¢ Brookhaven

National Laboratory
BNL-102160-2014-TECH
RHIC/AP/51;BNL-102160-2013-IR

Application of a Differential Algebra approach to a RHIC Helical Dipole

N. Malitsky

December 1994

Collider Accelerator Department
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

RHIC/AP/51

Application of a adifferential algebra approach to
a RHIC helical dipole.

Nikolay Malitsky

December 8, 1994

1 Introduction

This paper describes an object-oriented method, that enables one to obtain Tay-
lor maps for arbitrary optical elements and include them in different accelerator
algorithms. The approach is based on the differential algebraic (DA) technique,
which in the accelerator physics was suggested by Martin Berz and implemented
by him in the program COSY INFINITY[1]. In order to make an efficient use
of DA operations, COSY INFINITY includes a special DA precompiler, which
transforms arithmetic operations containing DA variables into a sequence of
calls to FORTRAN subroutines. In ZLIB++[2], the object-oriented version of
the numerical library for differential algebra, truncated power series and Tay-
lor maps are considered as corresponding C++ classes ZSeries and ZMap
with overloaded assignment, additive and multiplicative operators. These ob-
jects were implemented directly in the numerical integrator instead of DOUBLE
variables and used to derive a Taylor map for the RHIC helical dipole.

2 DA Integrator

The particle motion in the magnetic field is described by the following set of
equations, written in terms of the MAD coordinates:

d__ (1+hz)(

Pz
P

1(2) - [2«(2)

d (1+‘h:c)(v
i(2) - [p; (,,oc)
ds~ (vo/c) (v/c)

4 (AR _
ds \poc/ ~—

s 2 AE Pzva _ (Pyyg
o \[ﬂ(—)+()-(;,;) (po)

Po

Po

)
|
) 1)
|

where

A class template RKIntegrator was developed to perform the pumerical inte-
gration through arbitrary magnetic field simultaneously for real and DA vari-
ables. Instances of template class RKIntegrator are initialized by some exter-
nal function elementField, which will be used by the Runge-Kutta integrator
to calculate the specific magnetic field:

RKIntegrator< ZSeries, ZMap >
element D AIntegrator(element Field, element Parameters, step);

These functions can be collected in one library and shared by different users. In
accordance with the basic principles of the object-oriented platform for accel-
erator codes PAC+-+[3] the integration is considered as an action of one object
on another and defined as a multiplicative operator:

Mapm; m=1;
m = element DAIntegrator * m;

3 Input language

The implementation of the DA integrator completes the object-oriented ap-
proach for the description of accelerator structure[3]. All lattice elements are

considered as instances of a C++ class Element and divided in three categories:
MAD, COSY and WILD.

¢ MAD elements form the majority of all elements and can be defined as
the superposition of standard MAD parameters:

Element hb = length*L + 2+ PI/N*ANGLE;

where element hb is an object with length equal to length m and bend
angle 2% PI/N rad.

e COSY clements include "nonstandard” parameters, but can be defined
by a Taylor map (e.g. helical dipole):

RKIntegrator< ZSeries, ZMap >
element D AIntegrator(element Field, element Parameters, step);
Element heliz = heliz DAlIntegrator x map;

The inclusion of the DA integrator in the object-oriented input language
enables one to inherit the flexibility of COSY INFINITY. On the other
hand, we keep the clarity of lattice description, because the accelerator or
transfer line usually contains only a few "nonstandard” elements.

e WILD eclements. This category contains elements, which cannot be com-
pletely described by the Taylor map (such as internal target, splitter mag-
net etc.) At the optical design level they must be replaced by elements of
1st or 2nd categories (e.g. target as drift):

lengthO fTarget * L;
... xtarget * ...;

Element target
Teapot ring

where the class Teapot is the object-oriented version of the program
TEAPOT[4]. The particle-target interactions may be described by some
external class Target and included in the general numerical simulation
with the overloaded multiplicative operator T'arget :: operator*(Particle& particle):

Target tooth(toothParameters);

ring.track(1l, numberO fTarget — 1, particle);

particle = tooth * particle;

ring.track(numberO fTarget + 1, numberO f Last Element, particle);

This approach enables one also to use the different object-oriented HEP
libraries (as GIZMO) or test the new complicated algorithms without
changing of the object-oriented accelerator programs.

