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Abstract

A simple analytical expression for the longitudinal
coupling impedance of a toroidal beam tube below the
resonance region has been derived by expanding the
electromagnetic fields of the toroidal beam tube in a
power series in curvature and substituting directly into
Maxwell’s equations. The resulting expression consists of
the impedance of the straight beam pipe plus a correction
terms due to the curvature. It has been verified that
this result gives excellent agreement to the exact solution
below the first resonance.

INTRODUCTION

The longitudinal coupling impedance of a toroidal
beam tube with rectangular cross section was addressed
by a number of recent publications.[1] An exact treatment
of this problem with many references to earlier work can
be found in the paper by Warnock and Morton.[2]

An approximate expression for the coupling impedance
below the resonance region, but valid beyond cut off, was
derived by Ng and Warnock using the Debye’s asymptotic
expansions of relevant Bessel functions.[3] In the present
paper, a simple analytical expression for the curvature
term of the sub-resonant coupling impedance is derived
by expanding the electromagnetic fields in a power series
in curvature of the toroidal beam tube and substituting
directly into Maxwell’s equations.

The perturbation treatment of electromagnetic prob-
lems is well-known due to the work by Jouguet[4] and
Lewin([5] and its application to the present problem con-
veys considerable physical insight without loss of accu-
racy. In fact, it has been computationally verified that
the results presented here are in better agreement with
the exact solution than the Ng-Warnock approximation,
although the differences are inconsequential.

FORMAL SOLUTION

A convenient method of obtaining an expression
for the longitudinal coupling impedance presented by a
smooth beam tube with rectangular cross section (Fig. 1)
to a filamentary current involves field matching along a
vertical plane common to the inner and outer subregion.
In the case of a curved tube, the fields must be expanded
in terms of H and E modes. In a straight tube, a pure

* Work performed under the auspices of the U.S. Depart-
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TM mode would be adequate. A formal solution, valid
for both cases, is obtained by always using H/LSE and
E/LSH modes.

The centered filamentary current Te=i"%e/%! (mode
number n, frequency w = wn/R) is represented by a
current sheet in the vertical plane,

I . .
i= %e""oe"‘" Z cosémz

m

with én = mw/h; m = odd. To achieve notational
simplicity, the index m and the common exponential
factor will be suppressed in the sequel.

The field components in each subregion have the
general form

&Ercoséz H,sinéz
E=| j&coséz | and H= | jHgsinéz
&, sinéz H,coséz

The field in each subregion is given by the sum of E and
H modes with 2 expansion coefficients (per index m). The
four coefficients are determined by requiring continuity
of Eg, E,, Hy and application of Ampére’s law to H,
at the vertical current sheet. The longitudinal coupling
impedance is defined by
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Fig. 1: Toroidal Beam Tube Geometry.



Table I: Field Components in Beam Tube with Rectangular Cross Section.

H(LSE} mode

E(LSH) mode

toroidal straight toroidal straight
& = vQ2EC (kr) Q2 cosh X (z + w) £S5 (kr) ——)EQ cosh X (z £ w)
& = —vQEC (k) —vQ% sinh X {(z + w) QLS (kr) Qsinh X (z £+ w)
£ =0 0 (1 —v2Q2%) S (kr) (1 - v2Q?) sinh X (z £ w)
H, = §C' (s7) %— sinh X (z £ w) —vQ285 (kr) —vQ?sinh X (¢ + w)
Ho = —QEC (k1) —Qcosh X (z & w) vQES' (kr) vQ%C- cosh X (z + w)
H, = (1—v?Q?) C(xr) (1 -v?Q%) cosh X (z £ w) 0 0

with the formal solution in natural units (¢ = po = 1)

z .2 1
;—J;Z mQ(l—vzﬂ"’)x

x{ 2£EZE W2 Q*HENE }
Sfé’ 8 8,!% ’H ’HH 'HH'H
where
Q=" n_n h
ER mr R

and the field components £ and # for inner (index i) and
outer (index o) subregion to be evaluated at z = 0. The
present solution equals in substance the Warnock—Morton
result, however the different formulation is essential to the
subsequent treatment of the problem. Note also, that the
distinction between Z (n) and Z (n,w) can be ignored in
the subresonant region, which is addressed in this paper.

The expressions for the field components of E and
H modes are given in Table I. In the toroidal case the
functions C (kr) and S (kr) are linear combinations of
modified Bessel functions with their definition given in

Table I and
k£ =£V1-v2Q2.

In the straight case

X=E&/1+ Q27

with the relativistic y~2 = 1—v2. Note that the boundary
at conditions R; and R,, respectively z = *w, are fully
satisfied.

The coupling impedance of the straight beam tube,
the space charge term, follows as (Zg = cpo = 1)

Z tgh fw/1 4 Q2 /72
-Jzov—yZZ g /v

my/1+ Q%/y?
which vanishes for v ~ 1.

PERTURBATION TREATMENT

The residual curvature term for v ~ 1 could be
obtained from the above formal solution by using asymp-
totic expansions for the Bessel functions similar to the
Ng-Warnock treatment.[3] An asymptotic expansion is
here obtained directly from Maxwell’s equations by ex-
panding the field components according to

E=E(z)+e(z)/R
H=H(z)+h(z)/R

with the zero—order solution given by the straight tube.
The resulting set of differential equations is given in Table
III. Higher-order solutions are obtained by iteration.

Using the symbolic manipulation program MAC-
SYMA, asymptotic expressions for the field components
were determined to second order in w/R for the case of
v ~ 1. The results for C; («R) and S; (kR) are given as
example in Table II.

Table II: Definition and Asymptotic Expansion of Toroidal Functions.
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Table III: Perturbation Formulation of Maxwell’s Equations.

%hz — ({2 w? + %i—) h, = +u- (zZEy +wzH, + Ep) — L2 (¢xEg+wzH,)+ 5 (§zHp +wzEr )
g;;ez - (Ez w? + %;—) = —5—'-""— (z—-Ha —wzE, + Hy) + & = 3:1: (ExHy +sz,) — & (fzEy +wzH, )

(~&e: +§&hs +€0Bs +wal,)
er = grtm (s — £ s+ Eolly +waEy )
ho = =5 (€er + Fre:)
eg ==L (6h — Zhs)

The perturbation expression for the curvature term
of the longitudinal coupling impedance of a toroidal beam
tube with rectangular cross section was found to be

h2
%=—Jzo( )Z(l 3Q2)M

m3 cosh? w

This perturbation expression has been numerically
compared with the exact results obtained by using the
SLATEC subroutines for the Bessel functions. It was
confirmed that the total coupling impedance in the rela-
tivistic case of v ~ 1 is given by the sum of the straight
beam tube space charge term plus the y-independent
curvature term.[3]

In Fig. 2, the total Z/n from above approximations
is compared with the exact results as function of y for
a geometry with 2w = h and wR/h = 10%. It is noted
that the modified Bessel functions revert to ordinary
Bessel functions at Q = v~ ~ 1, the cut—off frequency
corresponds to = V2 and the first resonance occurs at
Q, = 85.8825. Complete agreement at frequencies up to

and above cut—off, but below the resonance region, was
found.
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Fig. 2: Coupling impedance as function of 7. The solid curves are obtained from the
approximations in this paper and the points from the exact expressions.



