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First Turn Around Strategy for RHIC

J. Milutinovic & A. G. Ruggiero

We present a strategy for achieving the so—called first turn around in RHIC. The
strategy is based on the same method we had proposed to correct a distorted closed orbit
in RHIC, i.e. on a generalization of the local three-bump method.! We found out that
the method is very effective in passing the beam through a non-ideal, insufficiently known,
machine. We tested the software on ten different Gaussian distributions of dominant orbit
distorting lattice imperfections, i.e. error in the dipole integrated strength A (B{)/BY,
axial roll of the dipole and lateral displacements of the quadrupole in each plane. The
errors were introduced with realistic RMS values and a 2.5 ¢ cut. The perturbed lattice
was generated by the code PATRIS, which was also adapted to control the newly developed
software. In all of the ten distributions the software was capable of passing the beam
through in 2-3 injection attempts, at full sextupole strength. It was also determined
that once the beam makes the first turn around and all the correctors are energized, it
stays in the machine for at least several hundred turns that we had checked. The quality
of the orbit, that was established in this way, was also found to be very good, i.e. the
residual distortions at the places of large beta function were much less than one millimeter.
With one or two monitors/correctors broken, the software established a first turn around
without any extra difficulties. The quality of such orbit was, of course, somewhat degraded,
especially around the broken devices. It was also observed that, in the process of actual
closing, the beam develops free betatron oscillations in the amplitude range of 1 - 5 mm,
which can be reduced either by changing the injection conditions to better match the
actual closed orbit or by an appropriate damping device. The hardware proposed for
RHIC is more than sufficient to meet the demands of the first turn controlling software.
The maximum kick angle to be applied to the beam would require less than 2/3 of the
corrector’s top strength (0.3 T-m) even at the top magnetic rigidity Bp = 850 T-m, which

means that the correctors will be performing an easy task at injection.

1. Introduction

An accelerator lattice cannot be expected to be perfect and as an immediate conse-
quence the same is true for the closed orbit in the machine. Since more or less reliable
assumptions can be made about the order of realistic lattice imperfections, it is also possi-

ble to estimate the order of the resulting closed orbit distortions. If there is a well-defined
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correcting scheme, a distorted closed orbit can also be corrected to a level of distortions
which are acceptable. Many correcting schemes have been proposed. Some well-known
examples are harmonic correction, Micado scheme and the local three-bump method used
at Fermilab. Another example is a generalization of the local three-bump method, which
we propose to correct the closed orbit in RHIC, whose essentials will be presented in this
technical note. All these correcting schemes have one common feature. They evaluate
corrector strengths on the basis of some knowledge about the optical properties of the
ideal lattice and on the basis of actual orbit readings on a set of beam position monitors
installed in the machine.

This in turn requires a beam circulating in the machine, so that the orbit readings
can be taken. An important consequence is the existence of a very special moment in
the history of every accelerator, i.e. the situation when the machine is completed and
ready to work, but the beam has yet to be injected for the first time. The problem is
the unknown machine which will obviously give rise to a distorted closed orbit, but which
cannot be corrected before the readings are taken. Since correctors cannot be adequately
set, the beam is first injected without any correction and can easily encounter physical
aperture limitations and be lost before making the first turn around. This necessitates
implementation of a special strategy, called “the first turn around strategy”, to complete
one turn, after which one hopes to know enough about the effects of lattice imperfections
to be able at least to keep the beam in the machine until the orbit can be better corrected.
However, in the case of RHIC, realistic closed orbit analysis!:? indicates that there are very
good chances that the beam hits the walls of the vacuum chamber before making a full

turn. Hence, developing a “first turn around strategy” is a necessity for RHIC.

2. RHIC Lattice - Its Imperfections and Consequences on the Closed Orbit

There are four types of lattice imperfections which are considered to be major sources
of orbit distortions. They are the error in the integrated dipole field strength A (B£) /B¢,
the axial rotation of the dipole A#, and the lateral displacements AgX, AqQY of the
quadrupole in the two transverse directions.

The RMS values of the lattice errors applicable to RHIC are the following ones:
A(BL)/BL=0.5x%x10"%, Af=10"%rad O
AgX = AgY = 0.25 x 1073 m.

We have simulated the closed orbit distortions in RHIC, with the above RMS values

and a 2.5 o cut in Gaussian distributions of random errors in the lattice. We used PATRIS
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as the code of choice. Throughout the simulation sextupoles were assumed to be thin
lenses, but otherwise perfect, higher order nonlinearities were absent, and the effects of
errors were realistically incorporated into the 7 x 7 transfer matrix used by PATRIS. Beam
position monitors were assumed ideal, i.e. perfectly aligned with the axis going through an
ideally placed quadrupole and having a perfect sensitivity. They were placed beside each
quadrupole and measured orbit distortions in the plane where beta function was large.
Correctors were modeled as thin lenses, but otherwise they were also considered ideal, i.e.
ideally placed like BPM’s and having a perfect adjustability. They were also placed beside
each quadrupole, to act in the plane where beta function is large, but not at the same side
of the quadrupole as BPM’s. It must be emphasized that this separation of the positions
of the members of a pair BPM - corrector, by a quadrupole and in the arcs also a sextupole
placed inbetween, involved additional complications which we eliminated by generalizing
the local three~bump method of orbit correction.

The results of our realistic closed orbit analysis showed the following characteristic
features, tested on 10 different Gaussian distributions of lattice errors. With the accepted
RMS values, with no correction and with no checks for possible violations of physical
aperture restrictions, largest orbit distortions reached ~ 40 - 50 mm at some BPM’s in the
arcs and ~ 100 mm in the insertions. This means that the beam would have good chances
to violate aperture limitations at some point and strike the wall of the vacuum chamber.
This was one of the characteristic properties of the uncorrected closed orbit, but the same
would happen during injection, resulting therefore in a beam loss and in a failure to make

the very first turn around in the absence of any corrections.

