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I. Intr-ducti - n 

1 In the Proceedings of the Workshop on the RHIC Performance,l it was 
stated that the transverse mode coupling instability2' 
tial intensity limitation for protons. 

posed a poten- 
This was based on the expression 

where Et is the total energy, q the charge state, Qs the synchrotron 
tune, < 81 > the average beta function, R the machine radius, and o~ the 
rms bunch length of a Gaussian distribution in longitudinal phase space. 
For a < 81 > of 55 m and 10l1 protons/bunch, the allowed impedance Zi 
for protons at injection, where Qs = 0.11 x would be less than 1.2 
Mil/me 
1.2'0 assuming the simple relation 

This would correspond to a longitudinal broad band impedance of 

is valid (b is the vacuum chamber radius). On page 116 of the RHIC 
CDR*, a plot of the calculated (Z/n)l I We see that for a cop- 
per plated vacuum chamber the imaginary part of the impedance is ~ 1 . 0  62. 
However, not all of the circumference will contain the plating and the 
effect of all the vacuum chamber discontinuities may not be accounted 
for in the calculations used to obtain the Z/n plot. Hence the 
expressed concern of the study group. 

is shown. 

The purpose of this report is to discuss the consequences of two factors 
that were omitted in applying Eq. 1, which comes from the ZAP13 program, 
to RHIC. These are the space charge impedance and the incoherent tune 
spread of the beam. 

r 

4 
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11. General Description of Mode Couplinq 

Equation I is an expression for the bunch current required to pro- 
duce a coherent frequency s h i f t  of the transverse mode m = 0 equal to 
the synchrotron frequency w s  when the imaginary part of the transverse 
impedance 21 is assumed to be frequency independent. In general, the 
frequency of the mth mode is given by3 

r 

where w~ is the incoherent single particle betatron frequency and the 
coherent frequency shift is 

with hm(w) = Xm (0) Xm ( w ) .  

the oscillating part of the 
Here the X's are the Fourier transforms of 
charge distribution. Now m can be O , . ?  1, f 

2, f 3 ,  etc., and mode coupling occurs if the frequency of a given mode 
approaches that of another mode n. In that case, a cross term nurnn is 
involved in the stability analysis as well as Aw,, awn (i.e., one must 
evaluate the sum over Zl with hmn = A, Xn. 

Now in electron storage rings 7 is very large so that only the broad 

band impedance contributes to Zl. Because they require large rf vol- 
tages to make up for the energy losses due to synchrotron radiation 
w s / 2 7 t  is large, i.e., 10 - 20 KHz. In addition, the bunches are very 
short so that the spectrum of the m = 0 and m = k 1 modes sample Zl in 
the region where the broad band impedance peaks. This is shown in Fig. 
1. As a result, the m = - 1 mode sees predominantly a capacitive impe- 
dance while the m = 0 mode sees an inductive Zl eff. 
ent frequencies merge as shown. 
where the imaginary part changes sign the Awol  term which depends upon 
Re Zl is at or near a maximum and consequently, the growth rate of the 
instability is largest for this situation. In this case, Eq. 1 is 
optimistic since the m = 0, - 1 modes would actually merge at a lower 

Thus, their coher- 
Since the real part of Zl is largest 
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B 

current than it predicts. 

In the case of a proton storage ring like RHIC where the bunches are 
long, the m = 0 and 2 1 modes sample that part of the broad band impe- 
dance where Zl is inductive so that the num move is the same direction 
with intensity but with a.slope = to (!mi+ 1 ) ' l  for a longitudinal phase 
space distribution = (1 - r2) (see Fig. 2). Hence the m = 0 and - 1 

modes would cross at twice the intensity given by Eq. 1 for a given Zl. 
Actually, the two mode frequencies are given by the determinant of a 2 x 
2 matrix:5 

(5) = o  

so that for m - n = odd (5a) 

X1,2  = 1/2 (m + M,, + n + Mnn) k 1/2 J(m + Mm - n - Mnn)2 - 4Mmn 2 

Hence, when the two mode frequencies approach each other, one of the 
roots develops a negative imaginary part, i.e., one mode becomes unst- 
able. The growth rate becomes a maximum when the uncoupled mode fre- 
quencies are equal. 
restored (Fig. 2 ) .  

