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1. Introduction

This paper presents analytical perturbation theory results for 8y, 82, the beta functions
in the presence of linear coupling. It is a continuation of a previous paper! that gave
analytical perturbation theory results for the tune v1, 14 in the presence of linear coupling,.
"The results for f1, 82 hold when vy, vy are close to the resonance line vy — vy = p. The
shift in beta functions is then linear in the skew quadrupole field given by a3 (s). When
vz, vy are far enough from the v; — vy = p resonance, then the shift in the beta function

becomes quadratic in the skew quadrupole field.

The analytical results show that the important harmonics in the skew quadrupole fields
for pi‘oducing large beta functions shifts are the harmonics near v; 4 v. The harmonics
near v + vy are also the important harmonics for the higher order tune (see Ref. 1). It
is also shown that the beta function shift and the higher order tune shift have the same
driving terms, thus, one may expect that an a; correction system that corrects the higher

order tune shift will also correct the beta function shift.
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2. Lowest Order Solution for 5; and [

The presence of the skew quadrupole fields will couple the z and y motions. New beta
functions, B, B2 can be defined? which are the beta functions of the normal modes and
which are different from f;, By, the beta functions of the unperturbed accelerator.

It will be shown below that 1 and f2 can be found from the solutions of the equations

of motions, Eq. (2.1) in reference 1. These solutions were written there as
Nz =C$+C;) ’7y=<y+cz
(o= Agexp (ivg s0z) + Ar exp (ivg,:0;),

s (2.1)

Cy = Bjexp (ivy s05) + Z By exp (tvy r6y) ,
r#s

Vgs —Vys =P
C: is the complex conjugate of (.

The lowest order solution for the A, B, are given by Eq. (2.7) Ref. 1, which can be
put into Eq. (2.1) to find ¢4, ¢,. The first two equations in Eq. (2.7), Ref. 1 show that the
two large coefficients A;, Bs are related. For the v; mode, where v1 — v; when a; — 0,

and using v; s =~ v, one finds

— (Vl - Vz)
B,=—-——2_A.. 2.2a
*T Av (Vs,5:Vy,s) ’ ( )

For the v, mode, using vy s > v, one finds

P C Bk (2.2b)

B AV* (Vx)‘s’ Vy,s) °

Av (Vg s,vys) is defined by Eq. (2.8), Ref. 1.

The last two equations of Eq. (2.7), Ref. 1, can be solved for A, and B,, which can
then be put into Eq. (2.1) to find the Floquet solutions. Note that A, # 0 only for
Vgy = Vys + 1, n # p, and By # 0 only for vy, = vz +n, n # —p. Assuming that v, vy
is close to the resonance line v; s = vy + p, so that vy s ~ v, and vy ; > vy, then
—20g by (Vs Vy,s)

(n+ Vy,8)2 — V2

= 2ug by (Vo ey vy,s)
C(ntvtyy)(n—-p)

A=

S

(2.3)

T
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where n # p, vgr = vy s + n and by is defined by Eq. (2.6), Ref. 1.

Similarly, one finds for B,
_ T2y by (Vy,ry Va,s)
(n+ uz,s)z — v}

T 8

(2.4)
—2vy by (Vy,r, Vs,s)

B. =
" (ntvety)(nt+p)

where n # —p, vy, = Vg s +n

We can now find ¢, for the vy mode using Eqs. (2.3) and (2.2a) for A, and putting
these results into Eq. (2.1) for ¢,

Cz :Aseiylow {1+ z fn}

nF—p
__ n-—w 2vg by exp[—i(n + p) 6] (2.5)
AV (Vz:s’ Vyss) (n — Vg — Vy) (n + P)

b, = Elr'; / ds a1 (BaBy) exp i ((n — vy) s + 1,6,)]

A similar result can be found for Cy for the v mode

C?J = Bseiyzgy {1 + Zgn}

n#p
g = va—vy  2uy cp expl—i(n — p)by] (2.6)
" Av* (sz'” Vy:s) (n — Vg — Vy) (n - p)

e = -4—;1;/) / ds a1 (BeBy)t exp i (n — v2) By + v262)]

fu

From the above Floquet solutions for (g, ¢ y, one can find By and B the beta functions
of the normal modes. This will be done below. It may be noted that b, and ¢, are just
the integrals involved in computing the stopbands of vy + vy = n sum resonance, but at
certain choices of the v—values on the resonance line. The b,, corresponds to the tune choice
n — vy, vy, and ¢, t0 vz,n — vy. The resonance denominator 1/ (n — v, — vy) shows that
the important n is near v; 4+ vy.

The z motion given by z = 110/ 2 (C s +¢ :) is the z—motion when only the 1 mode is

excited. Similarly, y = ;/ 2 <Cy +¢ ;) is the y motion when only the v, mode is excited.
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Results for 31 and 5>

It was shown by Edwards and Teng? that one can transform from the z,z',y, y' coordi-
nates to a new set of coordinates v, v'u, v’ which are uncoupled. The solutions of equations

of motions for  and v can be written as?

v = +/P1e1 exp (i1) + c.c.

u = +/Pae exp (ith2) + c.c.

(2.7)

p1 and Py are periodic functions and are the beta functions in the presence of linear

coupling. If no solenoids are present, the 1y and 1, are related to Sy, B2 by?
1/B1 = dip1/ds

(2.8)
1/By = dipy/ds
€1 and ey are two constants that turn out to be the emittances of each normal mode.
The z,2',y,y' and the v,v',u,u’ coordinates are related by?
z = Rv (2.9)

where R is a 4 X 4 matrix given by

_( Lcosp Dsingp
E= (—D sinp Icose > (2.10)

D and D are 2 x 2 matrices, and D = D=1, I is the 2 x 2 identity matrix. D and p can

be computed from the one turn transfer matrix.?

