BNL-101994-2014-TECH AD/RHIC/82;BNL-101994-2013-IR ### The Residual Tune Splitting in the Presence of the Linear Coupling G. Parzen October 1990 Collider Accelerator Department Brookhaven National Laboratory **U.S. Department of Energy** USDOE Office of Science (SC) Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes. ### **DISCLAIMER** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ## The Residual Tune Splitting in the Presence of Linear Coupling G. Parzen October 1990 ### RHIC PROJECT Brookhaven National Laboratory Associated Universities, Inc. Upton, NY 11973 Under Contract No. DE-AC02-76CH-00016 with the UNITED STATES DEPARTMENT OF ENERGY # The Residual Tune Splitting in the Presence of Linear Coupling G. Parzen ### 1. <u>Introduction</u> The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes ν_1 and ν_2 , which may differ appreciably from ν_x and ν_y , the unperturbed tunes. This is often called tune splitting since $|\nu_1 - \nu_2|$ is usually larger than $|\nu_x - \nu_y|$. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effects is also increased by the required insertions in proton colliders which generate large β -functions in the insertion region. This tune splitting has been studied in the RHIC accelerator (the Relativistic Heavy Ion Collider proposed at Brookhaven National Laboratory). For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed¹ for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found¹ that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. RHIC has to operate within a box in tune space whose width is $\Delta \nu = 33 \times 10^{-3}$ in order to avoid all resonances which are tenth order or less. It appears desirable to correct the tune splitting to a level which is much smaller than 33×10^{-3} . The residual tune splitting that remained after correction with the 2 family tune splitting correction system was found to be about 18×10^{-3} . The residual tune splitting appears to be due to higher order effects of the random a_1 multipole. Loosely speaking, one may say that the residual tune splitting is associated with the nearby linear sum resonance, $\nu_x + \nu_y = \text{integer}$. A skew quadrupole correction system has been developed that appears able to correct a large part of the residual tune splitting. This consists of skew quadrupole correctors near the high- β quadrupoles in the insertions, which are excited so as to generate the harmonics that would drive the nearby sum resonances, $\nu_x + \nu_y = \text{integer}$. ¹ G. Parzen, BNL Report AD/RHIC-AP-72 (1988). ### 2. Calculation and Correction of the Normal Mode Tune The presence of the random skew quadrupole errors given by the a_1 multipoles in each magnet will couple the x and y motions. The x and y motion are then each given by the sum of 2 normal modes which have the tunes ν_1 and ν_2 . The normal mode tunes ν_1 and ν_2 can be computed in the following way. The effect of the a_1 multipole in each magnet is represented by putting point a_1 multipoles at the entrance and exit of each magnet, with half the strength of the a_1 multipole. The one turn transfer matrix around the ring can be computed by multiplying the transfer matrices of all the magnets and all the point a_1 multipoles in the ring. The 4×4 one turn transfer matrix can be written as $$T = \begin{bmatrix} M & n \\ m & N \end{bmatrix} \tag{2.1}$$ where M, N, m, n are each 2×2 matrices. The tunes ν_1 and ν_2 can then be computed from the following equations² $$\cos \mu_{1} + \cos \mu_{2} = \frac{1}{2} Tr(M+N)$$ $$\cos \mu_{1} - \cos \mu_{2} = \left\{ \left[\frac{1}{2} Tr(M-N) \right]^{2} + |m+\overline{n}| \right\}^{\frac{1}{2}}$$ $$\overline{n} = \begin{bmatrix} n_{22} & -n_{12} \\ -n_{21} & n_{11} \end{bmatrix} ,$$ $$\mu_{1} = 2\pi\nu_{1} , \quad \mu_{2} = 2\pi\nu_{2} .