3. Methods of Achieving the First Turn Around

There are many ways of getting the beam around for the first time. The basic task is
to give the correctors adequate strengths to prevent the beam from exceeding the various
aperture limitations in the machine. Demands are less stringent than those appearing
in the case of correcting an already established closed orbit, since one is here primarily
interested in making the very first turn around, rather than being concerned about the
quality of the orbit. On the other hand, with an established closed orbit one knows more
about the machine, and precisely the absence of this knowledge appears as one of the
principal obstacles which must be overcome in steering the beam for the first time through
the new machine.

Even though it is not necessary, one is tempted to use some of the methods developed
for the purpose of closed orbit correction and adapt them to make the first turn around.

However, some restrictions do apply here. Closed orbit correction methods that require



circulating beam are obviously inappropriate, while others may be applicable with more
or less success. It is worthwhile to mention that the local three—-bump method! is one of
the best methods and is easily adapted to steer the beam through the machine for the
first time. Indeed, this was the method of our choice and we initially developed software
based on this method. It worked very well. With the RHIC’s realistic errors, and with the
sextupoles at full strength, the software accomplished the first turn around in just 2 or 3
injection attempts and subsequently closed and further corrected the orbit to distortions
being less than one millimeter at BPM’s.

There is, however, one big obstacle to implementing this conceptually elegant approach
in RHIC. Based on some specific considerations, RHIC has a somewhat peculiar arrange-
ment of its BPM’s and orbit correctors. As we have already mentioned, they are being
placed at the two opposite ends of each quad and not beside each other, as is the case with
most other machines. For a machine with quadrupole strengths and anticipated RMS error
values like RHIC, this is enough to invalidate the simple and elegant three~bump method,
as our more recent studies of realistic closed orbit in RHIC clearly demonstrated. The
local three~bump method requires that the beam be kicked precisely at the places where
its distortions are being observed, and a quadrupole placed inside a monitor—corrector pair
upsets this too much. As a result of this, the beam is kicked at a “wrong” place and is
therefore not corrected properly.

The foregoing situation necessitated either a modification of the previously very suc-
cessful correcting scheme, to accommodate the RHIC hardware, or modification of the
hardware itself. To avoid all potential problems with hardware redesign, we attempted
and succeeded in generalizing the local three~bump method to a somewhat nonlocal but
nevertheless equally efficient method of closed orbit correction. The same method then we
also applied to our “first turn around strategy” for RHIC, again with the same success as
before. Here we summarize its essentials.

Our starting point is the formula (4.7) for closed orbit distortions, in the absence
of nonlinearities, given in the Courant-Snyder paper.® If the errors can be reasonably
represented as delta functions or kicks it goes over into?

n
Z,'=—2—$i/n—§_;zr—;;\/ﬁ_jcosv(cpi—goj—7r)9j, (2)
with the supplementary condition that phase advances are ordered so that ¢; > ¢; is
always fulfilled. This describes the effects of kicks at j-th locations (j=1,2... n) on the

orbit distortion at i-th location Z;. In this formula v is the tune in the plane described

3 E.D. Courant and H.S. Snyder, Anals. of Physics, 3, 1-48 (1958).




by the above expression, 6; is the effective kick at the j-th location, expressed through the
resulting kick angle, A is the appropriate beta function and ¢ the phase advance. Subscript
j refers to the perturber, while ¢ refers to the point of observation. In this formula, the
effects of the perturbations, expressed through 6;, are linearly propagated along the lattice,
whose linear characteristics are in this formula still considered ideal. Of course, these 6;
need not be the actual lattice errors. They can also be deliberately delivered kicks, which
will still produce orbit distortions in an otherwise ideal lattice.

Now consider a non-ideal lattice with many errors which produce orbit distortions
R;, read at n BPM’s. To maximize the effectiveness of BPM’s we place them beside each
quadrupole where the relevant beta function is large. The actual errors will produce effects
mainly described by an expression of type (2) and partially described by various nonlinear
contributions. Obviously, we do not know the exact nature, position and the magnitude
of each error in the actual lattice. However, we do have the readings R; and we can try
to deliberately kick the beam so as to steer it through reflected distortions —R;, in the
absence of actual errors. When applied, these kicks will then act toward cancelling the
effects of actual errors to the leading order.

Although various approaches are possible, the simplest one in both conceptual and
operational sense is to introduce one corrector for each monitor in the lattice and to place
one of these correctors beside each quadrupole where the relevant beta function is large.
Two possibilities will arise here. Either we place a corrector at the same side of each
quadrupole as the corresponding BPM, in which case we are back to the simple three—
bump method, as Table 1 along with its comments indicates, or we place it at the other
end of each quad. In this case we accommodate the RHIC design.

Now we simply take Ry, Rs, ... R,, the readings at n BPM’s, and demand that the
n corresponding correctors deliver such kicks, expressed as angles 61, 6, ... 0, that they
generate orbit distortions equal in magnitude but opposite in sign to those being measured,

i. e. Z; = —R;. The expression (2) now yields:

. 2sinmwy
=1

Zi=—Ri= 20N fBoosy (pi— i =m0 = 3 A ®
. j=1

Since the number of correctors is the same as the number of monitors, the matrix A is a
square, generally nonsingular matrix which can be inverted. After inverting it, we get the

desired kick angles

n n

0; = Z (A_l)ij Z] = Z (A_l)ij (_R]) ’ (4)



which would steer the beam through the positions Z; = —R;, 2 = 1,2, ...n, in the absence
of errors and will consequently cancel distortions to the leading order in the presence of
errors along with nonlinearities. Without nonlinearities the cancellation is complete.

