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Abstract

The Fokker-Planck equation is derived to describe the time evolution of the longi-
x;tudinal dens;ity distribution of a bunched hadron beam in the iaresence of intrabeam
scattering. A computer program has been developed to numerically solve this equation.
Both the beam loss and bunch-shape evoiution are investigated for the 197A4 79+ beams

during the 10-hour storage in the proposed RHIC collider.



I. Introduction

The problem of intrabeam scattering, namely the Coulomb interaction between the
particles in a beam, has been explored by many authors. Most of the theoriesl—4 devel-
oped on this subject are concerned with the growth of the rms beam dimensions under the
assumption that the particle distribution remains Gaussian in both transverse and lon-
gitudinal phase space, often disregarding aperture limitations and particle loss. Previous
studies® using this kind of theory indicate that during the 10-hour storage of the intense
heavy-ion bunches in the RHIC, the growth of longitudinal bunch area and, consequently,
the requirement on the rf voltage, are of primary concern. On the other hand, because
the bunch area is in most cases comparable to the rf-bucket area, it is expected that
particle loss through the edge of the rf bucket is appreciable. Under this circumstance,
intrabeam-scattering calculation without taking into account the beam loss might not be
adequate to describe the bunch behaviour.

This paper presents a new approach to the problem based on the Fokker-Planck
equation®1? for the density distribution function of the particles of the bunched beam
in the presence of intrabeam scattering. Section II introduces the simplified transport
equation which, in terms of the action variable J, describes the time evolution of the
longitudinal distribution function. Both the dynamic friction and the diffusion coefficients-
are obtained in terms of the distribution function itself. A computer program is developed
to solve the transport equation for given initial distribution and boundary conditions.
Section III briefly #ddresses the numerical method used to evaluate the beam loss and
to obtain the instantaneous particle distribution. Results are applied in section IV to
the bunched beam of fully-stripped gold ions during the 10-hour storage in the RHIC

collider.



I1. Theoretical Approaches

A. The Fokker-Planck equation

A well known approach to the problem of treating changes in a distribution function
resulting from frequently occurring “events”, each of which produces a small change in the
configuration of the particles, is to use the Fokker-Planck equation. Let z, 2’ = % and
Y, ¥y’ be the horizontal and vertical displacements and velocities, respectively, and z the
azimuthal displacement along the closed orbit. The longitudinal motion of the particles
can either be described by the rf phase deviation ¢ and the energy deviation W = AE/hw;
or, equivalently, the action-angle variables @ and J.!* Here % is the harmonic number,
AE is the deviation from the synchronous energy, and w, is the synchronous revolution
frequency. .

Longitudinal distribution function ¥ r(z,z’,y,y’, @, J;t) is defined as the number of

particles per unit volume in the 6-dimensional phase space. The Fokker-Planck equation

gives time rate of change of Y7y due to intrabeam scattering in the laboratory frame as
0¥ 0 (Az®)e) 1 &2 (Az*Az) o\
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where the time interval Atf, as observed in the laboratory frame, is long compared with

the correlation time of the intrabeam-scattering process but short compared with other
time scales. Az* is the increment of z# during At. ( )¢ indicates the average over
collision events. The derivation of this equation is based on the justified assumption that
the distant collisions are of predominant importance, which implies that small changes

in z# are the most probable and that terms involving higher powers of Az# contribute
BQ’T’L
ot -

Rewrite the distribution function as the product of the longitudinal and the normal-

negligibly to



ized transverse distribution function,

‘I’T’L(ZB, xl) Y, yl) Q: J7 t) = PH(-T, :L"; t)pV(y’ yl; t)\I,L(Q) J7 t)? (2)

where H and V refer to the horizontal and vertical dimensions, respectively. The 6-
dimensional Fokker-Planck equation can be reduced to a 2-dimensional equation by in-

tegrating both sides of eq. 1 over all the transverse variables z, 2/, y, and v/,
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(3)
Hv=Q,J,
where the subscript T' denotes the average over all the transverse variables.
The time for intrabeam scattering to produce appreciable effect (or the time of re-
laxation) is typically much longer than the synchrotron-oscillation period, which is again
much longer than the correlation time of the collision process. In this case, eq. 3 can be

further simplified by averaging over the angle variable @ for one synchrotron-oscillation

period,
o¥(J;t) 8 ~fDT)ore) | 1 MATY ) ere
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where the subscript @ denotes an additional average over @, and AT corresponds to a
time long compared with the synchrotron-oscillation period, but still short compared with -
the relaxation time. ¥(J;t) is the averaged distribution function in longitudinal phase
space expressed in terms of the phase-space area J enclosed by the particle performing
synchrotrop oscillation.

