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Properties of a Symmetric RHIC Insertion'

S.Y. Lee*

Brookhaven National Laboratory

Abstract

This report evaluates the lattice functiops of the symmetric insertion proposed by A.
G. Ruggiero for the RHIC insertion. the crossing geometry, Inner and Outer matching
sections, and chromatic properties are studied in details. Some properties of the miss-
ing dipole dispersion correction scheme are also discussed. We found that the chromatic
properties of the symmetric insertion is not better than the antisymmetric insertion. The
problem is that the four family sextupole correction scheme seems not able to improve the
chromatic distortion. Amnalytic understanding of the failure of the four family sextupole

corrction scheme will be very useful.

 This work is performed under the auspieces of the U.S. Department of Energy.
* Permant Address: Department of Physics, Indiana University, Bloomington, IN 47405.
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I. Introduction

Recently, Ruggiero suggested a symmetric insertion for RHIC, where the quadrupoles
of same polarity are placed symmetrically with respect to the crossing point. Fig. 1 shows
a schematic layout of a RHIC insertion: There are 12 FODO cells in each arc. The insertion
starts with a missing dipole dispersion suppressor consisting of two cells. The insertion
matching section is composed of a FODO cell, a doublet and a triplet to achieve betatron
function matching at the crossing point. The lattice function has a reflection symmetry at
the interaction point (IP). Due to the intrinsic symmetry, the scheme is more attractive
with a vertical layout. However, the horizontal beam separation is relatively small in
comparison with the total circumference, a horizontal layout will still retain reasonable
symmetry. The study is based on the horizontal layout. Due to small symmetry breaking,
the result of the present study shall remain valid for the vertical layout.
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The paper shall address the physics of the beam dynamics issues of the symmetric
insertion. In section 2, I discuss the required proper RHIC crossing geometry, the simplifi-
cation of the matching section from that of Fig. 1. The chromatic properties of the lattice

shall be studied as well. The conclusion will be given in section 3.



IIL. Description of the Symmetric Insertion

2.1 The Crossing Geometry

The crossing geometry for RHIC requires collision of equal and unequal species. To

achieve the beam collision, two dipoles shown in the following configuration are needed.

Let us call these two dipoles as BC1 and BC2 (see Fig.2).
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The field strength of these two dipoles has to obey the following basic equation.

£1(cos o — cos 012) £3(cosf3 —cosfiz)

+ C12 tan 012 + =d;

Lor tan o + — : : ;
sinfy2 —sino sin f,5 — sin 03

where

£y1 = distance between the interaction point and BC1

£; = length of BC1

{12 = centerline distance between the BC1 and BC2
£y = centerline length of BC2

o = the angle between the beam and the centerline line
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6 = the angle of the beam and the centerline at the location between BC1 and BC2
s = the angle of the beam and the centerline at the far end of the BC2
d, = the distance between two beam at the far end of the BC2

Note here that Eq.(1) should be ‘solved for 12 with given a and geometry constraints
Lo1,£1,£12,€2 and dy. The crossing angle between two beams of equal species is then 2a.
The Newton-Raphson’s method can be used easily to solve Eq.(1). A program called
XPARA.FOR to solve Eq.(1) is resides in the RHIC database in BNLDAG. Once 6y, is
obtained, the bending angle of BC1 is given by 61 = 613 — . The radius of curvature for the
BCl is given by p1 = £1/(sinf12 — sina). The path length of the particle is then given by
s1 = p161. The particle path length between BC1 and BC2 is given by s12 = £12/ cos 82.
Similarly, the path length and the bending radius of BC2 can be obtained. Such a procedure
is implanted in the RHIC lattice RHIC91. The procedure is also used in the symmetric
lattice study.

In the following study, we shall used the geometry as defined in Fig.2, where a BC3
is used to bend two beams from 90 cm separation to 37.5 cm separation. We arbitrarily
choose the distance £33 between the far end of BC2 aﬁd the centribend point of BC3 to
be 20 meters, which can accomodate the triplet focusing quadrupole elements. Note that
when the distance £33 is short, say 20 m, the required dipole length of BC2 will also be
short. However the price one pays is that the BC3 aperture requirement will be the same
as that of the large aperture quadrupoles. On the other hand, when £33 is long, the length
of BC2 becomes longer. The trade-off can be discussed in the technical point of view
without much impact on the beam dynamics. The lattice property shall be independent
of the loaction of BC3, as long as there is space available. Therefore we shall choose the

present configuration shown on Fig.2 for the study.