The only awkward element in this scheme is inversion of a big 123 x 123 matrix A
for RHIC and some delocalization of the dependence of 6; on the BPM readings in its
vicinity. However, matrix inversion has proved to be no problem on modern computers
and the delocalization we mentioned is not drastic, either. Therefore, both problems have
fortunately turned out to be very minor for RHIC, and that resulted in a very successful
handling of the realistic closed orbit problem. We would also mention that once the matrix
has been inverted the new scheme’s performance equals the performance of the simpler
three-bump method in the presence of sextupoles and, just as the previous scheme, it
reduces orbit distortions to zero at all BPM’s in the absence of nonlinearities. We would
also mention in passing that from the programming point of view the new scheme enjoys
the advantage of allowing somewhat simpler and more elegant software, whose adaptation

to achieve the first turn around is straightforward.

4. Implementation of the Method

Now the strategy goes as follows. The beam is injected and its progressing through
the lattice is monitored on BPM’s. The correctors are turned off, since initially one does
not have any information on how to power them. Once the beam is lost by exceeding the
available aperture at a certain place in the lattice, whose exact location is not essential for
the strategy, one knows the readings on all BPM’s preceding the area where the beam is
lost. Only these readings are introduced into the expression (4) and not any other kind of
information, except that the orbit coordinates at the BPM’s past the point of loss, where
no readings have appeared yet, are simply left to be zero. The expression (4) then predicts
fairly accurate values of kick angles for all correctors except for a couple of them around the
injection point and a couple of them around the point where the beam is lost. But even in
these two regions the predicted values of kick angles are not in a violent disagreement with
the actual values, except for the very first and the very last corrector which are then not
energized at this stage. All the other correctors between the injection point and the point
where the beam is lost are then energized and the beam is injected again. It then starts
with significantly reduced distortions, passes the critical point, and continues along the
lattice in the region with the correctors still not energized until it is lost again. The whole
procedure of kick angle evaluation is now repeated and the newly found kick strengths are
simply added to the previous values. The correctors are then energized again, with more

of them being powered at this stage, and the beam is reinjected. This procedure is then



continued until the beam makes its first turn around. With RHIC’s RMS error levels,
under ideal injection conditions assumed so far in the simulations, it usually takes just 2
or 3 injection attempts to make the first turn around. The results of the whole procedure
for a typical case are displayed in Tables 3,4,5.

Once the beam makes the first turn around, it usually fails in making the second turn,
since the first turn is made with part of the correctors not energized yet. But on the basis of
the first turn being achieved, one has all the necessary information to adequately energize
all of the correctors, except several in the vicinity of the injection point. However, even here
only the first and the last one have their predicted strengths in a complete disagreement
with the proper values. These proper values were found previously in an independent
simulation of closed orbit distortions on the same lattice, a procedure which cannot be
mimicked on the real machine before a closed orbit has been even established! So at this
stage one energizes all of the correctors and allows the beam to circulate. Simulations
indicate that then the beam survives for at least several hundred turns that were checked
and it can therefore be concluded that it has displayed at least a short—term stability
within the available apertures.

There is another problem that shows up now. The orbit is established and its distor-
tions are significantly reduced, but it is not completely corrected yet. That means that
the injection point does not lie at the current, mostly corrected closed orbit. As a result,
betatron oscillations develop the very moment the beam makes the first turn around. This
is shown in Tables 6 and 7. To prove that the large readings at the BPM’s, which change
from turn to turn, are really betatron oscillations, we plotted the readings at a fixed BPM
for several dozen turns and observed that they lie on a typical phase space ellipse (Fig.
1). That not only proved that we are indeed dealing with betatron motion but also sup-
ported our conclusion that the beam maintains at least a short—term stability once all of
the correctors have been energized for the first time.

The remaining problem is now the adjustment of the correctors around the injection
point, which so far have not been adjusted very well. A special procedure is needed
here because of betatron oscillations. They must be handled with care since they do not
contribute to the values of kick angles predicted by (4), provided some continuity conditions
are respected. To be specific, all of the BPM readings determining a particular kick angle
61 must lie on a single continuous segment of betatron motion displacements. For the very
first kick angle 61, this means that Ry, Ra, ... R, of a single pass are inadequate, since the n-
th reading Ry, and the first reading R; are not part of a sequence of betatron displacements
running continuously across the injection point. Therefore, one has to ensure continuity

of betatron displacements by taking several displacements from the end of a particular



