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Vacuum Requirements for RHIC

M.J. Rhoades—-Brown and M. Harrison

" Introduction

In this note the lifetime due to inelastic scattering of beam and residual gas ions is
calculated in units of pressure (Torr). In addition, the transverse emittance growth due
to elastic scattering is expressed in units of pressure. The definition of inelastic scattering
includes both capture of an electron from a residual gas ion and central nuclear collisions
between beam ion and gas atom. Emittance growth via elastic scattering is a simple
consequence of multiple Coulomb scattering,.

It is important to note that in an accelerator only the density of residual gas atoms
is relevant to the machine operation. The measure of this density is the vacuum gauge,
where this gauge is calibrated in pressure units at some known temperature Tg. The vac-
uum unit or pressure is of course temperature dependent, and thus when quoting vacuum
requirements for RHIC it is vital to state the temperature at which the pressure is com-
puted. It might be necessary to scale any computed gas density to the pressure appropriate
for the measurement with the vacuum gauge. Typically, the vacuum gauge operates at
room temperature ~ 300°K. An explanation on how to rescale pressure as a function of
temperature is given in the text.

This note assumes the residual gas density in the so—called warm section (300°K) of
RHIC to be composed of 90% Hj, 5% CHy4 and 5% CO. The gas in the cold section (5°K)

is assumed to be 100% He. The beam ions are taken to be 197 Ay 79+,

Variation of Pressure with Temperature

Vacuum requirements in an accelerator can be confusing, for the units of pressure vary
with temperature. Furthermore, most vacuum gauges respond to a density of gas pg,
where this density is expressed in pressure units Pg at temperature Tg. Of course, both

pc and Tg can be different from the beam pipe values. In this note, Tw, pw and Pw



correspond to thermodynamic variables in the warm section of RHIC, and T, p., P, to
the cold section.

The only quantity of interest to machine performance is the density of gas ions inside
the beam pipe. From the ideal gas law PV = RT, the equivalent pressure P’ that this

density produces at temperature T is simply

P'=(T'/T)P 1

However, if the gauge responds to a density pg, and is calibrated at temperature Tg, we
need Knudsens relations for gas flow between two distinct volumes connected by a small

tube, i.e.,

P =(T/T¢)* Pg

p=Te/T) " pa . 2

Equating T’ with Tg, these relations give,

P =Tg/T)*Py . 3

As a striking example, if the residual gas density is at 5°K, and the vacuum gauge is
at room temperature (300°K), the equivalent pressure at 300°K is scaled by a factor of
300/5 over the pressure at 5°K. Moreover, this pressure is a factor of 7.74 higher than the
pressure reading on the gauge.

Inelastic Scattering Lifetimes

The inelastic lifetime 77 due to both electron capture and nuclear scattering is given

by

— = ¢p(oc+oN) 4
TI

where p is the residual gas density (atoms em™3), ¢ is the velocity of light, o is the capture

cross section and oy is the nuclear collision cross section. Inserting Avogadro’s number,



Na = 6.023 x 10% molecules/mole, at a standard volume of 22.414 litres/moles, and a

standard temperature T, of 273.15°K gives in pressure units of Torr,

— = 3.82x10% P,(Torr) (oc (cmz) + oN (cmz)) hours™?

(T, = 273.15°K)

= 3.48 x 10** Pg (Torr) (o¢ (cm?) + on (em?)) hours™ 5

(WarmSection)

= 2.69 x 10%! Pg (Torr) (ac (cmz) + oN (cmz)) hours™!

(ColdSection)

Consider first the warm section of RHIC. The capture cross section o¢ is composed
of three distinct mechanisms. Radiative electron capture is simply the inverse of the
photoelectric effect. If Zp and Zp are the projectile and target atomic numbers orgc

scales as

orgc = a Zp Zr/y 6

where v is the beam Lorentz parameter and a is a constant that depends on the quantum
dynamics of the capture process. Non-radiative electron capture, i.e., straight transfer

without photon emission scales as

oNREC = bZp Z3/v 7

where b is to be determined from quantum mechanical considerations.
In heavy ion colliders, the possibility of creating an electron—positron pair and sub-
sequently capturing the electron results in the third capture mechanism called vacuum

capture. This mechanism scales as

ovac = dZp Z] In(v/7) 8



where d and +, are constants to be determined from quantum mechanical calculations.