2.2 Dispersion Control in the crossing region

To obtain zero dispersion function, D = D' =0, butside the crossing geometry region,
and D* = 0 at the interaction point(IP), one needs quadrupoles between BC2 and BC3
dipoles. In the appendix, a mininiurﬂ configuration of first order achromat is discussed,

where the symmetric configuration can give dispersion correction outside the BC3.
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In the present configuration, a quadrupole-triplet. can be used to provide dispersion

correction as well as betatron function matching. We shall simplify the configuration
of Fig. 1 to a doublet and a triplet configuration as shown on Fig. 3. The simplified
configuration shall give identical flexibility of the original lattice configuration (see Fig.
1). The quadrupole triplet, Q1, Q2, and Q3 and the quadrupole doublet Q4 and Q5 form

the beam matching section, which adjoins the dispersion suppressor from the arc.
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The dispersion suppressor is compov_se.d of missing dipole cells. Fig.4 shows the dis-

persion suppressor configuration, where the distances between the half dipoles and the
adjacent quadrupoles are adjusted according to the phase advance of the FOD‘O cell in
the arc. Similar to RHIC91, there are 12 FODO cells in each arc. Each FODO cell has
about 90° phase advance. These distances depend weakly on the vertical betatron phase

advance per cell in the arc. They are given by
41 ~ 1.809 — 228.8( — 0.25);  L£gp ~ 1.892 -+ 78.70(p — 0.25)

Alternately, one can also adjust the gradient in achieving the dispersion correction. The
phase advance between the quadrupoles will be different from 90°. Using the spaée adjust-
ment, the operational window for the phase advance in the arc cell is 0.24 < 5’% < 0.254.

This requirement arises from a minimum distance of 1 m between quadrupole and dipole.
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Once thé diséances fdl,:edz are &etefnﬁﬁé&, the change of the machine betation tunes
can be achieved by changing the phase advance per cell pg, py. Thus the dispefsion sup-

pressor will not be perfect. The effect of mismatch in the dispersion function is given by
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Fig. 5, where the D, v, D + 8, D., and the vH with

1
H = ——{D + (¥sDz + f=D;)"}

are ploted as a function of the betatron phase advancé per cell. Note that the;invariant

function H remains small. The dispersion function in the mismatch situation is given by

VB | |
i

2.3 The optimization of §* = 6m lattice
|
The strength of quadrupoles Q1-Q5 and the spacing between these quadrupoles are
optimized to obtain a proper betatron amplitude functions at the crossing point (or the

- interaction point IP).
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A possible solution is shown in Fig.6, where the betatron amplitude functions are
optimized to B; = B; = 6m. Fig. 6 shows a half ipsertion. The full insertion is (i:omposed

of a nearly mirror symmetry with respect to the interaction point (IP). By propierly using
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the inner and outer arcs and inner and outer insertions, the RHIC lattice Witi’l [*=6m

1
can be studied. The tunes of the machine is at @, = 33.7710 and @, = 29.6132 with

natural chromaticity ¢, = —58 and £, = —48. Since the study of the bare ideal%la,ttice is
insensitive to the betatron tune. | ’
I
2.3a Betatron Tuning of the RHIC symmetric Lattice i
A. Minimum Constraint Tuning |
The minimum constraint tuning requires the following symmetric conditions and the

B* condition:
D =oi=ol=0; fi=p=p" (2)
There are five constraints needed in the g* adjustmerﬁ; at the IP. Therefore five parameters

are needed. The phase advance will change during the the 8* tuning procedure Table 1

shows the fitting procedure without cnstraint on the maximum betatron amplitude func-

tion.

Table 1. The maximum betatron amplitude functions vs g*

-}-00—}—--

B*(m) | 2 |25| 3 (35| 4 |45| 5 |55| 6 (65| 7 |75

Bmae=(m) 492 | 389|341 | 305|277 (255|237 (222211198183 (169 1;58

;"‘”(m) 1289|983 | 744 | 584|470 | 395|323 | 271|226 | 205 | 203 | 201 290

It is clear that the maximum betatron amplitude function in this fitting procedure
is not practical. The dynamical aperture will be too small to be acceptable. The final

maximum betatron function at Q3 location will be too large.

B. Maximum betatron function constraint

Alternately, one can try to control 8;*® by requesting an extra condition:

ﬁmam < 1350
y - ﬂ; ‘

where the number 1350 in Eq.(3) is derived from the constraint on the quadrupole: gradient

|
| (3)
l

and the minimum distances between the interaction point and the quadrupole i{oca,tions.

The resulting maximum betatron function is more respectable. However, such a constraint

will contradict the requirement of D* = 0.



Unfortunately, there are more constraints than adjustable parameters. The;

D* is a nonzero small number of a few millimeters, which however create mis
dispersion function at Q2 of the order of 0.8 m at 8* = 2 m instead of the
#4:0.25 m. Fig.7 shows the resulting betatron amplitude function and the contri
natural chromaticity per insertion. Note that in such a fitting procedure, the qu

strength for Q1-Q3 are nearly constant.

resulting
match of
matched
bution of

1adrupole

Fig. 8a shows the integrated quadrupole strength requirements in the betatron tuning.