$$ $$(2.2)$$ Tr(M) is the trace of M. |M| is the determinant of M. Treating the random a_1 as a perturbation, one can find an approximate result which is valid close to the resonance line $\nu_x - \nu_y = 0$ where ν_x, ν_y are the tunes in the absence of the a_1 fields, $$\nu_{1} - \nu_{2} = 2 \left\{ \left[\frac{1}{2} (\nu_{x} - \nu_{y}) \right]^{2} + |\Delta \nu|^{2} \right\}$$ $$\nu_{1} + \nu_{2} = \nu_{x} + \nu_{y} ,$$ $$\Delta \nu = \frac{1}{4\pi\rho} \int ds \left(\beta_{x} \beta_{y} \right)^{\frac{1}{2}} a_{1} \exp\left(i\overline{\nu} \left(\psi_{x} / \nu_{x} - \psi_{y} / \nu_{y} \right) \right)$$ $$\overline{\nu} = \frac{1}{2} (\nu_{x} + \nu_{y})$$ $$(2.3)$$ $\Delta \nu$ may be regarded as the width of the nearby coupling resonance. ² E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958). Equations (2.3) show that when $\nu_x \simeq \nu_y$, the shift in the ν -values looks like a tune splitting. Equations (2.3) also suggest that if the a_1 correctors are set so as to make $\Delta \nu = 0$, then the tune splitting is minimized. This is not a practical way to set the a_1 correctors as the $\Delta \nu$ and the a_1 errors are not known for a real accelerator. Usually the a_1 correctors are set so as to minimize the tune splitting which can be measured. The results from this way of setting the a_1 correctors is discussed in Section 3. It is instructive to see what happens when the a_1 correctors are set to make $\Delta \nu = 0$. These results are shown in Table 1 for 10 distributions of a_1 errors and for two RHIC lattices, one having $\beta^* = 2$ at all 6 crossing points and one having $\beta^* = 6$ at all 6 crossing points. The results in Table 1 were found using the RHIC lattices with the expected random quadrupole errors, a_1 and b_1 . These quadrupoles errors are listed in Section 4. The tune of the normal modes, ν_1 and ν_2 , are computed using the exact result, Eq. (2.2). The tune shift due to the random b_1 has been corrected using the QF and QD quadrupoles in the regular cells. A correction system has been developed for correcting the tune splitting which uses two families of skew quadrupoles as correctors. Results are given for ν_1, ν_2 before and after the application of the tune splitting correction, and are listed as the uncorrected and corrected cases. The tune splitting correction was set so as to make $\Delta \nu = 0$, where $\Delta \nu$ is the $\nu_x = \nu_y$ coupling resonance width given in Eqs. (2.3). The unperturbed ν_x, ν_y for RHIC for Table 1 is $\nu_x = 28.826$, $\nu_y = 28.821$. Only the fractional part of the ν -values are listed in Table 1. The largest tune splittings found in Table 1 are | | $\underline{\text{Uncorrected}}$ | Corrected | | |--|----------------------------------|-----------|--| | $ \nu_1 - \nu_2 /10^{-3}, \beta^* = 6$ | 91 | 15 | | | $ u_1 - u_2 /10^{-3}, \beta^* = 2$ | 228 | 23 | | One sees that the tune splitting remaining after correction is considerably larger than the 5×10^{-3} predicted by Eq. (2.3). The remaining tune splitting after correction is called the residual tune splitting in this paper. It appears to be due to higher order terms in a_1 which are omitted in Eq. (2.3). The presence of higher order effects of the random a_1 can be seen by plotting ν_1 and ν_2 against a_1 and comparing this result with that predicted by the approximate equations Eqs. (2.3). Figure 1 shows this plot for the uncorrected case for the field error distribution number 2 and $\beta^* = 2$. To simplify the comparison with Eqs. (2.3) the unperturbed ν -values, ν_x and ν_y were moved on to the $\nu_x = \nu_y$ resonance to $\nu_x = 0.824$, $\nu_y = 0.824$. Also, the random b_1 error was omitted in this study. In Fig. 1, $a_1 = 0.8$ means that the random a_1 in every magnet was reduced by the factor 0.8. Table 1: Results for the correction of the tune splitting for two RHIC lattices using a 2 family tune splitting correction system set to make $\Delta \nu = 0$, where $\Delta \nu$ is the width of the difference resonance $\nu_x = \nu_y$. | | —Uncorrected— | | | $-\!$ | | | | | | | |--|---------------|---------------|-------------------------|---|--------|--------|-------------------------|--|--|--| | Error
