipulate
Orbit” high-level parameter, as pictured in Figure 5.4. At the lowest levels are hardware
components for power supplies, digital readbacks and BPM digitizer cards, while at higher
levels some components (position monitors and magnets) are also used by other applica-
tions within the control system. Shared resources and distributed permissions management,
necessary in our control system, are supported by this design.

At first pass a reasonable “Machine Model” data store is already available in the form of
the lattice for the machine[6]. Refinements to this model, and to the orbit simulation process,
are currently underway by Waldo MacKay. Physics is done by comparing predictions from
well-understood models and measurement, and predictions in this environment hinge strongly
on the presence of a live model with consistent magnet strengths. This is something that

cannot be overlooked for commissioning.

2. Data Structures of Top-Level Data Stores

Of central concern in the top-level DFD are the structures of the “Orbit” and “Orbit
Correction” data stores. Encapsulation of an orbit as a stand-alone object is necessary for
diagnosis and evaluation of machine condition; orbit objects can then be archived and retrieved
as necessary. Data store objects and methods must be available to all interested processes
in a consistent way. Saving the machine state (including all magnet readings) along with a
measured orbit should allow offline as well as online threading analysis.

The structures of “Monitor List” and “Orbit” are intimately related, and an orbit certainly
contains a monitor list in its description. Remembering that an orbit is considered to be
purely one-dimensional, a one-dimensional instrument list object for RHIC is written in the

OM style as

One-D Instrument List
beamline: string

plane: int

number: int

name: string] ]
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The first entry is the name of the beamline that is being used — this name will correspond
to a name in a database table in development; it does not necessarily refer only to a beamline
as defined in the lattice database. The orbit plane and number of instruments follow, along
with an array of instrument names; this array corresponds one-to-one with the name list in
another object described below.

There is nothing monitor-specific in this list object; it can just as easily be used to describe
a list of correctors. There is also no explicit mention of standard meta-data which should be
carried along with every object, such as timestamps and originator.

Additional information about the global state of the machine should be inferred from
machine logs and the time stamp. This additional information could include such relevant
information as the current machine mode (injection, ramping, flat top) and timing informa-
tion. The current species could likely be inferred from the time stamp and the run schedule;
in practice it will also probably be inferred from the BPM gains.

There is another structure that is part of each orbit, an array of monitor objects. An
orbit represents a collection of a variable number of monitors along with a description of the
composite itself (the monitor list and other orbit-specific data). This description is consistent
with OM techniques, which define ways to describe composite objects. These techniques allow
a great deal of flexibility, as the monitor object may be as simple or as complex as necessary.

For now it shall be simple:

One-D Position Monitor
name: string

status: statusType

weight: float

position: float
gain: float
calibration: float

The first three object attributes are in fact relatively generic — many things have a
name, a status and a weight. The name here may be either an ADO name or a SiteWide
name — the name should also correspond to an entry in the name array in the InstrumentList.
This description of a position monitor is generic enough to apply to both BPMs and profile
monitors used for position information during beam threading. A full-fledged profile monitor

object may also be derived from this object.
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Orbit Corrector Lists and Orbit Correction objects follow very much the same strategy,
with an Orbit Correction being composed of a set of Orbit Corrector objects and a One-D

Instrument List:

Orbit Corrector
name: string
status: statusType
weight: float

angle: float

This is a high-level view of an orbit corrector, with the strength given as an angle. Both
the Corrector and One-D Position Monitor objects share the same name, status and weight
attributes, so a generalization could be created from which they are derived. For now, though,
these object descriptions suffice.

This section would not be complete without commenting on a higher-level issue, the
sources of the MonitorList and CorrectorList. These lists of elements are related at the top
level in context-dependent ways such as bumps and tuning strategies. As a start these lists
could be created directly by the user, choosing BPMs and correctors from lists of elements
in the beamline. However, using this approach for routine operations is unreasonable, for
“canned” sequences and systematic procedures are necessary for automation and consistency.
This application-specific information was called “method data” in Chapter 3.

There are also other issues relating to the sources of the MonitorList and CorrectorList
that have to do with the integration and interface of beam threading into the larger scope of

operations sequencing. More comments about this are in the last section of this chapter.

3. Top-level Nonhierarchical Processes
The “Create Desired Orbit” process requires a list of BPMs, which it obtains from the
MonitorList data store. There are a pair of rather self-evident implementations of this process,
either as a user interface actor generating positions for each monitor in the Monitor List, or as
a process that fills in a desired position (such as a calibrated zero) for each position monitor.
The “Simulate Orbit” process is only slightly more difficult. An expanded DFD for this
process is shown in Figure 5.3. This diagram shows an extra data store, initial conditions for

the orbit tracking, and three processes for calculating the tracking parameters (such as cal-
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Figure 5.3: Orbit simulation DFD, expanded.

culating linear transfer matrices or products of linear transfer matrices), actually performing
the tracking and constructing the orbit based on measurements from the tracking process.
Tracking is also iterative: it’s output feeds back as new coordinates input into the next round
of tracking. These processes themselves can be broken down on other DFDs. This description
is consistent with the design of most common tracking programs such as Teapot and MAD.

The “Correct Orbit” process is the most difficult of the top-level nonhierarchical processes.
The correction strategy and algorithms are described outside the context of DFDs and OMs
in another paper [11].

4. The “Read Orbit” and “Send Orbit Correction” Hierarchical Processes

Implementation: The ADO structure as it currently is defined seems somewhat
inconsistent. Controls group members have claimed that ADOs do not intercom-
municate, but to encapsulate even a power supply interface in an ADO requires
coordination between a PLC, a waveform generator and MADC channels. The
MADC interface itself is high-level since MADCs are used for many measurements,

which leads to the conclusion that some ADOs manage or coordinate other ADOs.
The “Read Orbit” process in Figure 5.2 produces only measured orbits. An orbit is
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considered to be a collection of coordinated BPM readings, with an interface that includes
timeline information on when the orbit is to be acquired and which BPMs are to be involved.
This orbit object may then be viewed, in controls parlance, as a collection of BPM ADOQs,
although it is not the only high-level interface to these ADOs. (Individual ADO interfaces are
also present, as are memory map ADOs which can conceivably control the same hardware.)
The “Send Orbit Correction” process similarly communicates with an assortment of corrector
magnet ADOs.

Figure 5.4 shows a hierarchy or directed graph of processes, originating from an orbit
process that encapsulates both orbit acquisition and orbit correction. Using terminology
from Chapter 3 once more, this process represents the physics parameter “orbit”.

Because this orbit process performs orbit correction as well (thus wrapping the beam
threading application of Figure 5.2), it must also communicate with many corrector magnets.
There is presumably one magnet process for every physical magnet in the machine, since
magnets have physical parameters such as measured voltages, thermal tap statuses, etc. The
magnet processes in turn coordinate magnet current measurements via MADC and power
supply objects, and so forth.

Figure 5.4 may appear to be a hierarchy, but in truth it is instead a directed graph. There
is not always a main parent process, and from application to application the control hierarchy
changes. Magnets, power supplies and BPMs must report their statuses and readings to
several distributed processes within the system. Distributed permission systems, local locking

and overrides are critical for such a design.
IIT1. Final Commentary

It is important to realize that the entire top-level design of beam threading as pictured in
Figure 5.2 can be stuffed in the “Perform command / Make decisions” process of the general
“Validate and Sequence” process of Figure 5.1, which is then included in a well-interfaced
orbit parameter process at the top of Figure 5.4. The beam threading application thus
becomes usable in a packaged and encapsulated form by other applications (including a run

sequencer), as well as being able to stand on its own.
To this end it is important that a consistent language for sequencing high-level applications
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be designed. Currently we have a package, Glish[7], which allows a great deal of sequencing.
Consistency of device wrappers, internal sequencers, error handling and interface design allow
clean and integral design of the entire control system.
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Chapter 6

A Generic Device Description
Scheme

I. Motivation and Problems

To efficiently install and control a large system such as an accelerator or transfer line, the
relationships between its various elements must be defined in a clear and consistent manner.
One particular problem for RHIC, both from an optics/electrical bus viewpoint and a controls
viewpoint, has been the relationship between magnets and power supplies — which power
supplies control which magnets? This is a trivial question to answer for correctors and trim
magnets, but the wire-up issue is nontrivial for complicated bus work such as that for the
interaction region quadrupoles. This paper describes a scheme which handles arbitrary wire-
up problems with a relational database — this scheme is also shown to be extensible to a
general description of design, including data flow in control applications as well as physical
installation of complex bus work.