4 RHIC helical dipole

The field B in the current-free region of a helical magnet can be expressed in
Cartesian coordinate system as:

B, = Brcos(¢) — Bysin(4)

B, = Brsin(¢)+ Bycos(¢) (2)
B, = B,
where[5]
o]
B, = -k 2 mlI,, (mkr)(amcos(mb) + bmsin(mb))
=1
o’;’l
B, = &k Z m Iy (mkr)(bm cos(mb) — amsin(mf))
m=1
1
B¢ = —HBz

and 0 = ¢—(kz-+¢o), z =rcos(d), y = rsin(¢). Unfortunately, these equations
cannot be expressed directly in DA variables, because the inversion and square
root functions for a DA variable r = (ro,71,72,...,TN) 18 defined as truncated
power series[6]:

V (7’0,7‘1,7’2, .--,T'N)

ceey
0 To To

= 1-3-..2i=3) Ttz TNy

= \/;‘E'E(—l)i—m(o,— ceny

ro’ ro’ | To

and depends on ro. The expressions r2n, rhcos(ng), and r"sin(ng) can be
presented as simple functions of x and y variables. To extract them the equations
(2) were transformed and written in the following form:

B, = B,-:B - B¢y
RS —
B, = Ery + B¢17
> —-——(mkfz)”_l ™ bmeos(p — mb) + amsin(p —md)} (3)

+k Z %—k%z:rm{bmcos(mﬂ) — amsin(mb)}

where

By = -8 (km/2)"*(], _l(mkr)-%”m(mkr))
m=1
™ {amcos(mb) + by, sin(mb)}
B, = _% 3 (km/2)™ 3 T, (mkr)
m=1

™ {bmcos(mb) — ay, sin(mb)}

and

2/92)2(-1)
In(2) = Z iz'/(r)n +)!

The two sets of equations (2) and (3) were implemented in C++ and tested
together in DOUBLE variables. When a perfect agreement between different
functions was achieved, the last one was accepted as the template function
heliz Field and located in the file Field.hh. The nominal design for the RHIC
helical snake[7] consists of 4 helical dipoles of 2.4 m length, the By field for
the outer modules is 1.458 T and for the inner ones is 4 T. The Taylor map
of one helical dipole was obtained by the short program presented in Figure 1.
As a first step, only the influence of the main harmonic b, was considered. Re-
sults obtained with this approach agree with the first and second order transfer
matrices derived by the SNIG program(8] via numerical integration of particle
trajectories (see Figure 2). The input language described in Section 3 provides
one with several methods to include the helical snake in the Teapot tracking
procedure. The easiest one is presented in Figure 3.

5 Acknowledgment

I would like to thank R.Talman, S.Peggs, F.Pilat, and V.Ptitsin for many useful
discussions.

References

[1] M. Berz, ”User’s Guide and Reference Manual to COSY INFINITY v.6”.
[2] N. Malitsky, A. Reshetov, and Y. Yan, SSCL-659, 1994.

[3] N. Malitsky, A. Reshetov, G. Bourianoff, SSCL-675, 1994.

[4] L. Schachinger and R. Talman, Particle Accelerator,22,35(1987).

[5] V. Ptitsin, Note RHIC/AP/41(oct. 10,1994)

[6] M. Berz, Particle Accelerators,1989,Vol.24,pp.109-124
[7] A. Luccio, Presented at the Spin Accelerator Meeting, BNL, October 6,1994.

[8] A. Luccio, Private communication.

#include “RKIntegrator/RKIntegrator.hh”
#include “Field/Field.hh”

main()

{

BEAM DIM =4;
ZLIB_ORDER =2;

// Helix Parameters (main field b1)

double gamma =27;

double BR = gamma*PROTON/0.3;
double length =24;

double k = 2*PI/length;

double BO = 1.458;

double helixParameters[7];

helixParameters{0] = 6.; -
helixParameters[1] = length;
helixParameters[2] = k;
helixParameters[3] = 0.0;
helixParameters{4] = 0.0;
helixParameters[5] = -2.¥BO/BR/k;
helixParameters[6] = 0.0;

// Initialization

ZMapz; z=1,

/[1/m

{/m
// /m
/T

// number of parameters = 2*order +4
// Length

Ik

// phase

// gap

// bl =-2¥BO/BR/k

/lal

RKIntegrator<ZSeries, ZMap> helix(helixField, helixParameters, 0.01);

// DA Runge-Kutta integrator
cout << helix*z;

return(1);

}

Figure 1. Example of main program for DA integration through RHIC helical

dipole.

