Closed Orbit Analysis for RHIC Insertion

S. Y. Lee
January 1990
\section*{Collider Accelerator Department}
Brookhaven National Laboratory

U.S. Department of Energy
 USDOE Office of Science (SC)

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AD/RHIC-64

RHIC PROJECT
Brookhaven National Laboratory
Associated Universities, Inc.
Upton, NY 11973

Closed Orbit Analysis for RHIC Insertion

S.Y. Lee and S. Tepikian

Closed Orbit Analysis for RHIC Insertion

S.Y. Lee and S. Tepikian
Accelerator Development Department

Abstract

Analytic closed orbit analysis is performed to evaluate the tolerance of quadrupole misalignment and dipole errors (b_{0} and a_{0}) in the RHIC insertion. Sensitivity coefficients of these errors are tabulated for different β^{*} values. Using these sensitivity tables, we found that the power supply ripple of 10^{-4} can cause closed orbit motion of 0.05 mm at the IP in comparison with the rms beam size of 0.3 mm . It is desirable to have the power supply ripple less than 10^{-5}.

1. Introduction

The closed orbit error in the insertion region is fundamental importance to the collider physics. For RHIC, the closed orbit at the high- β triplets may also affect the dynamical aperture. Evaluation of the sensitivity on the quadrupole alignment errors and dipole excitation or rotation angle error can give us a feeling of the alignment tolerance. Some correction schemes may also be applied to obtain proper orbit control in the insertion region.

Figure 1 shows the RHIC insertion layout. There are nine quadrupoles on both sides of the interaction point (IP). The closed orbit can result from (1) quadrupole misalignment, (2) dipole error, etc. In the following section, we discuss the method of analysis.

2. Method of Orbit Error Analysis

For a particle in the accelerator, the equation of motion is given by

$$
\begin{equation*}
\frac{d^{2} x}{d s^{2}}+K(s) x=\frac{\Delta B(s)}{B \rho} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
K(s)=\frac{\partial B_{x} / \partial x}{B \rho} \tag{2}
\end{equation*}
$$

and $\Delta B(s)$ is the error field. For the horizontal closed orbit, $\Delta B(s)$ arises from: (h1) particles with closed orbits shifted horizontally from the center of a quadrupole or quadrupole
horizontal misalignments and (h2) dipole excitation error. For the vertical closed orbit, $\Delta B(s)$ arises from: (v 1) particles with closed orbits shifted vertically from the center of a quadrupole or a quadrupole vertical misalignment and (v2) dipole rotation. We assume first that the beam exits from the arc at Q9 with phase space coordinates (x_{9}, x_{9}^{\prime}) [similarly (y_{9}, y_{9}^{\prime}) for vertical motion]. The closed orbit or the beam can be obtained by integrating Eq. (1) along the beam line with the proper quadrupole and dipole strengths and preassumed errors. We denote the misalignment errors of the quadrupoles, Q1 to Q8 as $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{8}$ respectively. The percentage dipole excitation errors are $\Delta \theta / \theta, \Delta \theta_{s} / \theta_{s}$, $\Delta \theta_{c 2} / \theta_{c 2}$ and $\Delta \theta_{c 1} / \theta_{c 1}$ for the dipoles $\mathrm{B}, \mathrm{BSI}(\mathrm{O}), \mathrm{BC} 2$ and BC 1 respectively shown in Fig. 1. The method of integrating Eq. (1) is a standard initial value problem. Furthermore, we use the thin lens approximation in integrating Eq. (1). We shall find the phase space coordinates at locations, Q5, Q3, Q2, Q1 and IP as a function of initial condition (x_{9}, x_{9}^{\prime}) and the dipole error parameters.

3. Horizontal Closed Orbit Error

Table 1 lists the sensitivity coefficients for the horizontal closed orbit error at Q5, Q3, Q2, Q1 and IP as a function of the error fields discussed in section 2. As an example, the table corresponding to $\beta^{*}=2 \mathrm{~m}$ gives

$$
\begin{aligned}
x_{3}= & -7 x_{9}-123 x_{9}^{\prime}+2.72 \Delta_{8}-12.5 \Delta_{7}+ \\
& +3.5 \frac{\Delta \theta}{\theta}+4.26 \Delta_{6}+1.1 \frac{\Delta \theta_{s}}{\theta_{s}}-8.17 \Delta_{5}+5.76 \Delta_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{I P} & =1.3 x_{9}+18.1 x_{9}^{\prime}-0.97 \Delta_{8}+3.32 \Delta_{7}-0.85 \frac{\Delta \theta}{\theta} \\
& -0.85 \Delta_{6}-0.18 \frac{\Delta \theta_{s}}{\theta_{s}}+1.14 \Delta_{5}-0.53 \Delta_{4}-2.62 \Delta_{3} \\
& +3.18 \Delta_{2}-2.37 \Delta_{1}+0.30 \frac{\Delta \theta_{c 2}}{\theta_{c 2}}+0.21 \frac{\Delta \theta_{c 1}}{\theta_{c 1}}
\end{aligned}
$$

