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1. Introduction

The presence of skew quadrupole fields will linearly couple the z and y motions. The
r and y motion can then be written as the sum of two normal modes! which have the
tunes »1 and v, which are different from the tune, 14,74, in the absence of the skew
quadrupole fields. New beta functions, 8, and B9, can be defined? which are the beta
functions of the normal modes and which are different from 8, and By, the beta functions

of the unperturbed accelerator.

This paper presents analytical perturbation theory results for v1,v5. The results for
v, yz. are first found correct to lowest order in the skew quadrupole fields. The results for
v1,vy are then carried one step further to include the next higher order terms in the skew

quadrupole fields. Results for §1, f2 will be given in a future paper.

These analytical results show that for the higher order shift in tune the important
harmonics of the skew quadrupole field are the harmonics near v, + vy. However the
harmonics closest to v, + vy do not contribute to the higher order tune splitting, |11 — s,
as they shift 11 and v, about equally. This results in a lack of a dominant harmonic for the
higher order contribution of |v; — 3|, which complicates the understanding and correction®

of the higher order contribution to [v1 — 1.

Analytical results are found for the residual tune splitting which is the |v; — 15| that

remains after the driving term of the nearby difference resonance has been corrected.
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2. Lowest Order Solution for the Motion and the Tune
The equations of motion can be written as
d? 2
(dT?; + V:c) Ns = by (8) my
d? 9
(8—92 + Vy) My = by () 1z
b el
T = PN, y=PByny
% = /ds (1/V:cﬂ$) = Yz /s (2.1)
by = /ds (1/vyBy) = Yy /vy
by (5) = V2B (BaBy)"' (a1/p)
by (5) = v2By (BuBy)* (a1/p) .
The skew quadrupolé field is described by a1 (s). On the median plane, the field B; is

given by
B, = —By ap T,

where By is the main dipole field. p is the radius of curvature in the main dipole.

To simplify the solutions of Eq. (2.1), we introduce ¢, and ¢, such that

Ny = C,; + c.c.
(2.2)
My = Cy + c.c.
¢z and ¢ y also satisfy Eq. (2.1). In addition, when ay = 0, the solution for ¢, ¢ y 18
Cp= Aexp (1v6;)
(2.3)

¢y = Bexp (tvy0y)

We are looking for a solution of Eq. (2.1) which is valid when v, v, are close to the coupling
resonance v; — vy = p, p being some integer. The solution for ¢ o5 Cy will be assumed to

have the form

Cp = Az exp (1vg,05) + z Arexp (tvg,0;),
: r#s
Cy = B, exp (tvy,s0;) + z By exp (ivy o 0y) . (2.4)
r#s
Vgs —Vys =D .
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The A, are assumed to be small compared to A,, and the B, small compared to B;. Vg3
vy,s Will give the v—values of the normal modes. The normal mode v—values are v, vy
and we assume v; — v, and vy — v, when a3 — 0, then vg,s — vz for the 11 mode, and
vy,s — vy for the v mode, when a; — 0. The justification for choosing this form for the
solutions, and the choice of the v, and the v, , present will come out of the solution one

finds using this form.
The vg, and vy, for r # s will be seen to have the form

Vgyr =Vgs+ N
(2.5)
Vyr = Vy,s +m
where n, m are integers. This could be assumed from the beginning. An alternative
procedure is not to restrict »;, and 1., and to make the exp (ivg,+05) an orthogonal set
by choosing v » = (27/T) q, ¢ is some integer and T is some very large angle, and treating
vy,r similarly. Putting Eq. (2.4) into Eq. (2.1) and using the orthogonal property, one
finds
(z/ﬁ,r - uﬁ) A = =2u, Z by (Vz,ry vyr) Br

I'd

(VZ,T — 1/32,) B, = -2y, Z by (vy,r, Vz,,.l) A
T (2.6)

1 1 .
be (Vz,“ Vy,T') = ﬁ-}/o dfs By (ﬂzﬂy)z (al/P) e€xp [Z (_Vx,rea: + Vy,r'ey)] )

1 (T 1 )
by (vy.r, Var) = ﬁ/ﬂ dbyBy (BsBy)? (a1/p)exp [i (—vy,rby + Varis)] -

In Eq. (2.6) we assume B, << B;, A, << A, for r # s and find the first order results

(Vi’s — Z/:%) As = —2v5b; (Vg,5,vy,5) Bs
(VS,S - I/Z) BS = _2l/yby (Vy,s’ V:L‘,S) A3 (2 7)
_ (Vaz:,r - V:%) Ar = —2u5b; (Va:,ra Vy,s) B;

. (V;’T — 1/3) By = —2uyby (vy,r,Vs,s) As

The first two equations in Eq. (2.7) are homogeneous equations for A; and B;, and

the v—values v; 4,1y, are determined by requiring the matrix of the coefficients of As, By
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to vanish. This gives

(Vg,s — yﬁ) (1/3,3 — 1/5) = dvavy|Av (Vg,5, Vy ) |2

1 [ 1 . .