turn and several displacements from the beginning of the next turn. One has to take the
sequence Rﬁ_m 41 Rﬁ_m TR Rﬁ_l, Rﬁ, R’f“, R;“"’l, ... R¥1 with k meaning the turn’s
number (i.e. k for k-th turn, k 4 1 for (k + 1)-th one), n meaning the total number of
monitors and m denoting the number of terms on each side of the injection point. The
last number m will depend on the degree of delocalization of the dependence of ; on the
neighboring BPM readings. Fortunately, the problem is only mildly delocalized for RHIC,
which means that in the inverse matrix A~! the magnitudes of its elements decrease very
rapidly as we move away from its diagonal. Table 2 clearly demonstrates this property for
J = 10. For the kick angle 8;, it appears that the dominant matrix elements are (A_l)j,j—l’
(A"l)jj, (A'l)j,j 410 Just the only nonvanishing group in the case of the simple three—~bump
method (Table 1), and others decrease by one order of magnitude or better as we move
one more monitor away from (j — 1)-th or (j + 1)-th monitor. Therefore, the value of
a particular kick angle ; is determined by only 4 - 5 monitor readings before and 4 - 5
readings after j-th monitor which is paired with j-th corrector. This is very fortunate since
a totally delocalized dependence would make impossible any selection of a reduced subset
(i.e. 2m < n) of BPM’s straddling the injection point and providing a continuous readout
of betatron displacements. Any selection of monitors would have to include all monitors
in the ring and this would involve a discontinuity, caused by nonclosure of the orbit with
a finite betatron amplitude for any noninteger tune, and this discontinuity would give rise
to spurious contributions to 6; evaluated by (4). In such a case, one would have to devise
a method of filtering out the betatron oscillations by determining them with a sufficient
accuracy from readings over several turns and subtracting them. Alternatively, readings
could be taken over very many turns and averaged for each particular BPM over these
turns so that the betatron component contributions to the averaged displacements die out
and only the real closed orbit distortions remain to be then used in (4). But due to a
limited number of readings that contribute to each 6;, we simply take the readings from
m BPM’s before the injection point and m BPM’s after the injection point, from the next
turn, of course. This specially chosen string of BPM readings is then used in (4) to adjust
those correctors which were relatively poorly adjusted upon the first orbit closing, due to
the discontinuity associated with betatron motion in the original sequence Ry, Rg, ... R,.
In practice m = 10 is more than enough and only 5 correctors at each side of the injection
point (in each plane) require this extra treatment until they are finely tuned like the others
in the lattice. Several turns which the beam makes anyway after the completion of the
first turn are more than enough for the special procedure of final adjustments, and after
the completion of this procedure all the correctors are nicely adjusted to the excitations

that a fully corrected closed orbit would require.



At this stage, however, sizable readings, in a 1 - 5 mm range, may still appear at
most monitors. But our analysis demonstrates that they are essentially 100% betatron
oscillations which arise because one still does not inject at the actual closed orbit with 100%
accuracy. These betatron oscillations are not desirable and would have to be removed either
by an appropriate damping device? or by trying to adjust the initial injection conditions
to better match the actual closed orbit.

For the purpose of simulation, we developed a simple algorithm which on the basis of
linear optics properties of the lattice and on the basis of some readings at BPM’s evaluates
the initial betatron amp:litude and phase at the injection point, and then subsequently
finds the actual closed orbit at the injection point by subtracting the betatron component
out. With this knowledge one can try to adjust the injection initial conditions so that they
better match the currenﬁly corrected (nonideal) closed orbit. After this readjustment, the
betatron motion is significantly reduced, i.e. by one order of magnitude at least. Tables 6
and 7 demonstrate betatron oscillations occurring as the beam closes. Table 8 shows the

effects of readjustment of the injection conditions.

5. Actual Performance of the Software

We developed a program for carrying out the “first turn around strategy”. We installed
it in the computer code PATRIS which served as a simulator that replaced a real machine.
Special modules were built in PATRIS to simulate the progress of beam going around the
lattice, aperture checks and BPM readings. Another module , based on expression (4), was
developed to evaluate the kick angles 6; which were necessary to prevent the beam loss at
certain point in the lattice. This module is capable of working on a real machine, once
it knows the linear optics properties of the lattice by reading them from an appropriate
database, and is completely independent of PATRIS and the ways it simulates closed orbit
errors. The only item the module needs is a sequence of BPM readings.

We performed many stringent tests of the software we developed. First of all, we
wanted some redundancy so that the software can do more than just a bare minimum,
provided there is enough strength available from the correctors to kick the beam properly.
We tested this redundancy by shrinking the apertures to just 10% of their nominal values
and tried to get the beam around. The software worked fine. Of course, many more
injection attempts were needed since the beam was lost much more frequently than under

the realistic operating conditions, but otherwise everything was normal. It is worthwhile

4 J. Xu, et al., “The Transverse Damper System of RHIC”, 1991 IEEE Particle Accel-
erator Conference, San Francisco, CA, May 6-9, 1991.
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to mention that these tests were being performed with the sextupoles at their full strengths
and with realistic lattice errors.

To verify our conclusion that the sizable displacements that appear at most monitors
after the beam completes the first turn around are almost entirely attributable to free
betatron motion, we extracted the X' value at one of the monitors, something impossible in
a real machine but trivial in a computer simulation, along with the observable displacement
X, for several hundred subsequent turns after the first one and plotted the data. A typical
phase space ellipse (Flg 1) appears and confirms that we indeed have predominantly
betatron motion. The ellipse is very slightly off-centered since it lies on the actual and
not design closed orbit. This exercise also demonstrated at least a short—term stability of
the beam after the injection.

Next stage was a large—scale testing. It was done for 10 different Gaussian distributions
of random lattice errors,. with RMS values given by (1) and with a 2.5 o cut. The results
were overwhelmingly positive. In most cases the code achieved its objective of making
the first pass around in just 2 or 3 injection attempts. A little bit more was then needed
for fine tuning of several correctors, only around the injection point, and for reduction
of the magnitude of betatron motion. All this was done with the sextupoles at their full
strengths, and these results are very encouraging since it is known that sextupoles tend
to undermine the effectiveness of a linear correcting scheme. It is worthwhile to mention
that the quality of the orbit, established in this way, was excellent and only minute further
corrections and adjustments may be needed. The results of these injection attempts, until
the first turn is established are shown in Tables 3 through 7. In Table 7, which represents
the situation after the first turn, the emergence of betatron oscillations in the last column
is obvious. Table 8 shows the reduction of betatron motion after a readjustment of the
injection conditions.