Fig. 2 gives a bar chart of the sensitivity of each error field.
We observe clearly that the closed orbit at Q3 (similarly at Q2 and Q1) is very sensitive to x_{9}^{\prime}. A 0.1 mrad error in x_{9}^{\prime} can give rise to 12 mm error at Q 3 location by assuming a perfect machine. Besides x_{9}^{\prime}, x_{3} is also sensitive to quadrupole misalignments. A 0.25 mm alignment in Q7, Q6, Q5 and Q4 can cause 4 mm rms closed orbit error at Q3. Similarly proper Q1-Q3 quadrupole alignment is important to the closed orbit at IP.

Figures 3 and 4 shows the similar sensitivity bar chart for $\beta^{*}=6 \mathrm{~m}$ and 0.5 m respectively. Note the vertical scale change in the $\beta^{*}=0.5 \mathrm{~m}$ case.

The table also gives us a guide line for the stability requirement in the power supply. As an example at $\beta^{*}=2 \mathrm{~m}$, we find

$$
x_{I P}=-0.85 \frac{\Delta \theta}{\theta}-0.18 \frac{\Delta \theta_{s}}{\theta_{s}}+0.30 \frac{\Delta \theta_{c 2}}{\theta_{c 2}}+0.21 \frac{\Delta \theta_{c 1}}{\theta_{c 1}}
$$

from table 1. A power supply ripple will affect $\Delta \theta / \theta$ for all dipole coherently. At $\Delta \theta / \theta \simeq$ 10^{-4}, we expect the orbit will be shifted by 0.05 mm in comparison with the $\sigma_{\text {beam size }} \simeq 0.3$ mm . The effect will be very harmful to the beam life time due to the presence of beambeam interaction. It is therefore important to achieve the power supply ripple less than $\frac{\Delta \theta}{\theta} \leq 10^{-5}$. At $\beta^{*}=0.5 \mathrm{~m}$, table 1 gives

$$
x_{I P}\left(\beta^{*}=0.5 \mathrm{~m}\right)=-1.8 \frac{\Delta \theta}{\theta}=0.31 \frac{\Delta \theta_{x}}{\theta_{s}}+0.30 \frac{\Delta \theta_{c 2}}{\theta_{c 2}}+0.21 \frac{\Delta \theta_{c 1}}{\theta_{c 1}}
$$

At $\Delta \theta / \theta \simeq 10^{-5}$ ripple will give $\Delta x_{I P} \simeq 0.02 \mathrm{~mm}$ in comparison with the proton beam size $\sigma=0.08 \mathrm{~mm}$. Thus the power supply stability is especially important to the proton collision mode.

4. Vertical Closed Orbit

Table 2 lists the similar sensitivity table for the vertical closed orbit motion by integrating Eq. (1) along the insertion, where the quadrupole vertical misalignment is given by $\Delta_{1}, \ldots, \Delta_{8}$ and the dipole rotation is given by $\varphi, \varphi_{s}, \varphi_{c 2}$ and $\varphi_{c 1}$ for the corresponding dipoles $\mathrm{B}, \mathrm{BSI}(0), \mathrm{BC} 2$ and BC 1 respectively.

Similar to that of the horizontal motion, the quadrupole alignment of Q1-Q3 is important to the proper collision at IP. Power supply ripple is also critical for the operation at $\beta^{*} \leq 2 \mathrm{~m}$.

5. Conclusion and Discussion

The closed orbit analysis for the RHIC insertion is analyzed in the analytic model in terms of the quadrupole alignment errors and the dipole errors. We calculate the sensitivity coefficients for various β^{*} values. The closed orbit error becomes large at the high- β quadrupoles, Q1-Q3. To minimize these error, one should properly align the quadrupoles in the insertion. One should also measure $x_{9}, x_{9}^{\prime}, y_{9}$ and y_{9}^{\prime} so that a proper orbit correction scheme for the insertion can be established due to the fact that the closed orbit is sensitively dependent on the parameters x_{9}^{\prime} and y_{9}^{\prime} (see Tables 1 and 2).