At even higher intensities,, stability can be 
However, the other mode pairs can become unstable.5 

These results are for a beam with no tune spread. The matrix ele- 
ments are all real quantities for the broad band impedance and ut * 0 
i.e., when n = m, hmn is an even function of up, so only the imaginary 
part which is even in up contributes to these elements. On the other 
hand, when (n - m) is odd, hmn is also an odd function of wp so that 
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9 

only the real part of Zl contributes to the off diagonal elements (n - m 
= 1). Hence, in the case of long bunches, the maximum growth rate which 
is proportional to Mmn is also quite small (at least for the lower order 
modes) but of course, us is also small ip proton machines. 
discuss the effects of tune spread due to octupoles in a latter section. 

We shall 
~ 

The fact that the Bum = Awm are real for the broad band impedance 
is the reason why for low intensities a single bunch is stable if it is 
the only impedance present. 

Even though the llcoherentll frequency shift Awm can put it outside of 
2 the incoherent band the net real impedance cannot produce growth if 

0, 

111. Mode Couplins in RHIC 

The first point to be made in discussing transverse instabilities in 
WPPIC at injection energies for Au ions and also for protons is that the 
space charge impedance will dominate the "broad band" impedance. It is 
given by 

- j ZoR 1 a 
1 q = ( - -  - 

7 2  P 2  a2 b2 

where ZO = 377 Q ,  R is the machine radius and a and b are the beam and 
vacuum pipe radii. If we assume an emittance of 20 x mm mrad for pro- 
tons and a jj = 30 m then at y = 31, we obtain a beam radius of 4.5 mm. 
We take b = 36.5 mm and since R = 610 m we obtain a Zl = - j 11.6 Mn/m 
for protons at injection. 
CDR* i.e., - j 64 m/m. Now for the wide band impedance we assume a 
(Z/n)l I 
Thus, the net Zl below the vacuum chamber cutoff frequency would be 
about eight times larger, but of opposite sign than the limit given by 
Eq. 1. 

Now if we use Eq. 4 to calculate the allowed bunch current or Zl 

For gold we take the number quoted in the 

= 2Q or twice the calculated value4 so that Zl = j 2m/m. 
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then we know that the modes m = 0 ,  Iml = 1 will cross when Owo = 2 w s  

(see Fig. 3 ) o  We can write 

or 

for E = 29 GeV; T R  = 1 1 . 0  nsec, = 30M, Zl = 9.6 Mca/mo This is a 
factor of five less than the design value and thus potentially repre- 
sents a serious intensity limitation! However, let us examine the terms 
under the square root in Eq. 5 keeping Fig. 3 in mind. If Mol << 6100 
then there is only a narrow range of Nb in which the instability can 
occur. 
it will indeed be small since for long bunches only the low frequency 
part of the broad band impedance will be sampled (see Fig. 2 ) .  

A s  M o l  depends only upon the real part of the total impedance, 

In order to calculate Mol, we must model the broad band impedance. 
We follow the argument of Zotter6 and write 

where QT z 1 and one has replaced all the effects of discontinuities, 
bellows, etc. by a single broad band resonator with a Or - cutoff 
frequency of the round vacuum tube. 
narkelf one can easily show that 1, Zl for w << 
Hence, our choice of 2Mn/m for the broad band impedance implies that RT 
= 2Mn/m here. 

Since RT is the real part at llreso- 
is essentially jRT. 
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We take X o  = sin (7rx/2)/(1 - x2) and 11 = cos (?rx/2)/(4 - x2) where 
x = O T R / T . ~  

+ 1) where y = 7rx/wr~~. 
function of w ,  we can replace the summation in Eq. 4 by an integration 
over ope With the aid of a partial fraction expansion, we obtain 
~ R T / ~ W ~ T R  for the effective 21 if W ~ T R  >> 1, 

For the real part of Eq. 7 we write Re(Zl)BB = yR*/(y4 - y2 
Since the broad band part of Zp is a smooth 