Another important point is that the maximum kick angle that we encountered was
Omaz = 0.18 mrad. Even at the top magnetic rigidity of Bp = 850 T-m this angle would

require the integrated strength of the corrector to be
6 (Bf) = (Bp) Omaz = 0.17T - m (5)

which is only about 60% of the correctors’ top strength of 0.3 T-m, and this obviously
means that at much lower injection energies the first turn around strategy that we propose
here will not take the proposed hardware to its operational limits.

Finally, we would like to mention that we tested our software with one or two monitors
malfunctioning in which case the corresponding correctors were not energized. The soft-

ware was capable of estéblishing the first turn around without any difficulties. Only the
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quality of the orbit established under these conditions was somewhat degraded, primarily

in the immediate vicinity of broken devices.

6. Conclusion

We have developed a linear method of orbit correction which is more general than
the simple three-bump method. As a minor drawback, it involves a large 123 x 123
matrix inversion for each plane, but on the other hand offers a very effective way of both
establishing the first turn around and later corrections of the orbit. The quality of the orbit,
established with the sextupoles at their full strengths, is excellent - under ideal simulating
conditions which include BPM’s ideal in both sensitivity and placements, ideally placed and
controlled correctors, simulated as thin lenses, ideal sextupoles which are also simulated
as thin lenses, and no higher order nonlinearities, but with otherwise quite realistic lattice
errors, known as the main cause of closed orbit distortions.

The software is modular and can be easily transferred to a control system. The matrix
A from expression (3) isjbased on ideal optical properties of the lattice, and its inversion
would normally have to be done only once for each plane. If found convenient from the
operational point of view, this inverted matrix might be stored in a database. In such a
case, this inversion would have to be repeated only if some monitors are broken, since then
the corresponding rows and columns in the original matrix A would have to be deleted and
the remaining matrix elements relabeled before the inversion. Otherwise the code would
assume a vanishing displacement at the broken monitor and would incorrectly predict not
only the kick angle at the corrector which is closest to the broken monitor but also kick
angles at the neighboring correctors, predominantly at the two nearest neighbors. But this
matrix inversion was not found to be prohibitively expensive. It took only 70 msec of the
CRAY-XMP CPU time or 3.6 sec of the VAX 6450 CPU time.

To conclude, we were pleased to notice that the method not only establishes the first
turn around but also precorrects the orbit and, furthermore, that it guarantees the first
turn around even with one or two monitors or correctors broken. In the last case, of course,

the quality of the “precorrected orbit” is somewhat degraded.



Table 1: Row No. 10 of the A~! Matrix for BPM’s and Orbit Correctors
at Identical Positions —Equivalent to the Local Three Bump Method. A
Sharp Localization around Afol,m Clearly Displayed.

—1 ;
AlO,l... 41

-1
A10,42... 82

-1
A10,83... 123

0.2620360 x 10~14
0.2071569 x 10~13
—.6505870 x 1014
0.1615995 x 10~13
—.3680753 x 10~14
0.1580126 x 10712
—.2763068 x 1014
0.2312277 x 10714

0.1413144 x10~1

0.1414430 x 1071

0.1588457 x 101
—.1290828 x 10712
—.3623207 x 10712
0.1294004 x 10~14
—.1205209 x 10~13
0.4676343 x 10~15
—.1929754 x 10~13
0.3151447 x 10~13
—.2084929 x 10~13
—.1526448 x 1013
—.1173087 x 10718
—.4505474 x 10718
—.1458610 x 10713
0.6587396 x 10716
—.1122464 x 10714
0.3991323 x 1013
0.7277474 x 10714
0.9534706 x 10~14
0.2608543 x 10713
0.6703764 x 10~13
—.1075958 x 10712
0.1242656 x 10~14
0.6921750 x 10715
—.1701643 x 1014
0.5102417 x 1015
0.2481681 x 10713
—.1442293 x 1014
0.2581060 x 1013
0.2060528 x 10~13
—.7359906 x 10~1°
0.2083131 x 10~13

—.4626685 x 10~
—.5800709 x 1016
—.1649924 x 10715
0.1213979 x 10~15
—.2981587 x 10~13
—.3492123 x 1014
—.2462782 x 10~13
—.7596565 x 1015
—. 7857369 x 10~13
—.2478042 x 1013
—.1380950 x 10~13
—.9864729 x 1014
0.4345603 x 10~13
0.6624620 x 10715
—.1391784 x 10~13
—.8155049 x 10~14
—.3989552 x 10714
—.7309303 x 10~14
—.2293317 x 10715
0.2967070 x 1013
—.7838491 x 10715
—.2281554 x 10~
0.9408104 x 1016
—.3767521 x 10713
0.2040505 x 1014
—.3670860 x 1013
0.5339485 x 10~15
—.1534800 x 1015
0.4868732 x 10~16
0.3820523 x 10714
—.5011502 x 1014
0.3172500 x 1015
—.3503774 x 10715
—.9243338 x 10~15
0.2856975 x 10~15
—.6375676 x 1071°
0.3234348 x 10~15
0.2607071 x 10~15
0.4268942 x 1014
0.1346183 x 1014
0.5118655 x 10714