For the examination of eq. 4, the coefficients must be expressed in approachable forms.
Consider the Coulomb interaction of a “test” particle with the “media” particles of the .

beam. Using the action-angle variables, the longitudinal equations of motion of this test



particle can in general be described by

. Q)
@ = 57T A

AJ (5)
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where the synchrotron-oscillation frequency €, is a function of J only. For simplicity, the
angle variable Q) is normalized to 1 so that J presents the phase-space area.

AA? and i_i are the time rates of change in Q and J due to the collisions.

Since the change in distribution is small within one synchrotron—oscﬂla,tlon period, both

A AJ . 1 . L . .
73% and A can be written as periodic functions in Q. It is thus straightforward to

verify that the average of these qua,htities can be expressed as

In eq. 5,
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and
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The subscript 0 in egs. 7 and 8 implies that the integration over @ is performed along the
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contours of particle motion in the absence of intrabeam scattering for one synchrotron-
oscillation period. |

As aresult of these considerations, the Fokker-Planck equation can finally be simplified
as a partial differential equation in J and ¢ with simple coefficients for the determination

of the distribution function ¥,
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The boundary condition to this equation is that ¥ vanishes at the separatrix J, and that

the flux vanishes at J = 0, i.e.

D oY

—0- 0
J=0: F\I!+26J

0,
(10)
J=J: T=0.

The coefficient | D of diffusion is alway positive, indicating the tendency of bunch-area
growth due to intrabeam scattering. The existence of a non-zero coeficient F© of dynamic
friction reflects the non-uniform environment seen by the test particles in velocity space.
Both F? and D are dependent on the particle distribution itself. Their explicit expressions

will be derived in the following subsections.
B. The canonical transformation

The increment AJ in the action J of the test particle can be related to that in the
energy deviation W by a transformation. In terms of ¢ and W, the longitudinal equations

of motion become

W = 1Y (a4 + ) —sing + 27 AW

o (11)
¢ = Eﬁ?

W

where V is the peak voltage, n = 1 /7% — 1/7%, 71 is the transition energy, E = Amjcty
and fc are the synchronous energy and velocity, respectively, and ¢ and A are the charge
and atomic number of the particles. For simplicity, the synchronous phase ¢, will be
taken as 7, which represents the storage mode above transition in the RHIC.

Regarding the rate of energy increment AW due to intrabeam scattering as a per-

At

turbation, the unperturbed particle motion is derivable from an Hamiltonian

H($, W) = CyW? + Cy sin? g (12)



where

h?win qef/
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may be time dependent. The transformation to the action-angle variables may be achieved

Cw

by means of a generating function of Goldstein’s second type,!?

¢ J ’
Fy(, J51) = / \/2—;@ / QS(J')dJ'——g—;sinz i;-d¢'. (13)

Obviously, the action variable J is an invariant of motion in the absence of intrabeam

J= ]( Wdg = s\/;%— (8% — 1)K (k) +ER)], k= \/c% <1, (14)

2 dt Z
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are the complete elliptical integrals® of first and second kind. The synchrotron-oscillation

. 7y/CwC,
Q=270 =V % g

oK) P (16)

is a monotonic function of J. At the boundary (separatrix) of the stable region, J =

8/5%, and Q,(J) = 0.

The contribution

scattering,

where

frequency

from intrabeam scattering is a function of ¢ and W of the
test particle. This part is not derivable from an Hamiltonian. Due to this contribution,
the action J generally increases with time, which results a growth in bunch area. Using

eq. 14 and the canonical relations, the rate of increment in J can be expressed in terms

AW
At

of as

AJ oW AW
At dT |, At

It follows from ref. 11 that the coefficient in eq. 17 can be written as a series expansion

(17)

using the order parameter ‘
£ = expl-nK(F)/K(R)], K'(k) = K(VI= )
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where k is a function of J only (eq. 14). Note that ¢ becomes significant only near the

=8k K(k) cos2rQ |1 —4¢sin’ 2rQ + O(¢?)] (18)

separatrix (fig. 1 in ref.11).

C. Rutherfold scattering in the rest frame

It is convenient to evaluate the rate of energy increment in the rest frame of the

At
synchronous particle where the motion of particles in the bunch is non-relativistic. The
four components of the momentum vector in the rest frame can be expressed in terms of

those in the laboratory frame by means of the Lorentz transformation,

( ﬁm,y = pxr‘.’/’
J _ Amge Ay,
pz ~ v 19
B v (19)
| E =~ Amgc?,

where the bar indicates the value in the rest frame. B and v again represent the syn-
chronous values.