Now we note that the imaginary part of 2 1  for long bunches is 9.6 
MQ/m or 4,3 RT. 
have WrTR = 150 so that Mol << MOO or M11. 
current at which the modes 0, 1 cross then the unstable region is k AIb 
= .0165 Ib  (0, 1) wide. Referring again to Fig. 3 which is drawn for 
the Awm given by Eq. 4 for M 2 0 and I, Zi = - j X, we note that the 
next instability would arise for the m = 0, 3 mode intersection. Here 

the rate of change of the term (Moo - 3 - M33) is 50% greater than the 
previous case while the Mi3 term would be smaller since there is very 
little overlap of the X1 and X3 spectra. 
should be even smaller than the zero, one case. 

Next we assume f, = 2 GHz and with T R  = 11.8 nsec, we 
Thus, if Ib(0, 1) is the 

Hence the unstable region 

Next, let us consider the case for m = 2, 3 which would cross at = 
We note that the rate of change of the term 1.2 x 10l1 protons/bunch. 

(M22 - 1 - M33) with current is 1/6 that of the m = 0, 1 case while the 
effective real impedance in the M23 term is 48 RT/7 wr7R. One then 
finds that the width of the unstable region is k AIb = .085 Ib (2, 3) or 
k 1O1O protons/bunch since M23 = Re Z1/(1 + m) (here m = 2). 
intensity is increased the mode numbers become larger and the rate of 
change of the term (Mm - 1 - Mnn) which is = (m + 1)'l - (n + 1)-l 

becomes smaller. Although Mmn seems to decrease even though the real 
part of Z l  effective increases the width of the unstable region will 
increase. Hence, this instability could potentially be a barrier to 
high current beams. 
though at injection Qs fz 1.4 x vs 0.11 x for protons, since 
the space charge impedance is expected to be about six times greater 
than for protons at the same total charge per bunch. As noted above, 
these results are for bunches with no betatron or synchrotron frequency 

As the 

One would obtain similar results for gold ions even 
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I 

, 

spread. 
effect . 

Since both will be present in RHIC, we must discuss their 

IV. Tune SDread Considerations 

There are three sources of tune spread within the bunch; spread in 
us due to nonlinearities in the rf buckets: spread in up due to the 
space charge forces or due to external octupoles or higher order multi- 
poles. It has been shown that small spreads in us only reduced the 
threshold current since it permits the overlap to take place sooner.8 
Since the spread in us for the proton case is only about 6%, it will not  
contribute to stabilization of mode coupling. 

The predominant source of tune spread will be due to the incoherent 
space charge tune shift AQic given by: 

for a round beam in a round chamber. Here a is again the beam radius, 
Qo is the tune, Bo the bunching factor, e 2  is the incoherent magnetic 
image coefficient and g the magnet gap half height. For R/Qo we use < ,8 

> = 30 m and with a = 4.5 mm, g = 36.5 mm, c 2  = r2/24, we obtain AQic = 

- 1.3 x This shift is for a particle at the 
center of a bunch and with no momentum error. A particle at either end 
of the bunch and hence with no energy error will not experience any tune 
shift since the local density is 4 zero. Thus, the incoherent space 
charge tune spread is essentially equal to the maximum tune shift. 
Bo, we only considered the bunch width and not the peak to average ratio 
which for a-parabolic line charge would be 1.5. 
tllineartl tune shift given by Eq. 8, there are also nonlinear space 
charge tune shifts that produce a reduction in AQic for particles with 
finite amplit~de.~ This leads to the familiar necktie diagram for the 
incoherent tune spread shown in Fig. 4. Here one assumes zero chroma- 
ticity and we note that the shaded region is for particles at the center 

when N = loll, 7 = 31. 

For 

In addition to the 
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of the bunch. 
~. 