The quadrupole power supply busing for four of the RHIC interaction regions is shown in
Figure 6.1, as taken directly from the RHIC design manual[15]. A natural way to view this or
any other connection schematic is as a set of boxes (devices) with lines (also devices) drawn
between them. Devices (magnets, power supplies and busing in this figure) have general
attributes such as the name and type of device and the numbers of incoming and outgoing
attachments for connections (spigots). Connections, the links between the spigots on devices,
also have general attributes such as type (a hardware or software connection type). Devices
and connections, and their connectivity relationships, can be generally described by entries

in a relational database.
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Figure 6.1: Power supply busing for quadrupoles in the RHIC interaction regions (IRs) at 2,
6, 8 and 12 o’clock. Triangles represent 150 amp cryogenic penetrations. This figure is from
Bob Lambiase.

The wiring diagram of IR quadrupoles in RHIC, like most of the wiring in most complex
systems, is highly regular and duplicitous. There are six identical quad trims in Figure 6.1
(itself applicable to four of the six RHIC IRs), and this trim wiring scheme is duplicated
hundreds of times throughout RHIC. A general hierarchical description of this diagram avoids
the consistency issues that plague the update of many copies of this information.

To address these issues we have designed a database which can handle arbitrary wire up
diagrams, such as that of Figure 6.1. This database is designed to be as flexible as possible,
and includes generic templates for common connection schemes.

It must be stressed that these tables are engineered for one specific purpose — to describe
connection and containment schemes for generic objects. They are not meant to provide a
repository for information specific to physical instances of things, and their generality is lost
if attributes are added for discrimination of physical instances. Other databases (such as
inventory tables) should contain this information, along with references into this database
that show how these devices fit into the general wire up scheme. This is demonstrated by

examples in later sections.
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II. A Fundamentalist Approach to Entity-Relationship (ER) Diagrams

A relational database is comprised of tables, where each table consists of columns (and
associated data types) into which data are placed. Data grouped by rows in a table are called

table entries.

Magnet Description Power Supply Description

Slot SWN* | Serial Name | Type Supply SWN* | Supply Serial Name
ugb ATRQSLO008 | quad psugb ATRPS032
uq6 ATRQSS013 | quad psug6 ATRPS033
uq7 ATRQSL007 | quad psuq? ATRPS034

Power Supply Wireup
Magnet Slot SWN | Power Supply SWN | Polarity

ugb psugb 1

ugb psuq6 1

ug? psuq? 1

Table 6.1: Three example tables showing magnet busing. The acronym SWN stands for
SiteWide Name and an asterisk indicates a primary key. Three rows are shown for each
table.

Three simple database tables are shown in Table 6.1. The Magnet Description table has
three columns: the Magnet Slot SiteWideName (SWN), which is a unique name for the lattice
position of the magnet, the Magnet Serial Name, which is a unique identifier for the physical
magnet which is installed in that slot, and the Magnet Type. The Power Supply Description
table includes an SWN and Serial Name for power supplies. The Power Supply Wireup table
associates entries in the previous two tables, providing design information on how magnets
and power supplies are bused together.

There is sometimes a single column or group of columns in each table which is a “key”,
a unique identifier for any single table entry, or row. Some tables have no keys, while others
may have several which key the same table in different ways. In the Magnet Description
and Power Supply Description tables above, the SWN entries are declared as primary keys;
during data entry any new entry in a table that duplicates a primary key is automatically
rejected.

In the course of database design, tables naturally fall into two categories. One category
is for entities or instances of things — magnets, magnet slots, power supplies, wires, cables,
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Figure 6.2: An entity-relationship (ER) diagram of the example tables from Table 1.

cards, people and so forth. Tables that describe these instances are called entity tables.
The other type of table is a relationship table, which associates entities, the entries in
entity tables.

Entity tables are almost always keyed; they also have other columns which contain de-
scriptive attributes that all entries in the table may share. It is an important and difficult
design decision to choose a reasonable level of abstraction for a problem such that the in-
formation in entity tables is neither highly duplicitous nor irrelevant. For example, power
supplies and magnets share some attributes (color, weight, manufacturer, serial name) but
not others (magnet type, magnet half-core serial numbers and power supply limits).

Tables may be related to one another in various ways (hence the term “relational”). A
convenient way of diagraming the relational database references between entity and relation-
ship tables is with an entity-relationship (ER) diagram][3].

In an ER diagram, entities are represented by rectangles and relationships are represented
by rhombi; there is usually a one-one correspondence between these symbols and actual
database tables. Directional arcs are drawn between entities and relationships to indicate
reference, or dependence — in implementation the table at the base of the arc (the table that
symbolizes the relationship) contains a column with the same data type as the primary key of
the table at the end of the arc. Interpretation of arcs is sometimes simplified by using verbs
as labels, which allows one to “read along the arcs”. Association qualifiers (such as “M” for
many, “alw” for always, etc.) are also used as arc labels. An ER diagram of the tables in
Table 6.1 is shown in Figure 6.2.

Tables which have many arcs pointing to them are “fundamental” tables; their entries are
referenced, by primary key, in many other tables. Fundamental tables are the first tables filled
during data entry. In the next section the DeviceType table is an example of such a table —
it contains a list of all possible DeviceTypes for Device table entries. The structure of the
tables constructed by the ER method should prevent the entry of a DeviceType in the Device
table that is not in the DeviceType table to maintain referential integrity. On the other hand
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tables which have many arrows pointing away from them are generally relationships between
the various tables to which they point.

The program erdraw]3], developed at LBL, was used to implement these tables using ER
methods. This program allows graphical editing of ER diagrams, including table attributes
and fairly sophisticated delete and update rules. Most importantly, erdraw also produces
SQL for table creation, table keying, referential integrity and meta-tables (tables containing
descriptions of these tables) that can be read by most database SQL interpreters.

III. The Generic Device Description Tables

Figure 6.3 shows the ER layout of the generic device description (GDD) tables. The six
lower tables compose generic instances of devices (including templates of wiring schemes)
while the three top tables represent actual instances of devices that fit into these templates.

This section describes the generic tables in more detail.

I11.1: The fundamental entity tables

Since we seek to represent connection diagrams similar to Figure 6.1, it is reasonable
to start with basic entities which represent objects on this diagram. Boxes with external

connection points are called Devices and the connection points on devices are called Spigots:

Device: a hierarchical object which contains zero-many other devices and
which is contained in zero-many other devices. Devices each also have
zero-many “spigots”, and have primary-key Name and Comment and

Type attributes.

Spigot: an external connection point on a device. Spigots only have direc-
tionality within the context on a particular device. The only attribute

of Spigots is a primary-key Name.

The majority of arcs in Figure 6.3 (as well as most of the tables) are concerned with many-
many relationships between these fundamental entities. A closeup of a quad corrector from
Figure 6.1 is shown in Figure 6.4 to clarify this terminology.

There is one more fundamental entity, DeviceType, which lists the acceptable entries in
the Type attribute of each device. This constraint is shown by the “has” arc between these

two tables. Note that this is not an “alw-has” (always-has) arc, so devices may exist with
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Figure 6.3: The generic device description (GDD) tables in entity-relationship (ER) format.
The top three tables are not part of this description, but show the relationship of physical
instance tables to GDD tables.