Let u = ¥; — ¥, denote the relative velocity between the test particle 1 and a me-
dia particle 2 in the beam observed in the rest frame. u = |u| is related to the three

momentum components in the laboratory frame by

Api  Ap\’
um ﬂc\, (52 - 22) yn(ag e 42— i (20)
To evaluate R Rutherford’s formula is used for the cross section of the Coulomb
scattering,
4,4
g'e
0) = : 1
o(w,9) A?m2utsin® 9/2’ (21)

where 6 is the angle through which the velocity vector u undergoes a rotation during

the collision. Integrating over both 8 and the azimuthal scattering angle, the change in

8



the longitudinal component of the velocity of the test particle and its square per unit

rest-frame time can be shown as

2
ul +ul
3

(A’l_)zl)g =-2I' =2 and ((Aﬁz)f)g =T

U
u3 3 k) (22)
where
4 4L Hmin
I‘Ew LogE—lnsin—z—,

A?m?
and O, is the minimum scattering angle. The Coulomb logarithm Log can be verified
to be much larger than 1. This fact implies that the Fokker-Planck equation is a good
approximation to describe the particle motion. Because of the insensitivity of Log to the
precise value of u, a fixed value of 20 is currently designated to Log to simplify further
development.

Based on the results of eq. 22, it is possible to evaluate the time rate of average energy
increment of the test particle in the laboratory frame by integrating over all the velocity
components of the media particles involved in the collision (z2 = z1 and ¥, = 1),

AW 1 BE
( )C — __'8_ dx,’BZP:Dﬁ-’E' (:l:ﬁg, 33)'@2, t) dyépyy’(y% y§1 t)
At v hwse B

%R / AW, [T (1, Wa)] (AB,1 e,
(23)

(AW))e _ 1(BE
At v \ hw,c

2
) / APz, (T2, Toi ) / dyapuy (Y2, Y3 t)
; .
5 | W (6, Wl (85 B,

Note that the horizontal displacement of the particle from the closed orbit is the sum of

the contribution of betatron oscillation and momentum deviation,

A A
z=uzg+ a:p?p, and z'=azp+ x;?p, (24)

where z, is the horizontal dispersion function. The three integrals in eq. 23 refer to

the horizontal, vertical, and longitudinal components of velocity of the media particles,

9



respectively, and 2rR is the circumference of the machine. Obviously, the evaluation
of the first two integrals requires the knowledge of the transverse distribution which is

generally time dependent.
D. Evaluation of the dynamic-friction and the diffusion coefficients

According to the previous studies® on intrabeam scattering, the transverse emittance
of the beam is expected to be much smaller than the transverse admittance during the
entire 10-hour period of operation in the RHIC. Beam loss in transverse direction due to
intrabeam scattering is therefore negligible. Under this circumstance, the distribution in
horizontal and vertical phase space may be assumed as

B ,/1+a_,2, . _1—{-043: _ﬁ_}_ 20,251 + zf

'
Pz’ (xﬁy SCﬁ,t) = :
B 2
27‘0:::,30:5,’3 2 03,3 \/1 +a30-’t‘paz'ﬁ Ozg

', _ Vit 1+ay [y 2045y’ y"
Py (Y, Y3 1) = oo €Xp | + e += 1.
TOy Oy O'y J1 - ayg’yg'y, Oy

The time dependence of the transverse distribution can be expressed through the nor-

(25)

2

malized transverse emittance ENz,ys

BayeNzy(t) (1+02 y)eNx,y(t)
Oz =\/—’—’—, Ot gt = : , 26
p 68 Y 687 Bz ( )

where ;. and oy, are the Courant-Snyder lattice parameters. The time variation in

€Nz, 18 in principle determined by the instantaneous bunch configuration under intrabeam
scattering.

Based on the above assumptions on the transverse distribution, the evolution of the
longitudinal distribution function can be determined by the transport equation (eq. 9)

under the boundary condition (eq. 10). Define dimensionless quantities

K:l(_A_P}__A_]?z>, a,:l 6,37,33,3/’ b=
Y Db p 2 €Nz.y

10

K
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Substituting egs. 17 and 23 into eqs. 7 and 8 and employing the above definition, the
coeflicients F° and D can finally be obtained by integrating over all the transverse com-

ponents (zp1, Tp;, Y1, and yi) of the test particle,

Py = [ 22 [Fag %‘f,’ (@', ) [Ar () + Ap(s2)] ¥(J)d T,

m‘n aj
(28)
and
o= 12 Fraa |27 00| [7 | (@) (o) + Anen w0,
~J 7R ar|, ~v ,,,,,,aJ P T ADLE
(29)
hw;
where K15 = ’)/,BL:E(W F W'), and
U 1BE R 1 1
Ar(k) = 2F7 hwsc R (Bey)? 470,40, Ie(x),
2 (30)
_ 1(BEN*R 1 1
Ap(x) = ny (hwsc) YR Beydmo,,o, In(x).