0.3125336 x 104
0.1970782 x 1014
0.2016802 x 10~13
—.1195507 x 1014
0.1921108 x 10~13
0.6325268 x 1016
0.1251256 x 1014
0.6651898 x 10~1°
—.2550621 x 1014
—.1831118 x 1013
0.6746980 x 1013
—.6557880 x 1013
0.8932258 x 1014
—.5006733 x 1014
0.7953358 x 10~14
—.5142902 x 10~14
0.7404918 x 10714
—.2432921 x 10715
0.1894401 x 10715
—.1051910 x 1015
—.2900611 x 1015
—.5771117 x 10714
—.1444810 x 10~1°
—.5993010 x 10714
0.2958294 x 10~16
—.2063296 x 1015
0.4551658 x 10~14
0.6897878 x 10~14
0.1361096 x 10~13
—.5668968 x 10~13
0.3137930 x 10~13
—.5047378 x 10713
—.4677473 x 1013
—.2317714 x 10~13
—.3253520 x 1013
—.1441637 x 1074
—.5348694 x 1013
0.7907403 x 1014
—.1485492 x 10~15
0.1779459 x 10~13
0.3504657 x 10~13




Table 2: Row No. 10 of the A™! Matrix for BPM’s and Orbit Correctors
at Nonidentical Positions — Separated by a Quadrupole and a Sextupole.

A Moderate Delocalization around Ai_ol,lo Clearly Displayed.

-1
A10,1... 41

-1
A10,42... 82

—1
A10,83... 123

—.6563243 x 1014
—.1404420 x 10~12
0.5356536 x 10~11
—.2341113 x 10~°

0.1022864 x 10~7
—.4469375 x. 1076

0.2407276 x'10~*
—.9626439 x 1073

0.1445440 x 101!

0.1346865 x 1071

0.1842875 x 101
—.1621592 x 102

0.2547931 x 10~*
—.1182511 x 1075

0.3427606 x 107
—.6258719 x 10~°
0.1439662 x 10~10
—.3617015 x 1012
0.2468144 x 10~13
0.1568071 x 10~13
0.7802853 x 10~14
0.4515919 x 10~13
0.9726901 x 10714
0.1532473 x 10713
—.6315576 x 10~15
—.1185726 x 10713
—.3220089 x 10714
—.9568346 x 1014
—.3987844 x 10713
0.1070798 x 10—12
—.1158303 x 1012
0.2115196 x 10713
0.1381895 x 1013
0.2289622 x 10~14
—.1120523 x 1014
0.7365006 x 10~14
0.1552778 x 10713
—.3390694 x 1014
0.1635264 x 10~13
—.2410049 x 10~14
—.5189459 x 10~14

—.1233212 x 10~
—.4307115 x 10714
—.3673302 x 10714
—.3265098 x 1016
0.2581637 x 1013
0.3280491 x 10~14
0.2886492 x 1013
—.9308682 x 10714
—.2346387 x 10~14
—.9789746 x 10~14
—.1289620 x 10713
0.7930776 x 1015
0.1362966 x 10—1°
0.9613616 x 10~14
0.1786649 x 10~14
0.4331626 x 10~ 14
—.9791002 x 1015
0.4424420 x 10714
—.6503293 x 10—14
0.8713998 x 1014
—.1622156 x 10~14
—.1978762 x 10~14
—.3994290 x 1015
—.3613772 x 10713
—.3452085 x 10714
—.3596261 x 1013
0.7866305 x 10~ 14
—.3923749 x 10~13
0.3903046 x 10714
0.2053442 x 1012
—.2224082 x 10712
0.6875835 x 10~18
0.7449459 x 1014
0.5775994 x 1013
—.2712919 x 10~13
—.1690561 x 10~13
—.3397324 x 10713
—.1098005 x 1013
—.2798542 x 10~13
0.3366792 x 1014
—.3039762 x 1013

0.2309647 x 10~ 1%
—.3195748 x 1013
—.6890066 x 10714
—.2642722 x 10713
—.1155526 x 10~13
—.2313834 x 1018
—.1760675 x 1013
0.1103145 x 10713

- —.1461108 x 10~13

0.4762943 x 10~13
—.3740710 x 10712
0.3118705 x 1012
—.8030885 x 10~13
0.3771187 x 1014
—.2061699 x 1013
—.2880520 x 10714
—.8851229 x 1015
—.1007471 x 10714
0.1972511 x 10~13
—.1436348 x 10713
—.1976367 x 10~14
0.8329600 x 10~14
—.2163655 x 1013
0.2886241 x 10713
—.1762573 x 1013
0.2268338 x 10~13
—.1621116 x 1013
0.2551707 x 10715
—.4094483 x 1015
—.3069880 x 10~13
0.4541613 x 1013
0.1239127 x 1013
0.1023942 x 1013
0.1890074 x 10~13
0.1393133 x 10713
0.3681015 x 10~14
0.3303405 x 10~13
0.1534697 x 1013
—.7700626 x 10~15
—.4741820 x 1015
—.1909882 x 1013




FIRST INJECTION ATTEMPT

Table 3: Correctors Not Energized — Monitors No. 40 — 80 Shown.
Monitor Uncorrected Orbit | Kick Angle Uncorrected Orbit

No.- No Apert. Restr. 6(mrad) Apert. Restr.