Field
Dist. | $ u_1$ | $ u_2$ | $ u_1 - u_2 /10^{-3}$ | | $ u_1$ | $ u_2$ | $ u_1 - u_2 /10^{-3}$ | | | | | | | $\beta^* = 6$ | | | | | | | | | | 1 | 0.842 | 0.806 | 36 | | 0.825 | 0.819 | 6 | | | | | 2 | 0.784 | 0.863 | 21 | | 0.822 | 0.812 | 10 | | | | | 3 | 0.851 | 0.796 | 55 | | 0.826 | 0.820 | 6 | | | | | 4 | 0.785 | 0.865 | 80 | | 0.825 | 0.815 | 9 | | | | | 5 | 0.813 | 0.836 | 23 | | 0.831 | 0.818 | 13 | | | | | | | | | | | | | | | | | 6 | 0.830 | 0.819 | 11 | | 0.828 | 0.820 | 9 | | | | | 7 | 0.830 | 0.822 | 8 | | 0.829 | 0.822 | 7 | | | | | 8 | 0.778 | 0.869 | 91 | | 0.820 | 0.805 | 15 | | | | | 9 | 0.809 | 0.839 | 30 | | 0.827 | 0.821 | 6 | | | | | 10 | 0.845 | 0.803 | 42 | | 0.827 | 0.821 | 6 | | | | | | | | | $eta^*=2$ | | | | | | | | 1 | 0.796 | 0.854 | 59 | | 0.828 | 0.823 | 6 | | | | | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ | 0.707 | 0.935 | 228 | | 0.838 | 0.819 | 19 | | | | | | 0.869 | 0.783 | 86 | | 0.825 | 0.829 | 4 | | | | | 4 | 0.772 | 0.883 | 111 | | 0.831 | 0.823 | 7 | | | | | 5 | 0.779 | 0.872 | 93 | | 0.836 | 0.820 | 16 | | | | | | | | | | | | | | | | | 6 | 0.848 | 0.805 | 43 | | 0.832 | 0.821 | 11 | | | | | 7 | 0.840 | 0.847 | 7 | | 0.852 | 0.834 | 18 | | | | | 8 | 0.742 | 0.895 | 153 | | 0.838 | 0.818 | 20 | | | | | 9 | 0.785 | 0.866 | 81 | | 0.828 | 0.823 | 6 | | | | | 10 | 0.749 | 0.891 | 142 | | 0.823 | 0.827 | 5 | | | | The results in Fig. 1 are in good agreement with Eqs. (2.3). Since $\nu_x = \nu_y$, Eqs. (2.3) predict that ν_1 and ν_2 should be linear in a_1 , and $\nu_{av} = (\nu_1 + \nu_2)/2$ should be constant. Figure 2 shows a similar plot for the corrected case. The 2 family tune splitting correction system has been set to make $\Delta \nu = 0$, where $\Delta \nu$ is the $\nu_x = \nu_y$ coupling resonance width given in Eq. (2.3). The results in Fig. 2 are not in agreement with Eqs. (2.3) showing the presence of higher order effects due to a_1 . Both ν_1, ν_2 and $\nu_{av} = (\nu_1 + \nu_2)/2$ appear to have an $a_1^{3/2}$ dependence on a_1 . ν_{av} is not constant, and the ν_1 and ν_2 shifts are not equal as predicted by Eq. (2.3). Figure 1: A plot of the normal mode tunes, ν_1 and ν_2 , versus the size of the random skew quadrupole error, a_1 for a particular distribution of the random a_1 . The tune splitting was not corrected. Figure 2: A plot of the normal mode tunes, ν_1 and ν_2 versus the size of the random skew quadrupole error, a_1 . The tune splitting has been corrected with the 2 family correction system. The open circles show the points on an $a_1^{3/2}$ curve. Using the computed results and Eqs. (2.3), one may conjecture that the higher order effects may be described by the following equation: $$(\nu_1 - \nu_2)/2 = \left\{ \left[(\nu_x - \nu_y)/2 \right]^2 + |\Delta \nu|^2 + g_- \right\}^{1/2},$$ $$(\nu_1 + \nu_2)/2 = \left\{ \left[(\nu_x + \nu_y)/2 \right]^2 + g_+ \right\}^{1/2},$$ (2.4) where g_{-} and g_{+} are two functions of a_{1} which vary like a_{1}^{3} . ### 3. Correction of the Residual $|\nu_1 - \nu_2|$ A first step in reducing the residual $|\nu_1 - \nu_2|$, is to set the a_1 correctors of the two family tune splitting correction system to minimize the residual $|\nu_1 - \nu_2|$, instead of setting them to make $\Delta \nu = 0$ as indicated by Eqs. (2.3). The results of doing this are given in Table 2. In Table 2, the results for the residual $|\nu_1 - \nu_2|$ listed in Table 1 using the $\Delta \nu = 0$ correction procedure are compared with the results found using the minimizing $|\nu_1 - \nu_2|$ procedure for the same 10 distributions of random a_1 and b_1 errors and for the $\beta^* = 6$ and $\beta^* = 2$ lattices for RHIC. Table 