Using the table, we can also set the tolerance on the power supply ripple. At low β^{*} value, the power supply ripple of 10^{-5} is critical to obtain a proper beam-beam collision.

Finally the ground motion due to the high tide, local traffic, etc. will shift quadrupole alignment. A shift of 10μ in Q1-Q3 can also cause beam movement at the IP by 0.01 mm , which will affect the performance. Fortunately, the ground motions which does not change the relative motion of the accelerator component do not affect the luminosity. The random noise is however normally small, $\simeq 1 \mu$. Thus the effect should not be important. Realistic measurement of the effect in RHIC tunnel should be confirmed.

Table 1 Sensitivity Coefficients of the Closed Orbit Displacement

$\beta^{*}=0.5 \mathrm{~m}$	x_{5}	x_{5}^{\prime}	x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}	$x_{\text {IP }}$	$x_{I P}^{\prime}$
x_{9}	-1	-0.1	-15.5	-0.3	-8.6	0.9	-10.3	-0.5	3.1	0.5
x_{9}^{\prime}	-11.2	-2.2	-246	-4.8	-137	14.7	-164.	-7.6	46.4	8.6
Δ_{8}	1.06	0.02	8.57	0.16	4.71	-0.52	5.62	0.25	-1.89	-0.3
Δ_{7}	-3.37	-0.16	-34.2	-0.65	-18.8	2.06	-22.5	-1	7.19	1.2
$\Delta \theta / \theta$	0.79	0.05	8.68	0.17	4.8	-0.52	5.74	0.26	-1.8	-0.31
Δ_{6}	0.27	0.03	3.85	0.07	2.14	-0.23	2.56	0.12	-0.77	-0.13
$\Delta \theta_{s} / \theta_{s}$	0.07	0.01	1.63	0.03	0.91	-0.1	1.1	0.05	-0.31	-0.06
Δ_{5}			0	0	0	0	0	0	0	0
Δ_{4}			5.3	0.11	3.03	-0.3	3.72	0.19	-0.65	-0.18
Δ_{3}					-0.59	-0.08	-1.23	-0.17	-2.57	-0.05
Δ_{2}							0.6	0.16	3.16	0.1
\triangle_{1}									-2.42	-0.1
$\Delta \theta_{c 2} / \theta_{c 2}$									0.30	0.02
$\Delta \theta_{c 1} / \theta_{c 1}$									0.21	0.01
$\beta^{*}=2 \mathrm{~m}$	x_{5}	x_{5}^{\prime}	x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}	$x_{\text {IP }}$	$x_{I P}^{\prime}$
x_{9}	-0.8	-0.1	-7	-0.1	-3.8	0.4	-4.6	-0.2	1.3	0.2
x_{9}^{\prime}	-2.5	-1.5	-123.	-2.5	-69.1	7.3	-83.5	-3.9	18.1	4.1
Δ_{8}	1.46	0.06	2.72	0.04	1.4	-0.18	1.58	0.05	-0.97	-0.1
Δ_{7}	-3.91	-0.22	-12.5	-0.21	-6.7	0.79	-7.8	-0.3	3.32	0.45
$\Delta \theta / \theta$	0.9	0.06	3.5	0.06	1.88	-0.22	2.21	0.09	-0.85	-0.12
\triangle_{6}	0.64	0.06	4.26	0.08	2.34	-0.26	2.78	0.12	-0.85	-0.15
$\Delta \theta_{x} / \theta_{s}$	0.07	0.01	1.1	0.02	0.61	-0.07	0.73	0.03	-0.18	-0.04
Δ_{5}			-8.17	-0.17	-4.59	0.48	-5.56	-0.26	1.14	0.27
Δ_{4}			5.76	0.12	3.3	-0.33	4.05	0.2	-0.53	-0.19
Δ_{3}					-0.59	-0.08	-1.23	-0.17	-2.62	-0.06
Δ_{2}							0.6	0.16	3.18	0.1
Δ_{1}									-2.37	-0.1
$\Delta \theta_{c 2} / \theta_{c 2}$									0.30	0.02
$\Delta \theta_{c 1} / \theta_{c 1}$									0.21	0.01