During the 8* tuning, the phase advance across the insertion is also changing.|

shows the change of the phase advance in the above tuning procedure. To compe
phase advance change in the insertion, the phase advance per cell should also be
accordingly to maintain a constant betatron tunes.
2.3b Chromatic properties of the symmetric insertion lattice

Due to the ransition energy crossing and the intrabeam Coulomb scattering, t
ing momentum spread is 4:0.005. The RHIC lattice requires excellent chromatic p
The variation of the betatron tunes and the betatron amplitude functions are
Fig 9 for 8* = 2m with two family sextupole correction scheme. It worth point

four family sextupole scheme does not help to reduce the chromatic distortion.

2.4 Proper Machine Tuning
It is known that the dynamical aperture becomes more important during

beta squeeze. Therefore, the betatron functions should be properly matched fo

Fig. 8b
nsate the

changed

he result-
roperties.
shown in

out that

the mini-

L the low

beta insertion. When the machine is tuned for the higher-beta value for the injection, the

accelerator should be more tolerable because of smaller betatron amplitude function at the

high beta triplet.

To avoid the structure resonances in an accelerator with six fold symmetry!

|
we have

to choose the betatron tunes away from integers, such as 27, 30, 33, 36. For ‘the symmetric

insertion with 90° phase advance per cell in the arc(Section 2.2), the tunes occur
at Q. = 34.827 and Q, = 28.723. It is possible to change the betatron tunes k
the previous discussions of the dispersion suppressor.

Indeed the symmetric insertion in the RHIC lattice posses systematic hal
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stopbands at.tune values of 27, 30, 33, 36 etc.. Our tunes are sufficiently far away from

these stopbands. The horizontal and vertical betatron tunes are therefore adsjusted to
Q. = 34.827 and @, = 28.823. The SYNCH input and output files for the s’ymmetnc
insertions are available in the BNL cluster vax: $2$DUAT:[RHIC. LEE]RHICSYM OoUT;2
RHICSYM.OUT;3 RHICSYM.DAT;2 RHICSYM.DAT;3. Another file RHICSY:M.DAT;4
RHICSYM.OUT;4 are the lattice properties for Q, = 33.826 and @, = 28.823. Tg'hese files
for the g* =-2m show however large chromatic variation, which is hard to be ‘?corrected
by four family sextupole scheme. The Q2 quadrupole gradient requirement fo’r the file
versions 2 is about 69 Tesla/meter instead of the norminal 57 Tesla/meter. Similarly, the
B* tuning are performed in the file $2§DUAT:[RHIC.LEEJRHICSYMTB.OUT. !

3. Conclusiox;s and Discussions !

We have :studied the beam dynamics properties, tunability, chromatic properl;ies of the
symmetric insertion for RHIC. We found that the combination of the triplet Q1, dZ and Q3
for the dispersion function matching and the optical matching gives larger nagative natural
chromaticity i;han the corresponding antisymmetric lattice. Five adjustable parameters are
not enough degree of freedom to obtain excellent matching, yet the mismatch gis indeed
small. The only problem is that two family sextupole correction scheme can not achieve
good chromatic correction, yet four-family scheme does not work at all. The reason that
four family does not work needs to be understood. It is an interesting problem of its own

right. The lattice tuning has been demonstrated in the files resides in the RHIC directory,
$2§DUAT:[RHIC.LEE]. Further works are needed if the lattice would be chos!en as the

RHIC lattice. The magnet requirement in the symmetric lattice is the same as tl;lat of the
!
antisymmetric lattice except the BC3 dipole which should be a 130 mm coil i.d. similar

to that of large aperture quadrupoles.

Appendix

A. First order achromat for the beam crossing |
To achleve a first order achromat in the beam crossing geometry with dipoles Bl and

B3, which deflect beams onto collision course, it is usually desirable to demand dispersion

functions D, = D, =0 outside the crossing region and D, = 0 at the interaction point.
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The achromatic condition requires a focusing quadrupole to be located between B1 and B3.

Using a thin lense approximation for the dipole and quadrupoles, then the focal

of the quadrupole is given by

lzfo-l-ﬁz-l-fs ¢3. Lo
o la(bo+1£2) 1 l3(bo +£2)

where

£y = the distance between the IP and the thin dipole Bl

f3 = the distance between the thin dipole Bl and the thin quad
£3 = the distance between the thin quad and the thin dipole B3
%1 = the bending angle of the thin dipole B1

¢3 = the bending angle of the thin dipole B3

Since —1 < %, a focusing quadrupolé is needed in the achromatic condition.

parallel beam line with head on collision, we have ¢3 = —¢;

length becomes, ’
1 bt 4
Fo Ll + £2)
The scheme requires symmetric insertion, i.e. the quadrupoles are of the same pc

both side of the interaction point.
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