

BNL-101793-2014-TECH AD/RHIC/RD/11;BNL-101793-2013-IR

Acceleration of Pb Ions in the CERN SPS

K. Prelec

August 1988

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AD/RHIC-RD-11

.

Acceleration of Pb Ions in the CERN SPS

· · · ·

1

į

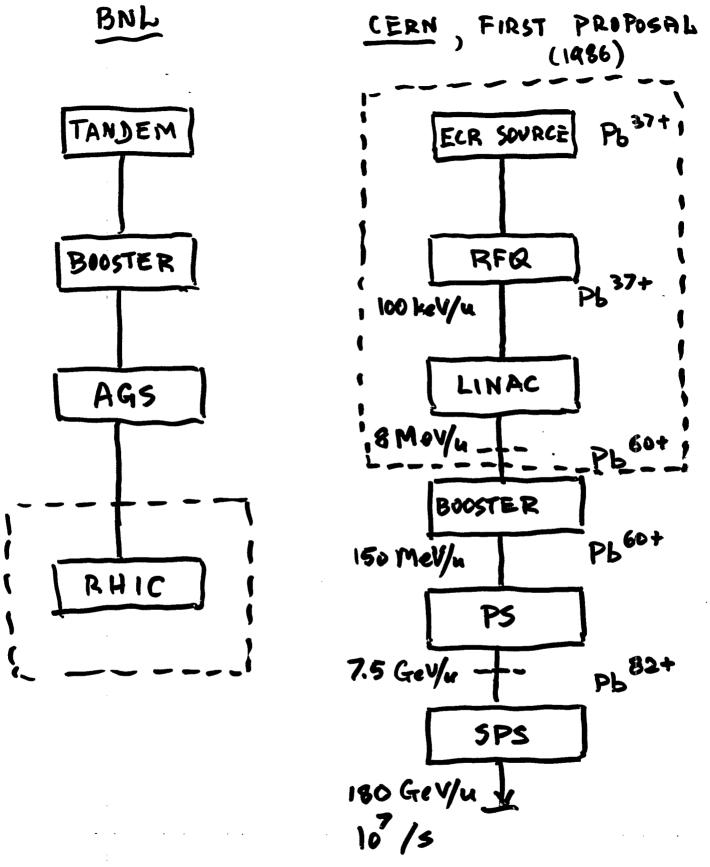
.....

.

;

1

!


.

Dr. Krsto Prelec BNL

ACCELERATION OF PL IONS AT CERX

FIRST PROPOSAL: R. STOCK,	R. Bock , SEPT. 1986
PRESENT SCHEDULE: SUBMI	T PROPOSAL LATE 1988
DECISION : MID	1989
PROJECT LEADER	H. HASEROTH (0/88
SECRETARY (SCIENTIFIC)	U. TALLGREN
SOURCE	C. HILL, R.GELLER
RFQ, LINAC 4/88	M.WEISS, D.WARNER, da
VACUUM	M. BROUET, A. PONCET
RF	NASSIBIAN, C. 2ETT LER
_	K. SCHINDL of al.
	P. TÊTU, U. RAICH
PS PROBLEMS	R. CRAPI
COORDINATION, GEN. PROBLEMS	H. HRSEROTH
	T.R. SHERWOOD
RBOUT 25-30 PEOPLE CONSULTANTS	, SEVERAL DUTSIDE

SO FAR 7 MEETINGS AND I WORKSHOP

	lon so	URCE		
	REQUIRED	SUFFICI Relinbl	CHARGE STATE ENT INTENSIT LE OPERATION DLE WITHIN 3 FROM OUTSIDE	YEARS
	GENERAL PROPERTI SOURCE TYPE	·	ION SOURCES	
	"HIGH CURRENT"	Low	1-100 mA) year
	PIG	MEDIVM	0.1 - 5 mA	I YEAR
¥	EcR	HIGH	0.01 - 0.5 mA	3 years
	EBIS	VERY HIGH	0.1 - 1 MA	(for Ha))3 YEARS

- · · · · · · · · · · · · · · ·

. . . <u>.</u> . <u>.</u> .

1

SELECTED ION SOURCE : ECR

ASSUMED

PARAMETERS :

1986

30 GH2, Pb 37+

1987

30 GHZ, Pb 35+ 30-40 MA (GELLER, private comm.)

1988

20 GHz, 6 kW, Pb³⁰⁺, 30 MA (GELLER, WORKSHOT 1988)

FINAL DESIGN PARAMETERS Phone 30 MAR (MAY 1988)

	(GELLER, 1988 CERN WORK	5#07)
EXISTING	10 GHZ 0, 100 MR	
	0.5 kW	
	15 GHz S12+ 30 MA	
	15 GHz S ¹²⁺ 30 MA 2 hw Rr ,	
EXTRAPOLATION)	
XIKOPULOIO	20 GHZ Pb 30+, 30 AA	1
	6 kW	
	REQUIRED : 3 YEARS, 2M	5
:	30 GH2 Pb 30+, 30 MA	
	3 kw	
	(UNCERTAIN EXTRA POLATION)
30,-A →	1 p/A -> 6 × 10 12 5-1 of	P630+
INJECTIO	N INTERVAL 400 MS	

•

.