Connects

(Frérn)\(v)

| Table Name | Attribute | Type |

DeviceType Type* char[20]

Device Name* char[20]
Purpose char{60

Spigot Name* char([20

SpigotOwn Name* char[20
Direction int

Contains Name* char([20]

Connects

RealDevices Name* char[20]

RealContains

PS_Mag_Wireup Polarity int
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Table 6.2: Attributes of the GDD tables. The order listed is the order in which tables should
be filled for referential integrity. A star indicates a primary key; attributes in boldface are
mandatory for each table entry. Table columns corresponding to arcs in Figure 3 are not
included in this list.
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Figure 6.4: A closeup of a corrector magnet bus. Arrows show nominal spigot polarity, and

each device has two spigots. The entirety of this diagram is a single generic device template
called “1PS-1Mag”.

NULL Type or a Type listed in the DeviceType table, but none other.

II1.2: Many-many relationship tables

There are two relationships between the fundamental entities Device and Spigot that
are evident from the example figure: each device “owns” zero-many spigots and each device
contains zero-many devices. Note also that the converse is also true — each spigot is owned
by zero-many devices and each device is contained within zero-many devices. More succinctly,
there are many-many relationships between the Spigot and Device tables (ownership) and
between the Device table and itself (containment). These relationships are represented by
the SpigotOwn and Contains tables in Figure 6.3.

There are interesting things to note about these two tables. First, even though they are
many-many relationships, they are entities themselves. For connectivity it is important to
be able to distinguish between the same types of spigot on a particular device, as well as the
same types of device contained within a larger composite device. Each of these tables must
therefore have its own primary key; for lack of better nomenclature this is a Name.

With SpigotOwn the context is also established for directionality. It is clear that on some
devices a current spigot is incoming while on others it is outgoing. It is also clear that on

devices where this distinction is not immediately apparent (e.g. magnets, ground buses), there
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are still assumptions of polarity that warrant this distinction in all spigot-device associations.

The SpigotOwn entity has a Direction attribute (£1 or 0, indicating polarity or lack thereof).

I11.3: Connections

Circuits are created by attaching spigots together; this is akin to physically performing
a connection such as attaching a cable to a socket. Using the device/spigot terminology, a
connection is a relationship between a spigot on a contained device (a SpigotOwn entry) and
another spigot on another contained device. Both the SpigotOwn entry (specifying a device
and spigot on that device) and a Contains entry (specifying which instance of a device within
a composite device) are needed for each end of the connection. Different connections may
share the same SpigotOwn or Contains references, but not both.

Connections are implemented as the paired many-many relationship Connects in Fig-
ure 6.3. Here there are two many-many relationships, the To pairing and the From pairing,
which are associated within a composite device. It is also possible (even preferable) to create
a Sybase view which lists all contained devices and their spigot lists, and associate entries in
this view within the Connects relationship — however the ER methodology does not appear
to implement this approach.

For a circuit tracing program to work with this data, all circuits must be closed. Internal
connections are supported by this framework — if the Contains entry is absent in a Connects
table entry, the Spigot listed is presumed to be a spigot on the internal side of the device
containing the connection. This will be made clearer in the next section by example.

Every entry in the Connects table can now be interpreted this way: “Within a certain
composite Device, there is a connection from SpigotOwn (an instance of a spigot on a device)
on Contains (an instance of a device in the composite device) to another SpigotOwn on

Contains”. Completely general wire-up and connection schemes are supported by this design.
IV. Some Specific Examples

Here we consider two examples. The simple case of corrector and trim magnets is meant
to clarify the ER design of the GDD tables. Second, we consider the more complex scenario
of IR quad busing as depicted in Figure 6.1; this example also depicts how complex device

hierarchies are implemented.
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DeviceType Table

Device Table

Spigot Table

Type Name DeviceType Purpose Name
char[20] char[20] char[20] char[60] char[20]
Magnet Magnet1Tap | Magnet One-tap magnet Current
Power Supply Power Supply | Power Supply | One-tap power supply
Bus Magnet Bus Bus
Template 1PS-1Mag Template Device Template. ..
SpigotOwn Table Contains Table
Name DeviceName | SpigotName | Direction Name Parent Child
char[20] char[20] char|20] int char[20] char[20] char[20]
Magllin Magnet1Tap | Current 1 1PS1Mag-Mag | 1PS-1Mag | Magnet1Tap
Magilout | Magnet1Tap | Current -1 1PS1Mag-PS 1PS-1Mag | Power Supply
PSIin Power Supply | Current 1 1PS1Mag-Busl | 1PS-1Mag | Magnet Bus
PSIout Power Supply | Current -1 1PS1Mag-Bus2 | 1PS-1Mag | Magnet Bus
Buslin Magnet Bus Current 1
Buslout Magnet Bus Current -1
Connects Table
Device SpigotOwn From | Contains From || SpigotOwn To | Contains To
char[20 char[20] char[20] char[20] char|[20]
1PS-1Mag Magllout 1PS1Mag-Mag || Buslin 1PS1Mag-Busl
1PS-1Mag Buslout 1PS1Mag-Busl || PSlin 1PS1Mag-PS
1PS-1Mag PSlIout 1PS1Mag-PS Buslin 1PS1Mag-Bus2
1PS-1Mag Buslout 1PS1Mag-Bus2 || Magllin 1PS1Mag-Mag
Magnet1Tap Magllin Magllout
Power Supply || PSIin PSlIout
Magnet Bus Buslin Buslout

Table 6.3: GDD table entries for the 1PS-1Mag template.

IV.1: Corrector and Trim Magnets

Consider the simple case of corrector and trim magnet busing, Figure 6.4. This composite

device, generically called “1PS-1Mag” here, is duplicated six times in each IR quad bus

design (Figure 6.1), as well as hundreds of times for correctors and trims throughout ATR

and RHIC — Figure 6.4 thus serves as a template for this wire-up scheme. Table 6.3 shows
the entries in the GDD tables for this diagram.
There are three DeviceTypes in Figure 6.4, a Power Supply, a Magnet and a Bus. The

composite generic device 1PS-1Mag representing the entirety of the figure has a DeviceType

“Template”. There are three other Devices, a one-tap magnet, a one-tap power supply and

a magnet bus; the only Spigot necessary is a “Current”.

The magnet, power supply and magnet bus each have two Current spigots, in and out.

The template here does not have any external currents or control points and thus has no
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spigots. The Contains table entries are self-explanatory, but note that there are two different
instances of the Magnet Bus device in 1PS-1Mag.

The Connects table first lists the four connections that are obvious, those that attach
together the four Devices that make up 1PS-1Mag. The last three connections are internal
device connections, and signify that current that comes into the “in” spigots goes out the
“out” spigots. This may seem trivial, but when more realistic descriptions are included
(external control points for power supplies, voltage and thermal taps on a magnet, etc.)
these connections are necessary for a circuit-tracing program to follow current paths within
these devices.

This is still a generic representation; 1PS-1Mag is a simple template for wiring which
holds for all trim magnets and power supplies of this type. Section VI explains how physical
instances of magnets and power supplies relate to the GDD tables.

Another way to implement a trim magnet template is to ignore the buses as uninteresting
and simply to join the input and output currents of the magnet and power supply together.
This is feasible, and works if that association is all that is needed, but it ignores the fact that

the busing is real and has properties of interest itself (such as penetration limits).

1V.2: Complex Bus Work — RHIC IR Quads

It is natural to view the RHIC IR quadrupole busing of Figure 6.1 as a single template
that is instantiated four times, once for each of the 2, 6, 8 and 12 o’clock IRs. This template
(unlike the 1PS-1Mag template) has four external spigots for the main quadrupole buses. It
also quite naturally breaks down into eight smaller templates, six that are closed 1PS-1Mag
instances and two that are the main quad focusing and defocusing buses.