In Table I the constants a, b, d, v, are tabulated for H, C, O target atoms! and a

197 44+ projectile.

TABLE 1
Residual Gas a(cm?) b(cm?) d(cm?) Yo
Atom
H 7.4%x1073% 8.4x 10~% 6.2 x 10737 7.91
C 7.4x1073% 4.19%x 10~* 6.2 x 10737 7.91
0 7.4%x1073% 4.60 x 1074 6.2 x 10737 7.91

Table I. Constants a, b, d, ¥, for 197 Au™7 projectile.

Using Table I, equations (4) — (5), and the appropriate gas composition percentages,
the effective capture cross section is o¢ = 2.5 X 1072°cm? at v = 30 and o¢ = 1.1 x
10~25¢m? at v = 100.

For central nuclear collisions, a simple energy independent “billiard ball” model is
assumed.

In this model oy = ﬂR%v where Ry = 1.2 (A},/:; + A;/ 3) fm.

With our gas composition for the warm section, it is calculated that oy = 4.65 X
10~24cm?.

Comparing oy with o¢, it can be seen that the energy independent central nuclear

collisions dominate over capture at RHIC energies. This is in stark contrast to Booster or

AGS energies. From Eq. (2), we find for the warm section of RHIC,

71 =6.04 x 1072 [Py (pTorr)]™ hours (Tw = 300°K), 9

where we assume Tg = Tw.

The lifetime quoted in Eq. (9) is for a gas density averaged around the whole ring.
However, allowing for a 12 x 20 m warm section. for the septum magnet at injection, and
12 x 43 m for the insertion warm sections gives the warm fraction of RHIC circumference

as .2. Equation (9) is then modified to read,



1 = .3 [Py (uTorr)]™! hours (Tw = 300°K) . 10

Hence for a pressure of 5 x 10710 Torr, we expect a beam lifetime of 600 hours in the
warm section.

Consider now the cold section of RHIC. With 100% He gas we find oy = 2.48 x 10~ 24cm?.
Taking into account the fraction of RHIC that is cold (.8), and ignoring contributions from
capture we find

= 242 x 1073 [P,(uTorr)]™ hours (T, = 5°K)
= 1.87 x 1072 [Pg(pTorr)]™! hours (Tg = 300°K) H
Hence for a pressure of 10~!! Torr, we expect a beam lifetime of 242 hours in the cold
section.

Consider stated vacuum requirements in the LHC as an example. With their value for
p— Hj scattering of oy = 10~°m? in Eq. (2), we get P, = 1.091 x 10~7 Torr at 273.15°K.
Using Eq. (1) to scale pressure with temperature gives their stated value of 1.2 x 10~7
Torr at 293°K.

Emittance Growth Due to Elastic Scattering

Multiple elastic Coulomb scattering will cause the transverse emittance of the beam

to grow.

The rate of this growth is derived in Appendix A via the Fokker—Planck diffusion

equation. The growth rate of the normalized emittance ey is

dey B
7 = —5—93"“ x F 12
where
F =123 0uD, (S5 ) e 8"0hms /40" 13
2 - n n A’Zl bl

c L [ ()7, Ouv?) d2
n—-m/‘: fo(2) Jo (Aav/Z) ; 14



An
D, = / dy v*J,(y) 15
4]

An is the root of Bessel function J,(\,;) = 0, and a is now defined to be the RHIC aperture.
As explained in Appendix A, for an aperture that is large relative to a Gaussian beam

parameter o, F~ 1.0. Hence

den 18
o =g Ome 10
where f3 is the average RHIC beta function, and é)zms is given by