2 shows that the minimizing $|\nu_1 - \nu_2|$ procedure considerably reduces the residual $|\nu_1 - \nu_2|$ for some field error distributions. A possible explanation is that for some error distributions, the setting of the correctors to make $\Delta \nu = 0$ excites the harmonics in a_1 that drive the nearby sum resonances $\nu_x + \nu_y = \text{integer}$, and it is these harmonics that are believed to be responsible for the residual $|\nu_1 - \nu_2|$. One may note that after correction, not only is there a considerable residual $|\nu_1 - \nu_2|$ for some field error distributions, but also the average tune $\nu_{av} = (\nu_1 + \nu_2)/2$ may be considerably off from $(\nu_x + \nu_y)/2$. It was found that the location of ν_{av} may be corrected using the normal tune correction system which in RHIC consists of the QF and QD quadrupoles in the regular cells of the arcs which are corrected in two families. This is indicated by Eqs. (2.3). However the normal tune correction system will not change the residual $|\nu_1 - \nu_2|$ by much. To further reduce the residual tune splitting requires additional a_1 correctors so that one can control not only the harmonics in a_1^n that drive the difference resonance, $\nu_x - \nu_y$, but also the harmonics in a_1 that would drive the nearby sum resonances, $\nu_x + \nu_y = \text{integer}$, which for RHIC are principally the 58 and 57 harmonics in a_1 . The most effective place to put these correctors is near the quadrupoles in the insertions that have high β -functions. In RHIC which has 6 beam crossing points, there are 12 such high β locations. The two family tune splitting correction system¹ has a_1 correctors at 6 of the high β locations. The | Table 2 | } : | Residual t | une | splitting | resulting | from | two | different | methods | s of | |-----------|------------|-------------|-------|------------|------------|--------|--------|-----------|------------|------| | tune spli | itti | ng correcti | ion u | sing the 2 | 2–family t | une sp | olitti | ng correc | tion syste | em. | | Error | $ \nu_1 - \nu_2 /10^{-3}$ | $ \nu_1 - \nu_2 /10^{-3}$ | | |--|---|-----------------------------|--| | Field | $\Delta u = 0$ | minimize $ \nu_1 - \nu_2 $ | | | Distribution | Correction | $\operatorname{Correction}$ | | | | β | * = 6 | | | 1 | 6 | 6 | | | 2 | 10 | 6 | | | 3 | 6 | 6 | | | 1
2
3
4
5 | 9 | 6 | | | 5 | 13 | 9 | | | , | | | | | 6 | 9 | 7 | | | 7 | 7 | 6 | | | 8 | 15 | 7 | | | 9 | 6 | 5 | | | 10 | 6 | 6 | | | | $\beta^* = 2$ | | | | 1 | 6 | 5 | | | 2 | 19 | 18 | | | $egin{array}{c} 2 \ 3 \ 4 \ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | 4 | 7 | 7 | | | 5 | 16 | 8 | | | 1 | | | | | 6 | 11 | 11 | | | 7 | 18 7 | | | | 6
7
8
9 | 20 16 | | | | 9 | 6 6 | | | | 10 | 5 | 4 | | proposed enlargement of the a_1 correctors is to have a_1 correctors at all 12 of the high β locations, and all 12 a_1 correctors are separately powered. A computer study was done to evaluate the performance of the enlarged a_1 correction system in reducing the residual $|\nu_1 - \nu_2|$. The results are given in Table 3 for one particular method of using the a_1 correctors which is described below. One may note that the unperturbed tune of the accelerator in this study has a tune splitting of $|\nu_x - \nu_y| = 5 \times 10^{-3}$, and the results listed in Table 3 for the residual $|\nu_1 - \nu_2|$ using the enlarged a_1 correction are good. The method used to reduce the residual $|\nu_1 - \nu_2|$ is the following: the 6 a_1 correctors that make up the 2-family tune splitting correction system are corrected in the usual way as described in Ref. 1. This provides two variables which are primarily used to correct the **Table 3:** The reduction in the residual tune splitting obtained using the enlarged a_1 correction system, compared with the results obtained with the 2-family correction system, minimizing $|\nu_1 - \nu_2|$. | | $ \nu_1 - \nu_2 /10^{-3}$ | $ \nu_1 - \nu_2 /10^{-3}$ | |------------------------|---------------------------|--| | Error | 2 Family | $\begin{array}{c} \text{enlarged} \ a_1 \end{array}$ | | Field | Correction | Correction | | Distribution | System | System | | | β^* = | | | 1 | 5 | 5 | | $\frac{1}{2}$ | 8 | 5 | | 3 | 4 | 4 | | 4 | 5 | 4 | | 5 | 12 | 7 | | . U | | • | | 6 | 5 | 5 | | 7 | 7 | 5 | | . 