Y, (mm) Y, (mm)

I 40 7.73657 0.00000 7.73657
41 19.24344 0.00000 19.24344

42 . —4.67916 0.00000 —-4.67916

43 —20.23548 0.00000 —20.23548

44 0.15661 0.00000 0.15661

45 + 21.20966 0.00000 21.20966

46 - —0.58554 0.00000 —0.58554

47 —19.99434 0.00000 —19.99434

48 2.19936 0.00000 2.19936

49 19.62554 0.00000 19.62554

50 0.06032 0.00000 0.06032

51 —53.64707 0.00000 —53.64707

52 —37.62993 0.00000

53 44.59404 0.00000

54 - —0.56658 0.00000

55 —13.38384 0.00000

56 —32.71763 0.00000

57 - —2.43772 0.00000

58 28.18619 - 0.00000

59 - 2.82418 0.00000

60 —26.72156 0.00000

61 —8.63079 0.00000

62 26.46661 0.00000

63 10.55636 0.00000

64 —26.16312 0.00000

65 ~16.48604 0.00000

66 30.68005 0.00000

67 - 12.46257 0.00000

68 —26.83458 0.00000

69 —15.15737 0.00000

70 7.67792 0.00000

71 18.75494 0.00000

72 —31.72159 0.00000

73 - 11.04590 0.00000

74 20.11037 0.00000

75 + 18.74812 0.00000

76 - 19.68837 0.00000

7 —23.26267 0.00000

78 —25.20704 0.00000

79 - 22.98045 0.00000

80 - 21.11573 0.00000




SECOND INJECTION ATTEMPT

Table 4: Some Correctors Energized — Monitors No. 40 — 80 Shown.

Monitor Uncorrected Orbit Kick Angle First Correction
No. Apert. Restr. 6(mrad) Apert. Restr.
40 7.73657 —0.01600 —0.06499
41 19.24344 —0.04459 —0.39094
42 —4.67916 0.01708 0.55022
43 —20.23548 0.07383 0.15293
44 - 0.15661 —0.02162 —0.07505
45 . 21.20966 0.02924 —0.29180
46 - —0.58554 —0.02627 0.61283
47 —19.99434 —0.05143 0.13973
48 2.19936 —0.01457 0.05236
49 - 19.62554 —0.00463 —-0.23980
50 0.06032 0.03724 —0.05380
51 —53.64707 0.00000 0.43460
52 ' 0.00000 0.39067
53 —0.08708 —1.95595
54 0.00000 —4.79465
55 0.00000 0.27276
56 0.00000 7.39266
57 0.00000 7.70180
58 - 0.00000 —6.67121
59 0.00000 —5.93445
60 0.00000 6.11429
61 0.00000 5.66983
62 0.00000 —7.92776
63 0.00000 —1.71124
64 0.00000 5.29259
65 0.00000 1.71385
66 0.00000 ~2.36258
67 0.00000 —3.42087
68 0.00000 2.79056
69 0.00000 5.87633
70 0.00000 0.58306
71 0.00000 —2.63172
72 0.00000
73 0.00000
74 0.00000
75 0.00000
76 0.00000
77 0.00000
78 0.00000
79 0.00000
80 0.00000
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Table 5: Full Turn Around Achieved with Some Correctors Energized (70

THIRD INJECTION ATTEMPT

out of 123) — Monitors No. 40 — 80 Shown.

Monitor Previous Correction Kick Angle Present Correction

No. Y. (mm) f(mrad) Y:(mm)

40 - —0.06499 —0.01406 0.00536
41 —0.39094 —0.05500 0.00085
42 - 0.55022 0.02274 —0.00552
43 - 0.15293 0.06405 —0.00199
44 . —0.07505 —0.01860 0.00641
45 —0.29180 0.01781 0.00210
46 0.61283 —0.02230 —0.00699
47 0.13973 —0.06510 —0.00576
48 0.05236 —-0.01159 0.00686
49 —0.23980 —0.00468 0.00764
50 —0.05380 0.03724 —-0.00420
51 0.43460 —0.00575 —0.03458
52 0.39067 0.02851 —0.02355
53 - —1.95595 0.00217 0.03336
54 . —4.79465 0.03987 —0.00549
55 0.27276 0.05547 —0.00871
56 7.39266 —0.03455 —0.01092
57 . 7.70180 —0.00207 —0.10412
58 ' —6.67121 ~0.04424 1.00845
59 —5.93445 0.00451 —0.30856
60 . 6.11429 0.01137 —0.20256
61 . 5.66983 0.04607 —0.24598
62 - —7.92776 —0.09209 0.97850
63 - —1.71124 0.05239 —0.32273
64 5.29259 0.00733 —0.73500
65 1.71385 —0.05941 —0.20721
66 +—2.36258 0.03289 0.93067
67 —3.42087 —0.01196 0.05824
68 - 2.79056 —0.03419 —0.50199
69 5.87633 0.01818 —0.37403
70 0.58306 0.00388 0.11162
71 —2.63172 0.00000 0.38828
72 0.00000 0.24415
73 0.00000 —1.08713
74 0.00000 —0.91391
75 0.00000 2.67388
76 0.00000 4.87007
7 0.00000 —1.03826
78 0.00000 —5.24478
79 0.00000 0.58502
80 0.00000 3.54740
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Table 6: Full Turn Around Achieved with Some Correctors Energized (70

THIRD INJECTION ATTEMPT

out of 123) — Monitors No. 1 — 40 Shown.