The most worrisome aspect of the RHIC IR quad busing is the many-many relationship
between power supplies and magnets — most of the quadrupoles are not on a single bus
dominated by a single power supply. A closeup is shown in Figure 6.5, showing how this can
be implemented in the GDD tables; basically parallel buses are connected to the same input
and output spigots on magnet Q8.

A bigger problem arises on the focusing bus, where there are both tees and four-bus
junctions. A simple solution is to break the bus between the Q1 magnets into two sections,
and to use the junction between them for feed-ins and returns for the six A-type power
supplies. The directionality labels on spigots indicate polarity of flow, and do not indicate
that this is the only direction that current can flow. This being the case, return paths for
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Figure 6.5: A closeup from Figure 1, showing how current tees are implemented.

power supply current are not always those listed — a circuit tracing program using Kirchoff’s
laws should use these directions only as polarity references.

To describe the entirety of Figure 6.1, eight templates are needed — one for the focusing
bus, one for the defocusing bus and six for the quad trim packages. Each quad trim package
uses a single magnet and a single power supply, and implies two internal buses. The defo-
cusing bus template requires four magnets and three power supplies, and contains eleven bus
connections (two for each power supply and five for the main bus sections). The focusing bus
is most complicated; it requires fourteen magnets, eight power supplies and thirty-two bus

connections.
V. How to Implement Real Device Instances

Figure 6.6 shows the references into the GDD required to resolve a wire-up scheme for a
real trim magnet, in this case yo4-tq4, the outer Q4 trim in the yellow ring.

Figure 6.3 showed three tables not in the GDD. RealDevices entries are actual devices
as referenced by their SWNs or, in the case of Templates, some other unique identifier such as
yo4-tq4-tpl from Figure 6.6. RealContains associates real devices within a real template,
and references the GDD Contains table to discriminate separate instances of the same device
type in a template. The PS_Mag_Wireup table associates magnets and power supplies,
with polarities — this table is automatically filled by a wire-up application that uses the
GDD tables.

To enter another real trim instance, first the power supply and trim magnet should be
entered as real devices in the RealDevices table. The template that represents the “trim
package” must also be entered, and these should all refer to appropriate generic descriptions
in the GDD Device table. (See bold arrows in Figure 6.6.) The RealContains table should

then be filled with a pair of entries denoting where in the template the magnet and power
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yod-tqd-tpl, which ties together the magnet and power supply associations.
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supply should go, again with reference into the GDD Contains table.

There are many “generic implications” within a template. A real trim, generically wired
and with an “uninteresting” power supply, can be entered as a real magnet and a 1PS-
1Mag template instance, with all other elements implied within the template. Above, even
the instances of the magnet busing are implied, even though they should be expressed as
real instances of busing (with penetration limits, etc) in some other database. Details of
individual elements belong elsewhere — the associations between them are represented
by the GDD tables. _

A pair of tables similar to RealDevices and RealContains is sufficient to reference the
GDD structure from any database listing physical instances of devices. Examples that are
currently under construction include ATR and RHIC magnet busing (physical power supplies
and magnets), ATR. instrumentation (magnet coil taps, BPMs, etc.) and an instrumentation
group cable database.

Templates provide natural encapsulations of connection schemes, just as slots in the ac-
celerator optics database provide natural encapsulations of removable beamline equipment.
Templates are an organizational tool, and should not be avoided simply to “streamline”
database contents. Also, devices may themselves be templates, and imply other generic
structures beneath — this actually means that the number of physical entries of things is

minimized in this scheme because duplicate implications can reside within the GDD.

VI. Implementation for the AGS to RHIC Transfer Line

To test the viability of this scheme, the magnet busing for all magnets in the ATR was
implemented in Sybase tables produced by erdraw from the ER diagram of Figure 6.3. Table
creation took less than an hour, and data entry for the 147 magnets in these transfer lines
took less than a day.

The vast majority of ATR magnets are individually powered; only the dipoles and lambert-
sons are on buses which require any templates other than the 1PS-1Mag template described
above. The dipoles on these buses are also 4-tap magnets, with two internal coils and two
internal return buses. To discriminate between these internal “magnet coil” and “return bus”
devices were used. A “current source” internal device was also used to connect the input and

output current spigots within power supplies. The 4-tap dipoles, except for xd31 and yd31,
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were jumpered internally to look like 2-tap dipoles with a single magnet coil and a single
return bus. }

The xd31 and yd31 dipoles, and the lambertsons, also have trim power supplies jumpered
across their main buses. This situation was handled the same way as multiple magnet buses
in RHIC IR quad wire-up, by simply connecting these power supply buses to the dipole and
lambertson in parallel with the main arc buses.

A program, wireup, goes through the list of all magnet devices in the RealDevice ta-
ble, and finds the set of top-level templates which contain all these magnets. For each of
these templates wireup collects information on all internal connections, including recur-
sively traversing other templates, and assembles a list of devices and connections. It singles
out the “current source” devices from this list, and traces all circuits that originate at this
current source. Both closed circuits (and the magnet coils that reside on them) and open
circuits (indicating there is something wrong) are reported. Wireup is also smart enough to
avoid infinite recursion during template expansion and circuit tracing,.

Wireup consists of a 450-line C library of generic routines for traversing the GDD table
structure (basically a software implementation of views), and approximately 700 lines of
highly recursive C code. When run on the ATR table entries, it produced correct magnet
and power supply associations for all magnets in a few seconds of run time. Scaling to RHIC

gives an estimated wire-up time of a few minutes.

VII. Concluding Remarks

This chapter has concentrated on describing the GDD and its applicability to magnet
busing and wiring schemes. There is, however, nothing specific to this application within the
GDD tables. Connectivity diagrams for control flow and for hierarchical relationships between
objects within a control system, such as RHIC ADOs[8] and high-level controls hierarchies[11],
are quite easily represented within the GDD design. Additional table attributes (such as a
ConnectionType in the Connects relationship) can also lead to more application-specific GDD
tables.
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Chapter 7

User Interface Generalities

We will need a set of tools and libraries that will help us build user interfaces for various
applications. The tools should contain most of the items which have proven usefull in other
applications. Graphical items like menus, scroll bars, pushbuttons, and scrolling lists have
proven useful in many different applications on various operating and windowing systems.
We would like to use the same kind of graphical items in our applications.

Using the same tools for all of the applications that we write will help us present a
consistent interface across the different applications. Choosing an interface that resembles
the MS-Windows and Mac interfaces will help the learning curve because most people are
already familiar with these interfaces.

When designing an application we should make sure that the user interface and the
functionality of the program are separate. That way an application can be controlled by the
user interface or by a script without the user interface. Controlling applications with scripts
will be necessary for automating complicated tasks.

Plotting standard XY data will be very common, so a tool to do various kinds of XY
plots will be needed. This tool should not only output to the screen, but also produce color
postscript. That way printing anything that is displayed using this tool will not only possible
but trivial. We need to plot flag data, so a 3D plotting tool should also be considered. The
plotting tools should accept data in the same format that is used in other parts of the control
system. That way any data that is passed around in the system can be plotted easily.

We will also need a tool to display and edit in tabular form any data that is in the control
system. This tool should use the same data format that the plotting tools and most other
parts of the control system use.

Both the plotting tools and the data editor should have the ability to read their configu-

ration information from an external source. There should also be a naming convention so the
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tools can pick up the configuration file based on the name of the data set. If no configuration
file exists the tools should choose reasonable defaults on its own.

Currently, we are using the X Windows system with Motif layered on top. We have a set
of C++ class libraries that make developing an application with Motif much easier. Motif
has the same look and feel as MS-Windows, so many people have no problem learning how
to use it. Many professional software packages on UNIX machines use Motif, so this interface
should be around for a few years.