Let v,v' be the coordinates that have the tune v; where 1 — v when a3 — 0. Then

if only this mode is present then z is given by
T =cospv (2.11)
From Eq. (2.11) one finds

cos p/Brer exp (ih1) = v/BuCs (2.12)
where (, is given by Eq. (2.5). It follows that

B1=dip/ds

2.13
(o= [Cz|exp () - ( :
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and v can be found from Eq. (2.5).

(s = Asexp (1116;) (1 + ) fn)

nF—p

Co=4s (1 + % > (ot f;i)) exp [z (mez + % Y (fam f;‘))}

np nt—p (2.14)
p=unbet 5 Y (o £)
nF#—p
1 _dp_ n 1 o ;
B ds  vefs * 205 Bz n;p( n—p)(fat+fa)
Using 1/61 — 1/Bs ~ — (1 — Bz) /B2 one finds
ﬂlﬁ Be _ ni-us S ( n— p) Fat £ . (215)
* v nFE—p |
181 :B:B — Vi — Vg br, .

ﬂz B a%n{Av(l/l, VI —DP)N— Vg — Uy exp [—i(n +p)0:] + c.c.} . (2.16)

In a similar way, one also finds

P2~ By { Vg — Uy Cn . }
o exp[—i(n—p)fy]+ecc.p . (217
ﬂy a%n Av* (VZ +p,V2)Tb—1/z — vy P[ Z(’)’I, p) y] c.C ( )

Eq. (2.16) can be written in an integral form by using the result

3 expin (6 —¢)] _ _Wexp.(qcivrv)ew(e-ef) (2.18)

n—vuv sm oy
a,].ln

where the top sign is used for 6 > ¢, and the bottom sign for § < ¢'. Replacing b, using
Eq. (2.5) one finds

B1— Bz _ (Vl - Vz‘) 1
Bz Ay (v1,v1 —p) | 2psinm (vg + vy)

/ds a1 ),By( )) (2.19&)

cos [:!:7r (Vo +vy) — (Vo + 1vy) (ew - 9;:)
vy (6 = 0;) = pbs — 6]
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61 = phase [Av (v1,v1 — p)], and in the % sign, the + sign is used for § > ¢, and the —
sign for 6 < 6.

In a similar way one can find (f2 — By) /By as

/82'“ﬂy=_ (VZ—Vy) 1
By |Av (vg 4 p, 1) | 2psinm (Vg +vy)

X /ds' a1 (") (Bz (s') By (3,))% (2.190)

oS [:|:7r (vo +vy) — (Ve + 1) (ay - 9;/)

63 = phase [Av (ve + p,v2)].

Eq. (2.16) shows that the important harmonics in a; are the harmonics near v; + vy.
However, Eq. (2.16) shows that the dominant harmonic excited in f; due to the a; field

is the 2, harmonic, and in S the 2vy harmonic.

One may note the factor (v1 — v;) /Av. Close to the resonance line v; = v -+ p where
|Av| >> |vy — vy — vp|, then this factor approaches 1. This may be seen from Eq. (2.10)
in Ref. 1 for v; and vy. According to Eq. (2.10), Ref. 1, (v1 — v3) /|Av| — 1 for large Av,
and (v1 — vg) /|Av| ~ 2|Av|/|vy — vy| for small enough Av. Thus (1 — B) /B is linear
in a; for large enough Av, v,, vy close enough to the resonance line, and quadratic in a3
for small enough Av, far enough from the resonance line. For small enough Av where
(B1 — Bz) | Bz becomes quadratic in ag, then Eq. (2.16) is no longer correct because of the

neglect of a_% terms in deriving it.

A result for the rms value of (81 — ;) /Bz due to a random distribution of a; errors
may be obtained from the integral form Eq. (2.19), for the case when |Av| >> |y, —vy—p|.
In this case |11 — v;|/|Av| ~ 1 and

Bi— B\’ . (:81_,31:)2
( 16-’0 )rms—-§ ,3,; k,rms

(ﬂl - ﬂz) _ N1/2 ((ﬂzﬂy)l/z al,rms)k
k,rms

Bz ko 2.8psinm (v + vy)

where the index k indicates the different types of magnets. N} is the number of magnets

(2.20)

of a certain type. Eq. (2.19) also gives the result for ((82 — By) /By),ms- One also sees
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that
((Br — Bz) [ Ba)rms = [/ (2.8sin7 (v + vy))] Avrms (2:21)

where Avyps is the rms value of Awv.

3. Correction of (1,59

The above analytical results for the beta function shifts show that when the higher
order tune shifts 14 — v, and vy — vy are corrected, then the beta function shifts are also
corrected. This can be seen by comparing Eq. (2.5) for the beta function shift with Eq.
(3.2 and 3.3) in Ref. 1, for the higher order tune shift. Both these effects have the same
driving terms b, and ¢p, and for both effects the important by, ¢, are those for which n is

close to v; + vy,

This result has been observed in numerical computations® for the RHIC accelerator,
where an a; correction system has been provided to correct the higher order tune shift. %5
In order to correct the shift in the beta functions it is important that in correcting the
higher order tune shift, that one correct not only the tune splitting |1 — v5| but also the
shift in the average tune (v1 + 12) /2. The harmonic closest to v; 4+ vy do not have much
effect on |v1 — o] but are most important for the average tune (v1 4+ 12) /2, and also for
the beta function shift. One might be able to correct the average tune (v1 + v2) /2 using
the normal tune adjusting quadrupoles instead of the a; correctors, but this would not

help to correct the beta function shift.
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