2
or - (18MeV Zp ¢ 17
rms mpc?y A%, Lrap '’

where m,, is the proton mass, and Lgap is the radiation length? defined by,

1 -“A 2 2
=2a—= Z7 r In(Rr/R 18
Lpap Ar T e p In(Rr/Ry)

where a = 1/137, 7, = 2.82 x 10~ 3cm, and Ry is the Thomas-Fermi screening radius,

Ry =1.4(he) /ch;/?'mec2 (em) . 19

Expressing p in terms of pressure, the effective radiation length L%;E]‘) for our warm

section gas composition is calculated to be

1

EFF
L RAD

Hence for 137 Au™* ions it is found

= 107°Py (Torr)em™  (Tw = 300°K) 20

deN _ 1195

Py (uTorr)
———1INmn
dt

mrad hour™!

(Tw = 300°K) 21

Allowing for the fraction of the ring taken up by the warm section gives



GV _ o995

Pg (pTorr) m
dt

mrad hour™! 22
(Tg = 300°K)
Hence for Au beams at 4 = 100, the normalized emittance grows at a rate of 1.13 x 10~*

mm mrad hour™! for a pressure of 5 x 1071 Torr in the warm section.

For the cold section of RHIC,

—ElTF— = 2.13 x 10~8P, (Torr)cm™! (T, = 5°K) 23
LRAD
Hence for 197 Au™" ions,
P, (uT
dey = 240 x 10° —cg—t-—orzzmm mrad hour™! 24
dt Y
(T, = 5°K)
T
= 311 x 10° Eg%ﬂrlm mrad hour™! 25
(Te = 300°K)

Hence for Au beams of v = 100, the normalized emittance grows at a rate of 2.4 x 104
mm mrad hour™? for a pressure of 107! Torr in the cold section.
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Appendix A
Consider emittance growth via the Fokker-Planck equation,

Of _p 0 (y 0F
E_DaW(WE—W—) 41

where f is the time-dependent distribution of beam particles in the transverse plane. If 7
= Dt/W, and Z = W/W, where D is the diffusion constant and W, = a? /B, where a is
the aperture and 8 the beta function,

of _ 0 (,9f
or 0z (Z az) A2

However if f(Z, 7 = 0) = f,(Z) then the standard solution to Eq.(A.1) is

f(Z,7) = Z Cndo (/\n\/z) 6—’\%1-/4 )

where

Ca=— (i,.)2 / L, (\vZ)dz A3

and Jo(As) =0

We assume a Gaussian for £,(Z),

1 - 1205 g do = a22 e—82[203 iz
2no; 20}

fodZ =

A4

(r = av2)

and are interested in how o changes in time. Looking at the second moment I(7 = 0) of

f,(Z) gives

I(r =0)=202—20% e *[a+1] Ab



where o = a?/20%. Hence as @ — oo I(r=0)= 202 as required. Similarly, looking at the

second moment I(7) of f(Z,7) gives,

I(1) =202G () A6
where
1 2
G(r) = 2azn: C’,,D,,:\-;{ e~An T/4 , AT
and
An
D, = dy v* 7, (y) . A8

o

These equations show how the Gaussian spreads as a function of the universal param-
eter 7, where 7 is proportional to the diffusion constant.
Let us rewrite Egs. (A.6) — (A.8) for emittance growth in real time. The diffusion

constant for our problem is

D =peé?_ . : A9
hence
a? 1
T= — —— T A.10
B ez,

Thus, from Eq. (A.6)

dI _, , dr dG(r)

dt  7° dt dr Al
ﬂ2égms -1 —A2p%0%,,, t/4a®
— 5 Z CnDn v e \n rms A12
n

Using o (t) = v/enB/v and I = 20%(t) gives



10

den _ 7BOtms § 1 1Y) (3252020, /4a?
= =" 2’;20,,1),. )¢ A13

Evaluating the sum over n for large a gives a value equal to approximately unity (1.0019
for @ = 10 and 1.0741 for a = 30) when « is large (>5).

Hence for large aperture,

deN ~ 7ﬂ®3ms

5 = A4