Av (Vz,Sa Vy,S) = in / ds (ﬁza ﬁy)7 (al/P) €xp [Z ("Vz,sew + Vy,sgy)] (2'8)
0

Vgg —Vys=DpP

Eq. (2.8) can be simplified by assuming that v;, 1, are close to the resonance line v s —

vys =pand vy s ~ vy and vy s ~ vy. Keeping terms of lowest order only, one gets

(Va,s — Va) (Vy,s — vy) = |Av (v, vy,5) 12 (2.9)
Vgs —Vys=DpP

Eq. (2.9) has two solutions for v, 4, vy ;. We denote by v the value of v, 4 that goes to v,

when a3 — 0, and v, the value of vy, that goes to vy when a3 — 0. The solutions can be

1
2 7
v =7y + {(5—-—;”——3> +|A1/('17$,'17y)|2} ,

1
2 2
) Vg — Uy —

U = (Vo +vy+p) /2,7y = (vy + vz — p) /2
For the £, the + sign is used when v, > vy + p for v; and the opposite sign for v5. In

written as

(2.10)

AV (Vz,5,Vy,s), Vz,s has been replaced by 7, and Vy,s by Uy, which introduces a higher order

error that can be neglected.
From Eq. (2.10) one finds

2 3
|I/1 — Uy —pl =2 { (Vx—_;/y_'_'_g) + IAV (_77107171/) lz} (2,]_1)

Vi tve =vg 1y
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3. Higher Order Shifts in v1 and vy

To find a higher order result for »; and v2, one has to find higher order equations for
A,, B, by putting the lower order solution for A,,B,,r # s, given by Eq. (2.7) into Eq.
(2.6).

Eq. (2.7) for Ay, Br can be somewhat simplified by assuming that v;, v, are close to
the resonance line vy 5 = vy s 4 p so that one can assume that v, ; ~ v; and vy ~ vy and

then

_ =2wgby (Vs vys)
" (ntvs+wy)(n-p)
_ —2uyby (vyry Vays)
T (n+ vty (ntp)

where vgr = vy s +n and vy, = vz + 1.

Bs,naép

T

(3.1)

Ags,n # —p

r

Putting these results for A,, B, in Eq. (2.6) one finds the improved equations for

A’3,B3
(V2 Vg - Az) As == _2Vzba: (Va:,éa Vy,s) BS)

z,8

) ) (3.2)
(Vy,s —Vy — Ay) B, = —2uyby (vy,s, Va,s) As -
A; = 4dv,v, Z |C"|2
r — ?
2 e~ ) (n D)
A =4y, v Z lbnlz
v 2 ) )
1 1 .
b = g [ 45 a1 (B:8)F exp i (=) 6. + 148,
1 1 )
Cn = %/ds a1 (Bzfy)? exp[i ((n — vg) Oy + v50;)]
Eq. (3.2) gives the equation for v s and vy
(1/3,3 — 1/2 — Az) (1/3,8 —_ vZ — Ay) = 4v vy |Av (Vg s, Vy_,s) IZ (3.3)

Vs =Vys+p

Eq. (3.3) was obtained by using the result for A,, B, which is first order in a;. By
iterating Eq. (2.6) one can find a result for A,, B, to second order in a; which will change
Eq. (3.3) by replacing Av by

Av — Av + Av® (3.4)
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where Av(®) is third order in a;. By going one step further and iterating Eq. (2.6) to find
results for A,, B, to third order in a; will change Eq. (3.3) by replacing Az, Ay by

Ay — Ay + AP

(3.5)
Ay — Ay + A

where AS"‘), Agg are fourth order in a;. One can write down all these higher order terms.
However, the expressioﬁ Eq. (3.3) keeping terms up to second order in a; is probably

sufficient here.

One should also note that in Eq. (3.3) v; ¢ and vy s also occur implicitly in Av (v;, vy 4)
which complicates the solution of Eq. (3.3) for v, and v, Solutions can be found

depending on the size of Av and the distance from the resonance line Vg = Vy -+ P.

One interesting case is when a 2 family a; correction system is used to make Av = 0,
and when vg,vy are very close to the resonance line v; — vy = p, so that v; = v; and
vy = vy with an error that is second order in a;. Very close to the resonance line, so that
in Bq. (2.10) (vz — vy — p)* /4 can be neglected compared to |Av|?, then the above can be
achieved by making Av (D‘z,iy) = 0 as shown in Eq. (2.10).