The first integral in eqs. 28 and 29 represents the average over the machine lattice;
the second integral represents the average over synchrotron—oscillétion period; while the
third integral describes the contribution from particles of different action J’ involved in
the collision. Fig. 1 shows that for given J and €}, the integration over J' is performed
such that k(J')sin 2rQ’ = sin [¢(Q, J)/2), extending from J,,;, to the separatrix J, with
E(Jmin) = [sin¢(Q, J)/2] . It is evident that the time dependence of F° and D is governed
by the instantaneous longitudinal distribution function ¥ and the transverse emittance.

For a round beam with f8,/en, ~ By/€eny on the average, the quantities Ir and Ip in

eq. 30 can be obtained in integral forms,

In(r) = 4ay A /00 e~ E(r)pdp :
o [ by X[+ b+ 2

(31)
o = dax e e”pdp o ME(r)
In(x) 7 Jo Kp+mt+pﬁ[K() (p—02+A2]’
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Figure 1: Integration in longitudinal phase space.

where

4b : 2

P ZpYt

A = = |- d = —_ —— . 2

vman v o] e"p[ (2%” #2)

If, as in many cases, B,z + oy, ~ 0, the integrals in eq. 32 can be performed to yield
P P &

simpler expressions in terms of the error function P,

Ir(s) = 2d’sgn(r)x {1 - v7Ae” [1 - 2(M)}

(33)
In(s) = ax{vr(l+2X)e [1-2(N)] -2},

where sgn(«) is 1 if £ > 0, and is —1 if otherwise. y represents the damping effect of the
dispersion 1z, on the diffusion process. Intuitively, the dispersion effectively increases the
transverse beam size o, 5 by the amount ZpTap/p- The diffusion rate is therefore decreased
accordingly.

Analytical solutions to the non-linear partial differential equation (eq. 9 with eqs. 28,
29, 30 and 33) with the boundary condition (eq. 10) and the initial condition ¥(J;0),

are in general difficult to obtain. Fortunately, computer algorithm can be developed to

12



numerically achieve an iterative solution ¥(J,¢). Once ¥(J,¢) is known, both beam loss

and particle distribution in longitudinal space can be readily obtained.
II1. Computer Techniques

The computer program originally developed for the investigation of the bunched-
beam stochastic cooling!! has been modified to study the intrabeam scattering. First,
the J-space (0, J ) is equally divided into N; bins of width AJ. Assumed as a truncated
Gaussian in phase space, an initial distribution ¥(J;,0), i =1,---, Ny, is then generated.
The evolution of the distribution function ¥(J ;1) is obtained by numerically iterating
the transport equation which is written in a difference form, while keeping the boundary

Ny
.condition satisfied. The change in bunch area, i.e. the first moment O L¥(J)AT) in

i=1
Ny
J, is used to obtain the growth rate, while the zeroth moment O U(J)AT) in J is used
. i=1
to determine the particle loss.
During the entire period the distribution in transverse phase space is assumed to be

Gaussian. The instantaneous rate of change of the transverse emittance is provided by

the standard intrabeam-scattering calculations.
IV. Application to the RHIC

Once the transport equation and the c.omputer techniques are developed, the problem
of beam life-time and bunch-area growth originated from intrabeam scattering can be
readily approached. In this section, we apply the results to the storage of heavy-ion
beams in the RHIC collider.