Monitor Previous Correction Kick Angle Present Correction
No. Y (mm) 6(mrad) Y:(mm)
1 ~0.00000 —0.01037 0.00000
2 0.00012 0.01939 0.00000
3 —0.00322 0.10082 0.00000
4 ~0.00461 0.05095 —0.00002
5 0.06468 —0.06554 0.00006
6 0.03244 —0.01518 —0.00021
7 0.00106 0.03079 —0.00005
8 0.04645 —0.02512 0.00023
9 0.00265 —0.05545 0.00005
10 - —0.11144 —0.01178 —0.00043
11 - —0.07876 —0.08334 —0.00031
12 - 0.09353 0.03476 0.00032
13 —0.00087 0.03690 0.00004
14 . —0.02626 0.01686 —0.00010
15 - —0.06100 0.01591 —0.00030
16 - —0.15089 —0.02839 —0.00009
17 0.40319 0.10286 0.00055
18 0.09845 0.00991 0.00311
19 0.04078 - 0.08059 —0.00041
20 - —0.11795 0.02956 —0.00357
21 . —0.02502 0.03713 0.00020
22 0.33826 —0.09700 0.00234
23 0.12625 0.03181 0.00562
24 - —0.01145 —0.09538 —0.00020
25 0.14595 0.01230 —0.00588
26 - 0.01875 0.08449 0.00004
27 . —0.09835 0.05948 0.00527
28 - —0.07398 0.04069 —0.00301
29 0.02153 0.05545 —0.00456
30 - 0.07069 0.01683 —0.00431
31 -~ —0.09619 0.01415 0.01735
32 0.02281 —0.07835 —0.01161
33 0.04832 0.02094 —0.01689
34 0.06180 —0.01386 —0.00380
35 - 0.07078 —0.04864 0.00156
36 - —0.08465 —0.00787 0.00554
37 - —0.21867 0.02373 0.00014
38 0.44014 —0.01824 —0.00524
39 0.30171 0.01497 —0.00160
40 —0.06499 —0.01406 0.00536
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FOURTH INJECTION ATTEMPT

Table 7: All Correctors Energized — Betatron Motion Develops — Monitors
No. 1 — 40 Shown.

Monitor Previous Correction Kick Angle Present Correction

No. _Y(mm) 6(mrad) Y (mm)
1 0.00000 0.00107 0.90711
2 0.00000 0.01921 —0.54440
3 +—0.38473 0.10070 —0.93042
4 - —0.01508 0.05106 0.49901
5 0.38400 —0.06565 0.95543
6 0.03497 —0.01514 —0.45898
7 —0.38249 0.03073 —-0.97617
8 —0.10198 —0.02512 0.24068
9 0.25785 —0.05545 0.69459
10 1.16976 —0.01178 1.81133
11 . 0.77608 —0.08334 1.14946
12 +—1.22815 0.03476 —2.15649
13 ~0.30588 0.03690 0.78046
14 0.30755 0.01686 0.50926
15 1 0.18458 0.01590 —0.18529
16 - —0.37262 —0.02840 —1.02370
17 - —0.10378 0.10282 0.26571
18 0.36700 0.00989 1.03913
19 - 0.12448 _0.08062 —0.21116
20 . —0.36014 0.02960 —1.05002
21 + —0.14559 0.03718 0.14778
22 0.35241 —0.09712 1.05956
23 - 0.16494 0.03180 —0.09329
24 —0.34268 —0.09540 —1.06311
25 —0.18318 0.01232 0.03191
26 - 0.33316 0.08445 1.06679
27 . 0.20259 0.05955 0.02450
28 : —0.43832 0.04069 —1.32074
29 —0.33279 0.05545 —0.65928
30 . —0.18988 - 0.01683 —0.11797
31 © 1.23001 0.01415 2.36322
32 - —0.92611 —0.07835 —1.99867
33 - —1.31006 0.02094 —2.75633
34 . —0.16834 —0.01386 —0.10843
35 0.30764 —0.04864 1.01032
36 0.25953 —0.00789 0.21416
37 —0.27897 0.02376 —1.03889
38 - —0.27216 —0.01822 —0.26849
39 0.26811 0.01498 1.02886
40 0.28415 —0.01404 0.31276
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A MUCH LATER INJECTION ATTEMPT

Table 8: Several Successive Adjustments of Orbit Correctors Implemented.
Initial Injection Conditions Also Adjusted. Betatron Motion Magnitude
Drops. Monitors No. 1 — 40 Shown.

‘Monitor Previous Correction Kick Angle Present Correction
No. Y (mm) O(mrad) Ye(mm)
1 . 0.00000 0.00103 —0.00190
2 0.55255 0.01912 —0.00256
3 . 0.02646 0.10084 0.00171
4 —0.55097 0.05096 0.00319
5 —0.04966 —0.06552 —0.00129
6 0.54890 —0.01519 —0.00249
7 - 0.07506 0.03080 0.00058
8 —0.49408 —0.02512 0.00250
9 —0.08808 —0.05545 —0.00022
10 0.97531 —0.01178 —0.00726
11 0.70072 —0.08334 —0.00506
12 —0.76258 0.03476 0.00643
13 —0.05984 0.03690 —0.00046
14 0.22253 0.01686 —0.00175
15 © 0.63737 0.01591 —0.00335
16 ~ 0.14860 —0.02842 0.00039
17 —0.52813 0.10280 0.00130
18 —0.17747 . 0.00990 —0.00019
19 - 0.51772 0.08060 —0.00171
20 0.20611 0.02952 0.00036
21 —0.50781 0.03715 —0.00028
22 —0.23368 —0.09713 —0.00060
23 . 0.49413 0.03176 —0.00079
24 + 0.26171 —0.09538 —0.00008
25 —0.48028 0.01229 0.00068
26 —0.28756 0.08451 ~0.00033
27 + 0.46413 0.05950 —0.00022
28 - 0.29414 0.04069 —0.00079
29 —0.12843 0.05545 —0.00026
30 —0.33771 0.01683 0.00011
31 - 0.54998 0.01415 0.00089
32 —0.18947 —0.07835 —0.00089
33 —0.34069 0.02094 —0.00118
34 —0.29547 —0.01386 0.00009
35 —0.29182 —0.04864 0.00064
36 - 0.40739 —0.00788 —0.00010
37 0.39047 0.02371 —0.00062
38 —0.38494 —-0.01822 —0.00121
39 —0.40708 0.01496 0.00013
40 - 0.36612 —0.01404 0.00091
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Figure 1

Phase Space Plot at Physical Q90 Exit

Horizontal Plane. No. of Turns: 50
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