REPORT ON DUBNE HEAVY ION SOURCES (SHERWOOD, JUNE 1988)

LASER SOURCE Li, 2×10¹¹ part. from Linac CO2 LASER 15,45 C⁶⁺, 10¹² from source 2×10¹⁰ from Linas 3/5 Mg, 10 from Linac, after stroppin

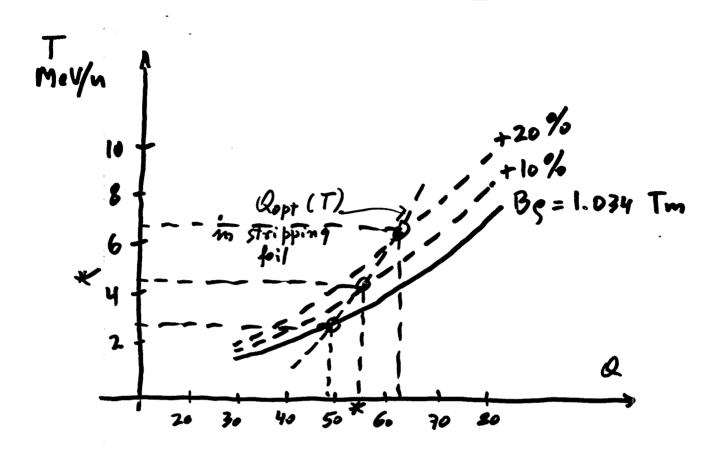
A CRATER FORMS AFTER = 1000 PULSES

EBIS SOURCES

· OPERATING SOURCE 10 CHARGES / PULSE (FOR Pb 30+ = 10 PART. /PULSE)

SOURCE FOR ATOMIC FULLY STRIPPED Xe PHYSICS (LOW INTENSITY)

• TEST BENCH SOURCE, HOPE: FULLY STRIMED U


RF& ANJ NEW LINAC

LOW ENERGY END: Pb³⁰⁺ INJECTED FROM THE ECR SOURCE FINAL : Pb²⁵⁺ TRANSFER : 0.25 MeV/4 HIGH ENEDGY END : Pb³⁰⁺ BEAM STRIPPED AND INJECTED INTO PSB

TWO REQUIREMENTS TO BE SATISFIES SIMULTANEOUSLY

- OUTPUT ENERGY (FROM LINAC) AND CHARGE STATE ATTER STRIPPING SHOULD MATCH THE EXISTING TRANSFER LINE RIGIDITY WITHIN 10%
- OUTPUT ENERGY SHOULD BE MATCHED TO THE OPTIMUM CHARGE STATE IN FOIL STRIPPER

CONSEQUENCE: FIRST PROPOSAL FOR INJECTION OF PL^{GO+} AT 8 MeV/U INTO PSB HAD TO BE CHANGES BECAUSE IT WOULS REQUIRE 40% HIGHER RIGIDITY

DESIRED : • AS HIGH A CHARGE STATE AS POSSIBLE TO INCREASE SPS INJECTION ENERGY AND REJUCE # OF HARMONIC JUMPS

SELECTED: • LINAC OUTPUT ENERGY 4.2 MeV/4 INJECTION LINE RIGIDITY 1.034 + 11% (HARGE STATE 53+ (WHY NOT 54+?)

TO BE DECIDED: RFR DESIGN (NOT A PROBLEM) TYPE OF LINAC

	TRANSMI	SSION IN	THE PSB	-
. .	PRESENT	VACUUM	3 ×	-8 10 torr
	IMPROVED	VACUUM		-9 torr .400-700 kSFr)
	STUDIES VRE / LOSS			OSSES DUE TO
	FRANZKE	(GSI)		
	BARON	(GANIL)		
	Gould	(LBL)		
MOST	RECENT	RESULTS	FOR Pb	30 + (TRANS MISSION
	G 51		LB	L
	SLOW	FRST	SLOW	FAST
-9 10 tor	- 77%	83%	68 %	76 %
SELEC	TED : Di		- WITH BUNCH	
INJEC	TION		4	.2 MeV/4
EJEC				Mev/k

• •

т Т	TRANSMISSION IN THE PS			
		LINE RIG	2MINED D GIDITY	y THE
- - -			T =	96 Mev/m
CAPTU	RE		h =	20
	IO BOOSTE R PS B	R BUNCHES Ucket)	•	
				53+
	•			Pb
PRESENT VACUUM	5.3×10 +			
-		G 51	LBL	
	SLOW	FAST	SLO W	FAST
PS		7%	67	
P58 + P5	52%	56 %	46 %	51%
IMPROVED	_10 8 × 10 +++	4		
VACUUM		-		
- :	G	51	LBL	•
:	SLOW	Fast	SLOW	Fast
۲۶ ۲۶	94	%	94	15
PSB+ PS	72%	78%	64%	२।%

. .

.

ACCELERATION IN SPS INJECTION ENERGY LIMITED BY (BP)min IN SPE AND BY (BP)max W PS FOR 1.2 5 Cycle. ALSO, Y+ SHOULD BE AVOIDED (Y+ = 6.1) TENTATIVE PARAMETERS:

INJECTION ENERGY 4.16 GeV/M

ONE HARMONIC JUMP

FREQUENCY SWING 0.5%

	ESTIMATES SPS 1	NTENSITY	
SOURCE OUTPUT		30 AR OF P625+	
# 0F)		URCE, PER SPS PULSE	
N =	4 × 30 × 10 × 400 × 1.6 × 10 -19 × 25	10^{-6} = 1.2×10^{10} Pb toke	
		ES PER SPS PULSE	
TRANS	MISSION LOSSES	-	
	RFQ	0.9	
	LINAC	0.9	
	I. STRIPPING	0.16	
	PSB	0.35	
	PS	0.7	
	SPS	0.4	
	2	1.27%	
SPS	NTENSITY : 1.5 x 10	/ pulse	
VSER	REQUEST : 5 × 107	/ pulse	
cf.	OXYGEN 1.6 × 10 SULPHUR 5.6 × 10 ⁷	PEAK, 1.2 × 10 RVERAGE PEAK, 10 ⁷ AVERAGE	
	:		

.

· - .- .