The heavy-ion beams will be stored in the RHIC for experiments at the energy of
100GeV per nucleon using the 160 MHz, A = 2052 rf system. Consider the beam of

one of the highest charge-state ions 1°”Au™* in the RHIC where intrabeam scattering is

13



expected to be the severest. Each of the 57 or 114 bunches circulating in the ring contains
10° particles. With the currently designed lattice, it is assumed that ﬂT,y ~ 25m, and
that 2,/1/B; ~ 0.22m'/2. The initial bunch area is assumed to be 0.3eV-s per nucleon.
In the following, we study several operational scenarios for the RHIC storage using
either a constant rf Vqltage, or a voltage programmed to achieve the so-called “tight

bucket”, with or without the initial blow-up of the transverse emittance.
A. Constant voltage‘ with initial emittance blow-up

For the purpose of minimizing beam growth and luminosity variation during the
storage, it is suggested that the transverse emittance should be initially blown-up to
a normalized value of 60mmm-mrad. Thereafter the growth in transverse emittance is
small.14

Keeping the peak rf voltage at a constant value of 4.5MV, fig. 2 shows the time
evolution of the distribution function ¥(J) in J during the 10-hour period of operation.
The: area of the rf bucket is about 1.5eV-s/famu. The initial time ¢ = 0 corresponds
to the moment that the ion bunches are transferred from the h = 342 f system for
acceleration to the h = 2052 rf system for storage. Fig. 3 shows the initial and final
line-density distribution as a function of the azimuthal displacement (4) along the ring.
It is indicated in fig. 4 that beam loss becomes significant after about 3 hours when the
bunch area is comparable with the bucket area and, at the same time, when the growth
in bunch length o starts to saturate (fig. 5). The total beam loss during the 10-hour
period is about 20%. |

It is observed that the final distribution in longitudinal phase space (¢, W) is Gaussian-
like, independent of the initial distribution. The final ratio of the bucket area to the

average phase-space area (J) of the beam is about 3~4, which again depends weakly on

14
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Figure 2: Evolution of tihe longitudinal distribution function ¥ as a function of longitu-
dinal phase space area J. (t=0, 2.5, 5, 7.3, and 10 hour).
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Figure 3: The initial and final density distribution along the azimuthal displacement ¢.
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Figure 5: The growth in rms bunch length due to intrabeam scattering during the 10-hour
operation.
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Figure 6: The final beam survival rate as a function of the peak rf voltage for the 10-hour
operation using a constant rf voltage.

the initial conditions. During the operation the rms bunch length o; varies from about
12cm to 27cm.

Figs. 6 and 7 show the final beam survival rate and bunch lengths as functions of the
constant peak voltage. A larger peak voltage provides a larger bucket area which allows
a larger bunch. Both the loss rate and the growth rate of this larger bunch are smaller.

Therefore, the total beam loss reduces with the increasing peak voltage.
B. Tight bucket with initial emittance blow-up

If a constant bunch iength is required during the operation, the rf voltage has to be
programmed to accommodate the beam growth due to intrabeam scattering. The “tight
bucket” condition resulted from this programming implies that the ratio of the bucket
area to the bunch area is a constant.

The criterion for the ;voltage programming adopted in our computer calculation is that

17
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Figure 7: The initial and final bunch length as a function of the peak rf voltage for the
10-hour operation using a constant rf voltage.

the bucket area Ap is about 3.5 times that of the average area (J). Correspondingly, the
ratio of the maximum momentum spread Ap of the bucket to the rms momentum spread
oap/p Of the bunch ist about 2.5. The programming of the peak voltage to satisfy this
critérion is shown in fig. 8. During the early period of operation, the voltage increases
drastically to accommodate the fast growth in bunch area. Since the bunch area is always
comparable to the bucket area, beam loss is severe (fig. 9) during the entire period. The
growth rate decreases with the increasing bunch size and the decreasing beam intensity.

The required voltage réaches 4.5MV in 10 hours. The total beam loss is 50~60%.

C. Constant voltagé without initial emittance blow-up

The initial normalized transverse emittance without the blow-up is about 107mm-

mrad. Due to this small value, the beam grows appreciably in both the transverse and the

t The originally propoéed5 tight-bucket criterion is Ag/oa,/p = 2. However, this can not be realized
in the calculation when the beam loss at the boundary is taken into account.

18
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Figure 9: The beam survival rate during the tight-bucket operation.
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longitudinal directions. According to G.Parzen’s calculation,'* the transverse emittance
increases to about 347rr;nm—mrad in 10 hours.

With a constant voltage of 4.5MV, the beam loss in longitudinal direction is found to
be 40%. If a constant voltage of 11.5MYV is achievable, the beam loss will be reduced to
about 10%. |

D. Discussion

The calculation indicates that the most efficient and economical operational scenario
consists of using a constant peak rf voltage of 4.5MV during the entire 10-hour period
of storage with the transverse emittance initially blown-up to 60rmm-mrad. The total
beam loss is about 20%, while the luminosityjf, is reduced by about 40% in 10 hours
mainly due to this beam loss. The averaged rms bunch length is about 23cm.

The situation will be significantly improved if measures like stochastic cooling are

adopted.
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