We have purchased a table widget that has been very useful for displaying information in
a spreadsheet format. We would also like to buy a 2D and 3D graphing widget, so we do not
have to build the plotting software from scratch.
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Chapter 8

Partial Requirements List for ATR
Commissioning

There are two sources for the scope of tasks that need to be accomplished. One is the memo
from Mike Harrison[16] that accompanied the document establishing the task force, and the
other is from Waldo MacKay[17]. Waldo’s list is a bit more detailed in some respects, and
we thought it would help to have both definitions of scope preserved here. They do not
contradict each other.

To repeat previous discussions in this document, the task force has developed a two
fold strategy to design/specify the software for the upcoming beam test. First, a design
methodology and a set of tools to document the design have been established. This includes
a general device model to guide specific applications. Second, a set of software tools to
implement the integrated design. These include data driven graphics tools, database access
software as well as event handling and interprocess communication languages.

The design methodology forces us to make a global analysis of the requirements of the
control system. Besides identifying many of the pieces of code that will need to be written,
this process will also generate the definition of a large set of data stores — many but not
all of which may end up as database tables. For example some of the data will remain as
configuration files on disk. The ADO RAD files are a significant example of this. The question
of what data will reside in the database and what resides elsewhere is an implementation issue,
and the design of the system logically comes first. The hope is that the design will lead us
to a basic set of software that can be used repeatedly throughout the control system.

With these ideas again in mind we list the things that need to be done. Not all of the
items listed below are within the territory of the control system. However, we list them

nevertheless. We will indicate by a * (and perhaps some comments below) that particular
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items in the lists are in good shape.

The scope as defined by Mike Harrison includes the following. (The three locations
referred to are NWA, A-house and 1000P.)

I Accelerator Physics

II

A.

Survey co-ordinates and magnet fiducials for all elements. *

- Magnet acceptance, sorting if necessary and field quality monitoring.*

B
C.
D

Application level waveform software for WFG’s (ramp page).

. Beam measurements

a. beamline lattice *
b. extracted beam phase space (i.e. beam profile measurements with instrumen-

tation group). *

Prototype sequencing code: automatic beamline turn-on and setting.

. Prototype application code: beamline steering. Includes beamline display with beam

position and loss monitor readings. *

Controls

A.

B.

Embryonic console services: graphics, plotting, page display/control, ADO’s. Consoles
also provided by controls group.

Event clock timing system: the master encoder will reside in or around the AGS MCR.
Timing signals available in all three locations. The details of what timing signals are
needed have not yet been established.

. Waveform generation and power supply interfaces: available in all three locations with

final software at the VME level.

. Beam Inhibit and Control: no RHIC specific beam inhibitf Beam control provided by

the existing AGS system. Note this is not the safety system beam inhibit.
Network: Ethernet will be available at all three locations. No high bandwidth system
available for this test.

MADC’s: Analog signal read back available at all three locations via standard RHIC
MADC’s.

. Digial I/O: Digital device control available at all three locations.

Collimator Control: similar system to present AGS control.

Now we reproduce Waldo’s list from his talk[17].
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I Things to do before beam tests
A. check cooling water on magnets.
ramp magnets.
check polarities of magnets.
pump down line and check vacuum.

check interlocks.

| E Y QW

check other hardware.

1. BPM’s: cables and electronics.

BLM’s (with a radioactive source).

Flags: read back pictures with calibration lights.
Collimators: check motor control and location read-backs.

Current transformers and electronics.

S s N

Timing system: check signals
a. to transformers
b. to BPM’s

c. eventually to injection kicker system

G. Test connection to RHIC abort system.

IT With beam (~ 10'° charges of some species, hourly average 1pulse/30sec)

A. Thread beam down the U- and W-lines.
1. Steer the beam onto the flags.
2. Measure the location with the BPM’s.
3. Verify magnet and BPM polarities with beam.
4. After reaching a flag with a reasonable trajectory, remove the flag and go on to
the next one.
B. Measure the pulse stability from the AGS.
1. Current
2. Position
3. Profile on flags
C. Do fault studies.
1. Check for radiation leaks when the beam hits certain key elements. Of particular
interest are:

a. Access doors, particularly in the split region.
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b. Penetrations for ventilation shafts and cables.
¢. Thin shielding areas.
d. The top of the berm where Thompson road crosses the beam line.
D. Measure the transverse matrix elements (C, S, C’, S') for both = and y.
1. Measure the beam location at all BPM’s.
2. Change UTV1 by a small amount and remeasure the trajectory.
3. Reset UTV1 to previous value and remeasure the trajectory.
4. Change UTH2 by a small amount and remeasure the trajectory.

5. Calculate the expected deviations and compare with data.

E. Measure the dispersion elements of the beam line (D, D’).
1. Measure the trajectory. .
2. Simulate a —0.1% momentum change by ramping all magnets up by 0.1%.
3. Re-measure the trajectory.
4. Calculate the values of D and D' at the BPM locations.

5. Compare with the expected values.

F. Measure the beam shape (hyperellipsoid)
1. Measure the profile at flags UF3, UF4, and UF5
Measure the profile at flags WF1, WF2, and WF3
Attempt to measure momentum spread with collimator UCL.

Calculate emittances, betas, and alphas (horiz and vert) at the flag locations.

grk woN

Measure dispersion of the beam.

a. Change the momentum of the AGS extracted beam.
b. Remeasure the trajectory.

c. Calculate the values of 7 and 7’ at the BPM locations.

6. Compare with the expected values.

G. Tune the U-line quads to best match the desired values going into the W-line.
1. Note that the dispersion should be zero at the entrance to the W-line (20° arc).

H. Tune the W-line quads to best match the desired values just upstream of SWM (switch
magnet).

I. Scan aperture

Broadly speaking, anything in the above lists which has to do with equipment controlled

electronically should in principle be addressable from the control system, in particular, mag-
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net power supplies. Closed systems such as vacuum may be excluded although some reporting
to the control system might be possible if networks are in place.

Most of the requirements above are associated with high level controls, ie., software
systems that include many front end computers and many pieces of hardware. These are all
systems which the people who will actually do the work of building the control system would
subject to the global analysis described in this document.

It should also be remembered that the goal of the task force is to prepare an environment
which can evolve into a RHIC control system. So we should be careful not to limit the scope
of the task force so that we lose sight of this goal. Doing the complete analysis properly is
probably the only way to insure against this.
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Chapter 9

Summary and Recommendations

This report has described a set of analysis methods that should enable the commissioning
physicists and engineers as well as the equipment groups to plan and implement a control
system for the accelerator systems of RHIC, beginning with the ATR. Data flow, object
analysis, control flow and entity-relationship methods are all necessary elements of the design
process developed in this report.

We have proposed a general accelerator device/object model (Chapter 3) and shown by
using the beam threading application (Chapter 5) how this model can be used. Implicit
in the device model is a hierarchy of levels which proceed from the console level down to
the immediate hardware affecting the beam. In between are the front end control hardware
and software. Even though we have briefly described this level in the analysis of the beam
threading application, it is clear that much more needs to be done regarding the front end
analysis. In general the task force has not attempted to analyze the low level hardware
domain — a result of the membership of the task force more than the lack of a desire to do
so. This is a significant gap in our analysis, and one which we feel must be corrected in the
next phase if we are to have a complete understanding of all the components of the control
system.

We have also proposed a general language to describe control flow (Chapter 4). This
uses a definition of “event” which is somewhat more abstract than usually understood, but
we think it is necessary to adopt this definition because it will allow us not only to develop
a global understanding of machine and process sequencing, but also permit the ability to
simulate these event sequences immediately.