Now there is also a coherent tune shift due to image fields in the 
vacuum chamber. Again, for a round beam in a round chamber we havePo 

where el is one of two coherent image coefficients. The other, E Z ,  is 
not important when the ac magnetic fields do not penetrate the vacuum 
chamber. This is the change in tune that one would measure by kicking 
the beam and measuring Q as a function of N (assuming the contribution 
due to the broad band impedance and resistive wall impedance can be 
ignored). 
proportional to (AQ, - AQic) i.e., it is the shift of the coherent 
frequency away from the incoherent frequency Qic = w g / w o .  If we make 
the usual identification U = w o  (AQ, - AQic) then since'< = 1/2 here, 

The coherent frequency shift given fn Eq. 4 divided by u0 is 

-NPp Rwo 1 1 
u =  [ - - -  -1 (10) 

2 7 r ~ ~ 7 ~ ~ 7 ~ ~ ~  a2 b2 

Using the additional relation ZT = 47rj 7 moc Qo U/eIo one then obtains 
Eq. 6. 

If the simple criterion that stability is maintained as long-as 
(AWm/Wo) is less than the incoherent tune spread could be applied when 
the latter is due to the variation in space charge fields along the beam 
then many instabilities could never occur. However, this is certainly 
not the case in the AGS, CERN-PS, SPS, etc. Hence it cannot be assumed 
that this effect will help in the case of RHIC. It has been shown that 
the tune spread due to nonlinear space charge forces cannot of itself 
suppress instabilities. However, this effect im conjunction with exter- 
nal octupoles can provide the necessary Landau dampingell Hence, we 
shall discuss next the use of octupoles to control the mode coupling 
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V. Stabilization With External OctuDoles 

In this section, we shall make extensive use of the results of Y.H. 
Chinla. 
for including the effect of external octupole fields and hence nonlinear 
betatron tune spread into the matrix eigenvalue problem for the coherent 
tune of a beam. 

Using a Hamiltonian formulation he derives specific relations 

The determinant5 becomes 

For a Gaussian like distribution in betatron phase space, one has 

where E1(7) is the exponential integral13 and 

with 

s =  
8BP a ~3 

Here S is the tune spread due to the external octupole of strength 
< 8x2 a3B/ax3 > averaged over the ring. 
variable and the one in Flm refers to dipole oscillations and Qx is the 
unperturbed tune. 
average unperturbed tune with octupoles is Qx = Qx - 2s. 

I,, is the unperturbed action 

The coherent tune is Q and it can be shown that the 
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unperturbed tune, 
average unperturbed tune with octupoles is Qx = Q, - 2s. 

The coherent tune is Q and it can be shown that the 
d 

If one is interested in the stability of a single mode at intensi- 
ties where mode coupling is not important, then the solution of the 
equation (F1m-l - Mm) = 0 can be used to generate a stability diagram. 
For example, if m = 0, one obtains 

with 

x 

and X = QsMOO = (Q - Q,) the tune shift without tune spread. If one maps 
the complex X/2S plane on to the complex 7 2  plane he obtains the usual 
stability diagram shown im Fig. 5. The curve Pan(72) = 0 is then the 
stability limit. Note that T~ = 0 when Re(72) = 1, I ~ ( T ~ )  = 0 and that 
Im(1) = -Im(MOO) where Moo = A w o / w s  and Awo is given by Eq. 4. This is 
because Eq. 4 assumes oscillations of the form ejwt while Eq. 15 assumes 
e-iwt where w = Qwo is the coheremt frequency. 
reversed then the diagram is inverted about the x axis but the direction 
of increasing Quo is still in the positive y direction. 
relation sign 1m(7~) sign s = sign Im(w).l4 

If the sign of S is 

One has the 

Now it has been.shownl that there will be transverse coupled bunch 
instabilities in RHIC at injection due primarily to the resistive wall 
impedance. 

This instability will be controlled by a feedback system described in 
Ref. 4 ,  page 251. However, it will not be capable of suppressing a 
coupled mode instability. 

It is the space charge impedance that overcomes the nominal 
tune spread and the wall impedance that determines the growth rate. * 

Now, Eq. Pla has been solved for the following two cases S = 0-3 Qs 
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We find that 

For S = - 0.2 Qs the threshold would 

Hence, we see that for  S < 0 the amount of octupole required 
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The stability diasram. The thick solid l ine  ma'rks the 

stability limit in  which the stable region is situated. 
C= j-ge 5 