This corresponds roughly to the situation when a 2 family a; correction is used to
cancel the driving term of the nearby difference resonance, v, — vy = p. In this situation,
one can find the shift in.z/z,s and v, ; due to the second order A;, A,. Then in Eq. (3.3)
Av (vz,s,vy,5) is not zero but differs from zero by terms of order af, and thus |Av|? is of
order aS. For this result, the previous observation, that higher order terms can only change
the Av term by Av(®), a term of third order, is significant. As |Av|? is of order a$, one

can treat it as being zero, and Eq. (3.3) becomes

(Vo= s = ) (v — vy = By) =0, (3.6)

which gives the normal modes

1
v = v+ —4A;
2Vg

1
—A, .
2vy y

Thus for the case when Av = 0 and close to the resonance line, there is a second order

in ay shift in the u—valués given by Az/2v; and Ay/2vy. Eq. (3.2) for A; and A, show

(3.7)
vy = Uy +
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that the largest second order v—shifts will come from harmonics in a; close to vy + vy.
The driving terms b, and ¢, for n closest to v; + v, contribute most to the second order

v—shifts.

One may also notice that by, cs, as given by Eq. (3.2), are just the usual stop-band
results for the v; + vy = n resonance but evaluated at particular points on the resonance
line. b, corresponds to the point » — vy, v, and ¢, to the point v;,n — v;. For the n—values
corresponding to resonance lines closest to the unperturbed vz, Vy, these points on the
resonance are not far apart and the b, and c, are about equal. Thus for the v; + vy =n
lines closest to the unperturbed v;,vy, v1 and vy are shifted about equally and these by,
¢ do not contribute much to the residual |v; — v2|. This lack of a dominant harmonic for

the residual |y — v2| makes the correction of the residual |v; — 15| more difficult.

Eq. (3.7) has been checked* by comparing these results with numerical computations
of v1,v5. For the case of v; = vy resonance line, p = 0, Eq. (3.3) may be solved for v,

vy,s and written as

s

12, ~2 ’73 ~§ i 2
m=3 (72 +7)) + + dvgvy|Av (v1,11) |

(3.8)

=

1 Dy — V2 2
1/2=—2-(17,2;+173)I{: <z2 y) +41/,;1/y|A1/(1/2,1/2)|2

~2 2 ~2 ~2
Vg =+ 0g, Uy=1,+14y

v1 is the mode that goes to v; when a3 — 0, and vy goes to vy. For the = sign, the + sign
is used when v; > vy for v; and the opposite sign for v5. One can derive Eq. (3.7) from

Eq. (3.8) when Av(7,7) =0, 7 = % (v, + 1), and close to the resonance line v, = Vy.



8 v-Shifts when Vg, Vy are far from the vy — vy = p Resonance

4. v—Shifts when vy, vy are far from the v; — vy = p Resonance

In the derivation of the previous results, vz, vy were assumed to be close to the v;—vy =
p resonance line. When vy, Vy are far from the resonance line the results are less interesting
as the v—shifts are of higher order and smaller. However, it is interesting to see how the

results for the v shifts in these two cases will fit together.

Up to Eq. (2.6), the previous derivation will hold when v, vy are far from the v, —vy =
p resonance line. Let us first consider the v; mode where 11 — v; when a; — 0. In this

case, it is assumed that not only the A, are small compared to A,, but also B, is small.

To lowest order, Eq. (2.7) become
(Vg,s — 1/,3) A;=0
(v - Vaz) Ar=0 (4.1)
_ (Vz,r - z/y) B, = —2uyby (vyr, Vs,s) As
Vyr =Vgs+n.
Thus to lowest order, v; = v;, and the tune shift is a higher order effect in a3. To find the
second order shift in v, the result for B, in Eq. (4.1) is put into Eq. (2.6) and the A,

equation becomes

(1/2 1/3) Ay = Ay A,

z,8
A, =4dv.v Z ICn|2 :
T = zVy _ Va:)z _ V;IIZ (42(1)

Cp = ﬁ/ds ay (ﬂzﬂy)% exp [t ((n — vy) Oy + v50;)] .

This gives the shift in v,
B=vl4+A; . (4.2b)

The A, is similar to the A, in Eq. (3.2) except that we now do not assume that
vy — vy = p and the sum over n is over all n. This result, Eq. (4.2b), can be obtained from

Eq. (3.3) if in Eq. (3.3) we assume that

(Vz,s - ”.3 — Ay) ((Vz -p)* - Vg) )

and not replace vz — 1 by p in Eq. (3.2) for A,.
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In the same way one finds for the v, mode,

b= 5 [ 5 a1 (BB expli((n = 1) 6 + 40,
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