A major concern is organization of data for the control system. We have not discussed
a plan for this at length in this report because one cannot know how to organize “all the

data” until one has done a proper analysis. There is obviously a lot of data relevant to the
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control system currently in existence. Some of this data is discussed in the appendices of
this report and much of it is known to one user or another, but it is certainly not clear to
a generic user how to go about finding the sources of data at present. Resolving the data
organization problem should be a high priority of the next phase. The role (central or not)
of the database server should become apparent during this process.

And what is that next phase?, i.e., What is to be done? The group of people who will build
the control system should now organize for this task. They should prioritize the requirements
(Chapter 8) and begin to analyze each of them using the methods discussed in this report.
Without strong input and commitment from the hardware groups, much of the analysis will
be incomplete, and the operational flexibility that we hope to have in the control system
will likely be unavailable. However, we hope that is clear from all the repetition of the word
“analysis” throughout this report that we do not expect people to panic and start ‘Writing
code in the near future. One way to realize the next phase is via the selection of a pre-ops
group to continue the work of the task force. This is discussed further in the recommendations
below.

With regard to the relationship between the ATR commissioning software that will be
written within the next year and the future RHIC control system, a few comments are
necessary. The natural tendency after ATR commissioning is completed will be to allow
“software inertia” to materialize. However, it should be seen as a normal and natural result of
a prototyping test to learn what is not quite right, and the consequences will be that code will
be consigned to history. The temptation to fix or build on flawed prototypes must be resisted.
Code, after all, represents about 20% of the work of programming so none of it should be
considered sacred. So at the end of transfer line commissioning, the operations group should

identify the problems with the control system, and dispense with those components.
Recommendations

We will split the recommendations into two groups. Group A deals with the general
boundary conditions for organising the future of the continuing task force (CTF). Group B
are specifics - which techniques, what language and so on. Group B is irrelevant unless group

A is understood and accepted.

A1l. All those affected should understand and agree on the scope of the analysis and design
as discussed in the Introduction. The first step is to agree that it is necessary. Initially

this will involve section leaders from:
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A2.

A3.

Ad.

RAP

Controls
Instrumentation
Power

Vacuum
Cryogenics
Safety

The less the people in authority trust the analysis and design people, the less the chance

of success.

This is the most important recommendation.

People who are writing code need to get used to the idea of Design reviews before they
start implementing. Such reviews should be coordinated by the CTF, and should use
the analysis methods proposed in this report. Code reviews on the other hand should
be encouraged but are more local - overall coordination will help avoid multiple wheel

invention.

Start an operations team. Make them part-time, with

1. A “boss” (from RAP?)

2. Representatives from controls (high- and low-level software, one from hardware =
37).

3. Representative from instrumentation.

4. ...

They should get together to discuss the direction of the components of the work in
the light of commissioning and operational problems. The “boss” should be present at
management meetings where decisions are made which may influence ops (this is a lot
of them).

Don’t treat this person as an irrelevancy. When the machine gets closer to its reason
for being - producing physics beams - the ops crew will have a difficult job, close to the

customer. They deserve to have a voice in decisions which they will have to live with.

Separate analysis from implementation. (Introduction)
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AS.

A6.

AT.

AS8.

A9.

Bl1.

B2.

B3.

B4.

B5.

Bé.

B7.

Use common languages for analysis which do not demarcate a high/low level boundary
in the control software. (Introduction and chapter 2)

Control flow should be modeled throughout the software chain — again, no high/low
level demarcation. (Introduction, pages 4-5 and Chapter 4)

The control software should promote a better understanding of the machine physics
rather than to just provide a set of knobs for twiddling. Physics modeling should be

an integral part of the operation, not an optional and esoteric tool. (Chapter 3)
The CTF should prioritize ATR operational requirements. (Chapter 8)
The user interface should be detachable from applications. (Chapter 7)

For common analysis languages we propose using the Object Modeling Technique
(OMT), Extended Entity Relationship (EER) and glish for their respective domains.
(Introduction, page 4 and Chapters 2 and 6)

Control flow should be analysed as in terms of an event analysis (where event is under-
stood to be a structure including name, type, value, sources, consumers, definition...)

as discussed in Chapter 4.

Analysis of devices and their connections should use the “generic device definition”
(gdd) structures (Chapter 6).

Management should encourage the various RHIC groups to store data (survey, inven-
tory, configuration, etc.) in the central SYBASE database and manage this information
using the available database entry and retrieval tools provided for PCs and worksta-

tions.

The data entry for the ADO CDB and SWNameADO table should start as the ADOs
get defined and deployed to the FECs. (Appendix B)

The ADO parameter data initialization files should be be filled as the ADOs are de-
ployed to the FECs. (Appendix B)

We recommend the immediate purchase of the PowerBuilder SQL Front End tools
for PC/Mac/UNIX workstations. (Appendix C)
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BS8. The user interface will primarily be based upon the UlTools layered on top of OSF
Motif. But we expect TCL/TK, LabView and even pure X based tools will also be

used, at least initially.
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Appendix A

Accelerator Configuration

The configuration of the machine that we are going to build is stored in various databases. The
optics database holds the design of the machines that will be built. The optics conﬁguration
for the transfer line from the AGS to RHIC, denoted as ATR, and RHIC itself are stored
in separate databases. The Generic Device database, denoted as GDDB, is also required for

design information of the individual devices that are needed. This configuration consists of:
1. The order of placement of these elements in the line or ring.
2. The type of devices, such as dipoles, quadrupoles, etc.

3. Properties of each device, such as aperture, current limits, expected operating strengths,

survey information, etc

There is a lot of information here that is not always easily accessible in a simple form.

Furthermore, different groups want the information distributed in different forms, such as:

1. The survey group wants the survey information of the elements and their corresponding
fiducials.

2. The simulation group wants the information in a form for existing tracking programs.
3. Other groups have their own specialized needs.

In order to overcome these difficulties, we have setup a directory called Holy Lattice which
contains all the configuration information listed above and more. Within the Holy Lattice are
four separate directories for the four different beam lines required. The two rings for RHIC are
put into Yellow (counterclockwise ring) and Blue (clockwise ring) directories respectively. The
ATR for injecting into the above rings are in YTransfer (for Yellow ring) and BTransfer (for
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Blue ring) directories. Fig. A.1 gives a detailed schematic of the files found inside Blue and
Yellow directories, while Fig. A.2 shows the schematic for the YTransfer and BTransfer. In
these figures, oval boxes are for processes and square boxes represent data files. Additionally,
the lines coming from the files to the processes show what information is used by the process.
Other information in the figure indicates the file system location of the process (in []), such
as one of the LAMBDAJ6] suite of codes and () indicates the data representation.

The most important data deriving from the accelerator configuration data for the control
system is the NameLookup table (found as a SDS data set in the Holy Lattice directories
with the name, Namespace. The structure of NameLookup is defined below as:

struct NameLookup
int lattice_index;
int atom_index;
int fid_index;
int network_index;
int type;

int orientation;

char Machine([4];

char InOutf[2];

char Section[3];

char DeviceName[8];

short DevNo;
char SiteWideName[20];

char SurveyName[16];

char SerialName[20];

char LatticeName[20];

char GenericName[20];
int CoordinateType;
double Scoord;
double Sequiv;
double Ncoord;
double Wcoord;
double Ecoord;
double theta;
double phi;
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double psi;
};

Each device has its own data page in this structure. The definition of each element is defined

as follows:

lattice_index The index is an integer pointer to the device in the Lattice file, a -1 means

no corresponding device in the Lattice file.

atom_index The index is an integer pointer to the device in the Twiss or Survey file, a -1

means no corresponding device in the Twiss or Survey file.

fid_index The index is an integer pointer to the device in the Fiducials file, a -1 means no
corresponding device in the Fiducials file. This is not used for ATR data.

network_index The index is an integer pointer to the control computer network.

type Is an integer referring to the type of device, such as a quadrupole, dipole, etc. These
types are defined in the header file ‘names._devicetypes.h’ located in /rap/horst/include.

orientation Is +1 if the downstream clockwise end is the lead end, else it is -1.
Machine Is a three character abbreviation for an ATR or a RHIC beamline.
InOut Is either i’ for inner or o’ for outer ring.