a. PAC++. RKIntegrator.
ZMap : order = 2 dimension = 4

1 4.867687¢-06 2.028584e-06 - 1.582709¢-02 4.249226e-06
2 9.995705¢-01 - 1.791320e-04 2.390723e-04 - 4.903340e-08
3 2.399748¢+00 9.999996e-01 4.919799¢-04 3.077267e-04
4 - 3.075360¢-04 - 8.548339¢-08 9.995705¢-01 - 5.369104e-04
5 - 8.203138¢-04 - 2.394684e-04 2.399774¢+00 9.991406e-01
6 3.290828¢-05 1.680853¢-05 -4.068043¢-02 1.093308e-05
7 2.075623e-02 2.040447e-05 - 1.031094¢-06 8.135623¢-02
8 2.713307e-02 2.183969e-05 1.205582¢-05 5.031948e-06
9 5.137259-05 - 2.707133e-02 - 2.071993¢-02 5.593873e-06
10 1.246527¢-02 - 1.035920e-02 - 3.952618e-03 9.765436e-02
11 1.080032e-06 - 2.709228¢-02 2.071587e-02 - 3.707718e-05
12 - 7.871256¢-03 - 6.503091¢-02 - 2.488749¢-02 - 2.078928¢-02
13 1.899624¢-05 9.459601e-06 - 1.354658¢-02 2.791449¢-05
14 2.076924¢-02 2.964764e-05 5.850425¢-05 2.721552¢-02
15 3.736429¢-02 1.040335¢-02 - 1.181383e-02 3.265235¢-02

b. SNIG program.

COOCOCOCOmRm=NOOO=CO
OO O M MRNODO=ROOO=OO
OmNOROOROOO=mOCCO
N =R OMmOO~=OOOROOOCO

MATRIX

[x] [4.8695E-03] [0.999 2.400 -3.0760E-04 -82046E-04] [xo0]
[ul [2.0305E-03] [-1.7920E-04 1.000 -1.7083E-07 23977E-041 [uo]
[y] [-15.83] [2.3913E-04 4.9206E-0 0.9996 2.400 1 [yol
[v] [4.2507E-03] [-24291E-08 3.0787E-04 -5.3702E-04 0.9991 1 1ivo]

3.209E-08 2.076E-05 2.714E-05 5.565E-08 1.242E-05 4.941E-09 -7.758E-06 1.434E-08 2.076E-05 3.722E-05
1.838E-08 2.961E-08 2.671E-08 -2.707E-05 -1.035E-05 -2.708E-05 -6.498E-05 1.486E-08 6.500E-08 1.046E-05
-4.069E-05 -2.901E-09 1.413E-08 -2.059E-05 ~4.153E-06 2.074E-05 -2.465E-05 -1.355E-05 -9.675E-08 -1.291E-05
8.681E-09 8.135E-05 1.931E-09 -7.650E-09 9.765E-05 -4.656E-08 -2.075E-05 2.549E-08 2.721E-05 3.261E-05

x0**2 xo*uo xo*yo xo*vo uo**2 uo*yo uo*vo yo**2 yo*vo vo*¥2

Figure 2. Second order Taylor map for the helical dipole at y = 27.
B0=1458T,L=24m.

// Helical snake + Teapot u'ackmg

#include "Teapot/Teapot.hh"
#include "WildElements/HelicalSnake.hh"

main(){

inti, j, turn;
int numberParticles = 100;
int numberTurns = 100;

// Global
ENERGY =100; //GeV
// Particle

Particle** p; .
p = new Particle*[numberTurns+1];
for(i=0; i <= numberTums; i++)

pli] = new Particle[numberParticles+1];

for(i=1; i <= numberParticles; i++)
for(j=1; j <= TEAPOT_DIM; j++)
plOIGIGH] = ..

// Teapot
Teapot rhic("fort.7");

int nhell = rhic.number("helMarker1");
int nhel2 = rhic.number("helMarker2");
int nelem = rhic.numberElements();

// Tracking

for(turn=1; turn <= numberTurns; turn++)
for(i=1; i <= numberParticles; i++){
pliurn][i] = rhic.track(1, nhell-1, pftum-1}{il);
plturn][i] = helicalSnake*p[turn][il;
plturn][i] = rhic.track(nhel2+1, nelem, p[turn]{i]);
}

Figure 3. Example of the inclusion of the helical snake in Teapot tracking .