8 | 6 | 1 | | , 9 | 5 | 4 | | 10 | 5 | 5 | | | eta^* : | = 2 | | , 1 | 5 | 5 | | 2 | 16 | 6 | | - 3 | 3 | 3 | | 4 | 5 | 5 | | 5 | 5 | 5 | | | | | | 6 | 9 | 3 | | . 7 | 14 | 4 | | 8 | 10 | 2 | | , 9 | 6 | 3 | | 10 | 1 | 3 | effects of the difference resonance $\nu_x = \nu_y$. In addition the 12 a_1 correctors near the high β quadrupoles are excited according to the equation $$a_1 = A\cos(\psi_x + \psi_y) + B\sin(\psi_x + \psi_y),$$ where ψ_x, ψ_y are the betatron phases at the correctors and A and B are two so far unknown variables. This provides 2 more variables used primarily to correct the effects associated with the nearby sum resonances $\nu_x + \nu_y = \text{integer}$. Using the above hook up of the a_1 correctors, the 4 available variables are adjusted to minimize $|\nu_1 - \nu_2|$. This gives the results in Table 3. The hook up of the a_1 correctors described above does not use the full flexibility of the enlarged a_1 correction system, but it appears to do a fairly good job of reducing the residual $|\nu_1 - \nu_2|$. There appears to be some advantages to having some a_1 correctors in the arcs of the accelerator. The a_1 correctors in the arcs cannot usually entirely correct the difference resonance as they tend to have about the same value of $\psi_x - \psi_y$ if they are put near the quadrupoles in the arcs. However if the phase is defined so that $\psi_x - \psi_y \simeq 0$ at the quadrupoles, then the arc a_1 correctors can be used to correct the real part of $\Delta \nu$, the width of the difference resonance $\nu_x = \nu_y$, which is often a large part of $\Delta \nu$. The strength required of the a_1 correctors in the insertions is then reduced, and there is some improvement in the performance of the correction system. In RHIC, it is proposed to have a_1 correctors near most of the defocusing quadrupoles in the arcs which are connected in series in one family, which would be used to correct the real part of $\Delta \nu$, the width of the difference resonance. For the results given in Table 3, the arc a_1 correctors were also used. The random skew quadrupole errors also produce an appreciable change³ in the β functions of the normal modes, β_1 β_2 . The change in β_1 , β_2 can be quite large for some distributions of random a_1 errors, as much as 100% has been found for RHIC. The above described enlarged a_1 corrector system has been found to be able to also correct most of the change in β_1 , β_2 . #### 4. Random a_1 , b_1 Present in RHIC The random quadrupole errors are due to a number of sources that include construction errors in the magnet coils, effective length errors in the quadrupoles, and rotational errors in the positioning of the quadrupoles. a_1 and b_1 are defined so that the field due to a_1 and b_1 on the median plane is given by $$B_y = B_0 b_1 x$$ $$B_x = B_0 a_1 x$$ where B_0 is the main dipole field. ³ G. Parzen, BNL Report AD/RHIC-73 (1990). The rms random a_1 , b_1 used in this study are given in the following table. | Source | $a_1/10^{-5}$ | $b_1/10^{-5}$ | |-----------------------------|----------------------|----------------------| | : | (cm^{-1}) | (cm^{-1}) | | Dipole coil error | 16.8 | 8.4 | | Quadrupole coil error | 15 | 15 | | Quadrupole effective length | | 40 | | Quadrupole rotation error | 40 | | The assumed effective length error in the quadrupoles is $\Delta L/L = 2 \times 10^{-3}$ rms. The assumed rotational error in the quadrupoles is $\Delta \theta = 1 \times 10^{-3}$ rad rms.