Section Is a two character designation for logical sections in RHIC or ATR.

DeviceName Is a short mnemonic that gives a clue as to the type of device that is referred

to.
DevNo Is an integer used to differentiate similar devices in the same section.

SiteWideName Is a unique name given to every device in the RHIC - ATR complex. It

effectively associates a location to each device. This name may be derived from other

fields. See Appendix D on Naming Conventions.

SurveyName Is the name of the position used by the survey group for placing the device.

This name is the root of the fiducial name used in the Fiducials file.

SerialName Is the name of the actual device placed at this position.
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LatticeName Is the name of the device used in the Lattice file.
GenericName Is a model name of the of the device that will be placed in this position.

CoordinateType Refers to three kinds of coordinate types; Traj for trajectory; IP for

Intersection point of upstream and downstream rays and Mech for mechanical center.
The following are the device coordinates based on the MAD coordinate system.[14].

Scoord The longitudinal position of the beam through the line. Note, this is clockwise for
both Blue and Yellow rings.

Sequiv A longitudinal position along the beam direction that associates a common location
to corresponding points in the Blue or Yellow rings. This problem arises because the
longitudinal coordinates of the two rings differ since the rings are at different radii

except at the IP points.
Ncoord The north coordinate.
Wcoord The height coordinate.
Ecoord The east coordinate.
theta The azimuthal angle measured clockwise from Ecoord, looking down.
phi The pitch angle.

psi The roll angle.
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Figure A.1: Data Flow Diagram for RHIC Physics Design
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Appendix B

ADO Configuration Data Base

The ADO configuration database plays an important role in organizing the ADO related data.
ADO_CDB is a repository for all the ADO classes, their instances and ADO Pararﬁeters for
the RHIC Control System. The applications use ADO_CDB in order to write the programs
that need to access ADOs that exist on various Front End Computers. (refer to Data Flow
Diagram for ADO_CDB).

ADO_CDB is linked to the NameLookup table via another table called SWNameAdo.
Using this table, one can relate a SiteWideName to the ADO instances that are present
in the ADO_CDB. Once the ADOs are known, one can use the ADO_CDB to get more
information about these ADOs and their Parameters.

Data Input for the ADO_CDB

ADO Class Data input:

The ADO designer creates a RHIC ADO Definition(RAD) File. The RAD file contains
the definition of the ADO Class in terms of data and its methods. This file is used to build
ADO header files and the C++ source files. This software is then loaded into the Front End
Computers. The ADOClass table and Parameter tables in the Configuration database are
filled using the same data as in the RAD files. This assures the data integrity between the
FEC ADOs and the ADO_CDB.

The user writes the initialization values for the given ADO class parameters in a file with
a name ADO Class Name followed by ”.init”.

ADO Instance Data input:

The FEC application designer enters the ADO instance names in the ADO_CDB and also
enters ADO instance related information in the ADOInstance table.

The user writes the initialization values for the given ADO instance parameters in a file

with a name ADO Instance Name followed by ”.init”.
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Status of the ADO_CDB

Currently the ADO_CDB has been designed and resides on the RHIC Sybase server.
Some work related to the FEC Events that will reflect in this database is underway. Events
are described in more detail in Chapter 4. Currently the data is filled in manually and
displayed using Sybase supplied tools such as dwb and isql on Unix workstations. More user
friendly packages are being investigated for the ease of data visualization on both the Unix
workstations and PCs. The description of such tools can be obtained in the appendix on
Commercial SQL Front-End Tools.

There are several documents describing details of the ADO classes. They can be found
in [8][9][10].
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Appendix C

Commercial SQL Front-End Tools

A relational database server from Sybase has been purchased to provide a central data repos-
itory for a variety of groups related to the RHIC project. Information related to instrumen-
tation, controls, vacuum, and physics among others will be stored in this database and will
be made available to any interested parties.

In order for this effort to be successful, we need to make sure that 1) the data gets
entered into the Sybase server, and 2) the required data can be retrieved from the server.
Unfortunately, the tools that come with Sybase for entering and retrieving data are based on
SQL entered onto a command-line or importing/exporting from files and are, therefore, only
useful for experienced users.

This is not a new problem with SQL databases and many commercial companies have
stepped in to provide software to “front-end” an SQL server. This software provides GUI-
style (point and click menus/buttons) interfaces for entering, editing, and retrieving data
from SQL databases. The intention here is to make access to an SQL database as easy as
possible so that people are willing to both get their data into the database and go to the
database to retrieve information.

Based on the expected usage of these tools for the RHIC project, and the available
monetary resources and personnel, the following requirements have been set for the purchase

of commercial SQL front-end tools:

1. The tools should allow an experienced database user/software developer the ability
to create an easy to use front-end that another group can use for entering information
into the database. These front-ends will be somewhat customized to the particular data
being entered /edited. The developer will develop the front-end in consultation with the

group primarily responsible for the data. Specialized queries and reports may also be
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required or the users may use the available generic querying methods (see below).

2. The tools should allow an occasional user an easy to use (graphical, Non-SQL), generic
method for querying the database in order to obtain a listing of the data of interest. This
may require that special “views” of the data be created by a database administrator.
However, once created, the user should be able to perform queries on these views just
like any other database table. The user should be able to print the data listings created

using this generic tool or to export the data to a file.

3. The tools should run across multiple computer platforms in such a way that a front-end
created on one platform can be moved and ready o run on another platform in less
than an hour. The platforms supported should be at least DOS/Windows, Mac OS,
and UNIX. The UNIX support should include at least support for SUN Solé,ris with
SGI-IRIX, HP-UX, and/or IBM-AIX a plus.

4. The cost of the developer tools for all three platforms should be less than $10k and
allow for the distribution of front-end applications free of royalities or run-time fees.
Tools for generic querying of the database should cost no more than $200 per seat, with

$100 a more acceptable target.

An evaluation of the available commercial packages has taken place over two months at
the end of 1994[18]. This evaluation was made in conjuction with a BNL committee set up
to evaluate and make recommendations to lab personnel about such products. Of the many
SQL front-end products available, two were selected which met the above four requirements:
Omnis 7, version 3.0 from Blyth Software and PowerBuilder, version 3.0a from PowerSoft
Corporation.

Although it was felt that both products would serve the purposes outlined above, Power-
Builder has the most impressive set of tools, good third party support and a great reason to
remain close to Sybase changes (PowerSoft was recently acquired by Sybase). We recommend
the immediate purchase of PowerBuilder for Microsoft Windows ($3k) and the Mac/UNIX

versions when they appear in early 1995.
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Appendix D

Naming Convention for
RHIC/ATR Devices and Signals

The naming convention for RHIC and ATR has its origin in the RHIC Design Manual[13].
This appendix will define the syntax for the convention and list some examples so that you
should be able to construct names for devices. A centralized collection of device mnemonics
and names is being maintained by G. Trahern. If you have questions regarding the assignment
of a name to a device, or would like to add new devices to the list, please discuss with him.

The character string for a complete device name, the so-called SiteWideName, differs
between the ATR and RHIC. This reflects both the historical practice of the two design groups
as well as the obvious differences between a transfer line and a circular accelerator. However,
the naming convention which specifies what information is needed to make a SiteWideName
is similar for the two machine systems.

