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The purpose of this calculation is to estimate the emittance growth when crossing a

high order resonance.

1. General Analysis for Several Multipoles

We start with the equations

"4+ Q% z= Z pren k 2?1yt cos b,
k,lh

y' +Qy = pren £ a* y* cosh,
kLh

where prime means die and where

Qr = vy — Avcosv,l,

Qy = vy — Av cosv,0.
We are interested in the single resonance at
svg +tvy = h+ 6,

where s,t, h are integers, and § << 1.
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We use the phase amplitude method and write

x:Acos;bz, y:Bcos1/)y’
(6)
z' = —QuAsins, y' = —QyBsiny,
where
9 )
bo= [Quitta, b= [ Qa0+, ()
0 0
It is easy to show that
A=~ Z HE L, hQiAk 1 B cos* ™1 o), sin ¢, cos® 1y cos hO, (8)
k, 0,k e
Z Pk, h——AkBl 1 cost b, cost™1 1y sin 1y cos hb. (9)
k,lh
We now use
k cos 31/),; 3
cos” g = L 1 Z (&)1 (5)1 (10)
s=0,1 ‘
As=2

(X if there is a term with s = 0 when k is even) and average over all rapidly varying

oscillations except for the resonance in (5) to obtain

k A*Bf k! £
AA = Z cos X (11)
k+£ k k f— 1 )
i @ 2 (PP (O (RY)!
¢ AkpBt k! I
BB' = — — TR — cos X, (12)
2. Gy 9 ()1 (B (591 (51
where
X = sty + iy, — hé. (13)
Since
8
be=at [Quit =v, 6+a, (14)
0
g
¢y:ﬂ+/dee=uy 645, (15)
0
we have



X(0) = (svg +tvy—h)8+sa+tf— (s —I—t)%zsinl/se. (16)
3
The resonance is crossed at 6, where
X' (o) = svg +tvy — h = (s +t) Av cos vsh. (17)

The change in A in crossing the resonance is determined by

/ df cos X (8) = / dd cos [X (6o) + ©- 60) —x" (8 )] |XH2(7‘;0)| cos (Xo + ) (18)

where Xg =X (6y) and where the = sign has to do with the sign of X" (6y). With § defined

in (5) we have

X" (60)] = (s +£) Av v, [sinvabo] = vsy/(s + 1) (Av)? — 82, (19)

Finally, we have from (11), (12), assuming A and B do not change much in the crossing:

V27 cos (Xo + %)

AAA = — G’ t 20
V(s +t)Av 1/3]s1n1/590|keh SRE (20)
V2 +Z
BAB = meos (Xo + §) Z £ 2.6, (21)
\/(.9 + 1) Av v, |sin vgf| kﬂh
where -
A*B k! £!
G(Sat) = HKELh — — . (22)
2 () (B (I (B!

2. Diffusion Approximation

If we assume that many betatron oscillations occur between resonance crossings, it is
reasonable to assume that the betatron phase at the crossing (Xp) is uncorrelated from one

crossing to the next. In this case we can average A? to obtain

2
I X % k 20
2 2 2
6 = - —_— 2
A*(6) A°+(s+t)Ay vl [g% Qxa} X 3 (23)

Vs

where 27 /v is the change in 6 between pairs of crossings. This leads to the diffusion result

(random walk)

A?(0) = A2 + K0, B*(0) = B2 + K,0, 24
y



where

- 42
1 k
7 (s 4+ t) Av|sinv,fp| % Qs Gl (25)
] I
1 £
Ky = (s +t) Av [sinv,6p| ]gjh @G | (26)

Note that the diffusion constant is more or less independent of v;. This is because each
change in A, B is greater for small v,, but the number of crossings per turn is correspond-
ingly smaller for small v;. Moreover, the diffusion (amplitude growth) rate increases as
Av decreases.

To proceed further in the general case, we need all the values of u g3 so that the sums

in (25) and (26) can be performed and/or estimated.

3. Single Multipole Term

If we assume a single multipole term and assume that only the s = k, ¢t = £ term is

important, (11) and (12) can be rewritten as

AA = —i é:it cos X, (27)
BB = —Qiy,uAth cos X, (28)

from which we can write the invariant integral of motion
@t _ @B _ (29)

Once again we have

s ASTIBY [on T
AA = ——é-x—p EE 1/ ] cos <Xo + Z) . (30)

Assuming crossings with uncorrelated phases, we can write

82/,L2A23_2_32t T 20

A*— A% = . 31
0 QZ22s+2t  |xU| 27 [vg (31)
Averaging over crossings leads to
dAz 2,2 AZs——ZB‘Zt
5 (82)

a0 Q22252 (s 4 t) Av |sinvsbp)|



Using (29), we find

QA2 s A%s—2 (&)t [—Q—%A—Z — Cz]t

dg — Q22%+2 (54 t) Av|sin 6| (33)

which leads to a slow increase of A% with 6 as the result of many crossings in the form

[ ()

= - . 34
(42" (42— sg2)' QI o+ 1) Av[sin v (34)

Ag

For s 4+t > 3, the left side remains finite even if A — oo, implying more rapid than
exponential buildup, including infinite A even for finite 8. Clearly our assumption of a
single multipole term is no longer valid, and amplitude dependence of the tunes must be

included from terms with A = 0 and even k and 4.

4. Many Resonances in the Same Vicinity

Let us now consider all multipole terms of a given order, such as 10*, where the

corresponding terms in the Hamiltonian will be of the form
Hyp = p1o (wlo — 4528y% + 21025y* — 2102%y5 + 452%y° — ym) cos ho (35)

constructed so as to satisfy Laplace’s equation for the magnetic field. In this case, reso-

nances can occur in 10" order if

10v, =h
8vg +2vy =h
6v, +4vy =h
dv; +6vy = h
2up + 8y =h
10vy =h

(and in 8 6%, 4th 9% order as well). For the case h = 4 (modulus 10) and a tune near
4, .4 (modulus 1), 6 resonant lines will cluster near .4, .4 as shown in the Figure, and
even a small excursion of the trajectory in the tune space can cross several resonances. For

example



Siet 7.))1 <4

with QP = 2Av > /2 (vz — vy), we may cross 5 or 6 resonances on one half swing. Thus
the diffusion constant in (25), (26), (32) may be increased by a factor of order § (%ﬂ) if
the phases are uncorrelated. A more precise estimate requires knowing the values of Ag

and By, as well as the overall multipole coefficient.

5. Conclusion

It appears that the diffusion constant due to resonance crossing is 1) independent of
vs and 2) inversely proportional to Av. For small |v; — vy| many high order resonances
can be crossed with a small Av, further enhancing the diffusion rate. The seriousness of

the growth depends on the specific values of u, Ay, By.