The goal of a naming convention that spans both the ATR and RHIC is a method to name
equipment not only for installation purposes but also for the control system environment.
Because console programs in the past have had restrictions on the numbers of characters that
could be displayed easily, one was forced to abbreviate device names. Currently it is unclear
if there should be such restrictions on the way one chooses to address a device via a console
application. It should be an implementation detail whether one types the name in or uses the
“point and click” route. A modern console application could use an arbitrary length string
without much difficulty as long as the data is described properly. Unfortunately, it became
clear from conversatiors and a study of what was already in place when this convention began
to solidify that people really want abbreviations for names of devices if only to make labels on
drawings accessible. So we have surrendered to this demand. Presumably most of the more

common device abbreviations will become memorable over time, and a dictionary should be
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available in the operator console in case of confusion. A list of device abbreviations and their
definitions will be made available periodically.

Signals are not independent of the devices that produce and receive them. And neither
are the signal names. However, an ambiguity often arises with regard to which device to
associate a given signal. For example, naming the current generated by a magnet power
supply might seem a straightforward assignment. But what of the magnet current itself
supported by that power supply? Do we associate the current with the magnet or with the
power supply? A current measurement device on the magnet’s lead wire is presumably the
device directly measuring the magnet current. Is that device independently named from the
magnet, or is it a subdevice of the magnet? And again, is the signal associated with the
magnet or the sensor? _

These issues require choices. The choice we will make is, as much as possible, to associate
signals with the device closest to the beam. So in the above examples, the magnet current
is associated with the magnet through a sensor which is a sub-device of that magnet. One
can talk of the magnet current or the reading of the sensor defined as a sub-device of the
magnet. If one thinks about this problem in detail, it will be clear that there are remaining
ambiguities in the assignment of signal names. Resolution of these assignments will require
more analysis of actual systems before a complete solution is reached.

However one assigns a signal to a device, the name of a signal will include the device
name as part of its full name. There should also be a clean separation between the device
part and the signal part of the complete name and consequently we will separate the two
using a colon, :, i.e,

complete Signal name = DevicePart:SignalPart
where DevicePart is the SiteWideName for the device, and SignalPart is the specific
signal name, e.g., I for current or V for voltage.

The naming convention is not case sensitive. Combinations of lower and upper case are
not distinguished from names with either all upper case or all lower case. Do not expect to

be able to differentiate names according to upper or lower case.

Convention Syntax for DevicePart

The general syntax for the DevicePart of a name is as follows. One should think of the

device name as composed of several components. How these component are put together in
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a character string to form the SiteWideName for the device will differ in the ATR and
RHIC. But the components are similar. They are:

Machine, Section, DeviceName and DeviceNumber.

Examples of Machine are ATR, B for the Blue ring and Y for the Yellow ring. Examples
of Section are U, V, W, X and Y for ATR sections, and the clock numbers 1-12 for
RHIC. The DeviceName is an appropriate/acceptable abbreviation for the device and will be
discussed in detail below. The DeviceNumber is assigned differently for ATR and RHIC. In
the ATR a sequence number is assigned to each device from 1-N where N is the last instance
of that device type in a section of the ATR. In RHIC the DeviceNumber is the half cell
number for a section(1-12) of the ring. The half cell number runs from 0 to 20 or 21 starting
from 0 at each of the six interaction points (IP) counting clockwise and counter-clockwise
from the IP. The ambiguity of assigning 20 or 21 occurs at the center of each arc wﬁere the
half cell number 21 is assigned to the odd numbered sections (1,3,5,7,9,11). Both rings in
RHIC are numbered in the same way, i.e., the beam direction is irrelevant to the sequence of
naming. Finally, and this applies to both the transfer line and RHIC, if there is more than
one occurrence of a device in a particular subdivsion, e.g. a half cell in RHIC, then the device
number is incremented by a decimal. For example if there are two beam loss monitors in half
cell 4, then they would be distinguished as 4.1, 4.2.

(For historical reasons the full RHIC name has another component not present in the
ATR name. This is the designation of Inner or Outer, I/0, for each section of the ring. This
is obviously important information for RHIC installation, and is included as part of the full
name. We did not include it as part of the general syntax above since we are trying to stress
the commonality of the convention for ATR and RHIC. But the full name of a RHIC device
includes this designator as well.)

Given these components to a name, how does one actually spell it? Read on....

ATR examples

For ATR, one just concatenates (no spaces) the Section, DeviceName and DeviceNumber
components, e.g.,

ATR SiteWideName = SectionDeviceNameDeviceNumber

For example, consider a device such as a dipole. The device mnemonic for a dipole is
D(d), either lower or upper case. In the ATR one will have a name like UD1(ud1) which
is the first dipole in the U line. That’s all there is to it for the ATR. Of course, there are

exceptions to the stated rule. But these exceptions are rather few. These exceptions usually
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occur at points where the device is common to two distinct beamline sections. For example,
the SiteWideName “swm” (for the switching magnet that diverts beam from the W line to

the X and Y lines) is one of the more prominent exceptions.

RHIC examples

For RHIC, all five components of the name are used.

RHIC SiteWideName = MachineISection-DeviceNameDeviceNumber
or

RHIC SiteWideName = MachineOSection-DeviceNameDeviceNumber
depending on whether one is dealing with the Inner or Outer parts of a ring.

So for the dipole in RHIC, one would have a name like BI5-D8(bi5-d8) which means the
dipole in the Blue, Inner ring, in half cell 8 of section 5.
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Device Mnemonics

There is nothing more arbitrary than an abbreviation for a device. It is impossible to get
everyone to agree. So we have chosen to use mnemonics that have been in common usage
at BNL where possible. Some of these abbreviations are so brief that we doubt if anything
will aid the memory but frequent usage. In other case the abbreviation is fairly obvious. A
good working rule for device abbreviations is to remove the vowels from the word and see if
it sounds all right. If not, add one of the vowels back. This will usually work out.

Instead of trying to explain why a given abbreviation has been chosen, we will just list the
current list of abbreviations. If you have any questions about what the device abbreviation
actually refers to please contact G. Trahern.

The device mnemonic is always used in the DeviceName part of the SiteWideName.

Mnemonic Description

1int interconnect # 1

2int interconnect # 2

3int interconnect # 3

4int interconnect # 4

5int interconnect # 5

6int interconnect # 6

Tint interconnect # 7

b beam position monitor (both planes)

beb big coil bottom (atr dipoles)

bet big coil top (atr dipoles)

bd beam dump

bh horizontal beam position monitor

bs beam stop

bv vertical beam position monitor

c collimator

cc cold cathode gauge

cm combined multipole magnet

cmn combined multipole magnet (normal, b.n type)
cms combined multipole magnet (skew, a_n type)
cq quadrupole package with no sextupole
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cgs
cqt
crs

crt

dec
decd
dectf

dv

foil
fv
fvs
ip
jb
ka
ki
lamb
Im

oct
octd
octf

v
scb

sct

cgqs corrector package

cqt corrector package

crs corrector package

crt corrector package

dipole

decapole

decapole

decapole

horizontal bending dipole

For RHIC, magnetic component of dipole slot
vertical bending dipole

flag monitor

foil

fast valve

fast valve sensor

ion pump

junction box

dipole kicker abort

dipole kicker injection
lambertson

beam loss monitor

marker

octupole

octupole

octupole

verical pitching magnet
quadrupole

defocusing quadrupole (horizontal plane)
focusing quadrupole (horizontal plane)
gamma t quadrupole

skew quadrupole

roughing valve

small coil bottom (atr dipoles)
small coil top (atr dipoles)
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skq skew quadrupole

sV sector valve

sSwWm switching magnet (between X and Y lines of ATR)
sx sextupole

sxd sextupole

sxf sextupole

t closed orbit corrector (both planes)
tb terminal block

te thermocouple gauge

th horizontal closed orbit corrector
tq trim quadrupole

trp trp corrector package

ttapb thermal tap bottom (atr dipoles)
ttapt thermal tap top (atr dipoles)

tv vertical closed orbit corrector
vy vent valve
xf transformer
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