Table 1 - continued

$\beta^{*}=3 \mathrm{~m}$	x_{5}	x_{5}^{\prime}	x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}	$x_{1 P}$	$x_{I P}^{\prime}$
x_{9}	-1	-0.1	-5.2	-0.1	-2.9	0.3	-3.4	-0.1	1	0.2
x_{9}^{\prime}	-7	-1.7	-112.	-2.2	-63.6	6.6	-77	-3.6	16	3.8
Δ_{8}	1.52	0.07	0.07	-0.02	-0.1	-0.02	-0.24	-0.04	-0.63	-0.02
Δ_{7}	-4.4	-0.26	-5.36	-0.05	-2.65	0.36	-2.88	-0.06	2.43	0.22
$\Delta \theta / \theta$	0.96	0.06	1.72	0.02	0.89	-0.11	1.01	0.03	-0.6	-0.07
Δ_{6}	0.85	0.08	3.62	0.06	1.99	-0.22	2.36	0.1	-0.77	-0.13
$\Delta \theta_{s} / \theta_{s}$	0.07	0.01	0.91	0.02	0.51	-0.05	0.62	0.03	-0.14	-0.03
Δ_{5}			-9.93	-0.2	-5.68	0.57	-6.93	-0.34	1.16	0.33
Δ_{4}			5.38	0.12	3.13	-0.3	3.87	0.2	-0.37	-0.17
Δ_{3}					-0.58	-0.08	-1.21	-0.17	-2.56	-0.05
Δ_{2}							0.59	0.16	3.15	0.1
Δ_{1}									-2.38	-0.1
$\Delta \theta_{c 2} / \theta_{c 2}$									0.30	0.02
$\Delta \theta_{c 1} / \theta_{c 1}$									0.21	0.01
$\beta^{*}=6 \mathrm{~m}$	x_{5}	x_{5}^{\prime}	x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}	$x_{1 P}$	$x_{I P}^{\prime}$
x_{9}	-1.2	-0.1	-1.9	0	-1	0.1	-1.1	0	0.7	0.1
x_{9}^{\prime}	-11.8	-2	-81.2	-1.5	-46.8	4.6	-57.5	-2.9	14.5	2.9
Δ_{8}	1.44	0.06	-4.03	-0.1	-2.52	0.2	-3.26	-0.2	-0.09	0.13
Δ_{7}	-4.5	-0.27	7.25	0.21	4.72	-0.34	6.26	0.42	0.94	-0.22
$\Delta \theta / \theta$	0.96	0.06	-1.02	-0.03	-0.69	0.04	-0.94	-0.07	-0.26	0.03
Δ_{6}	0.85	0.08	1.13	0.01	0.58	-0.07	0.66	0.02	-0.48	-0.05
$\Delta \theta_{s} / \theta_{s}$	0.07	0.01	0.67	0.01	0.39	-0.04	0.48	0.02	-0.11	-0.02
Δ_{5}			-12.0	-0.24	7.09	0.66	-8.86	-0.48	1.45	0.42
Δ_{4}			4.82	0.1	2.9	-0.26	3.66	0.21	-0.36	-0.16
Δ_{3}					-0.56	-0.08	-1.17	-0.17	-2.33	-0.05
Δ_{2}							0.59	0.16	3.09	0.1
Δ_{1}									-2.5	-0.1
$\Delta \theta_{c 2} / \theta_{c 2}$									0.30	0.02
$\Delta \theta_{c 1} / \theta_{c 1}$									0.21	0.01

Table 2 Sensitivity Coefficients of the Vertical Closed Orbit

$\beta^{*}=0.5 \mathrm{~m}$	y_{5}	y_{5}^{\prime}	y_{3}	y_{3}^{\prime}	y_{2}	y_{2}^{\prime}	y_{1}	y_{1}^{\prime}	$y_{I P}$	$y_{I P}^{\prime}$
y_{9}	-1.4	-0.1	3.6	0.1	6.7	0.4	4.2	-0.7	-2.5	-0.3
y_{9}^{\prime}	18	-0.1	-79.3	-2.1	-141.	-8.4	-87.9	14.6	60.5	6
Δ_{8}	-4.5	-0.1	17.08	0.48	30.71	1.83	19.11	-3.15	-12.5	-1.28
Δ_{7}	2.44	0.07	-8.78	-0.25	-15.8	0.95	-9.86	1.62	6.36	0.66
φ	0.62	0.03	-1.94	-0.06	-3.53	-0.21	-2.2	0.36	1.35	0.14
Δ_{6}	-0.27	-0.03	0.55	0.02	1.03	0.06	0.65	-0.1	-0.31	-0.04
φ_{s}	0.07	0.01	0.02	0	0.01	0	0	0	-0.08	0
Δ_{5}			0	0	0	0	0	0	0	0
Δ_{4}			-5.3	-0.11	-9.27	-0.53	-5.7	0.97	4.49	0.41
Δ_{3}					0.59	0.08	0.53	-0.02	1.4	0.04
Δ_{2}							-0.6	-0.16	-6.05	-0.22
Δ_{1}									2.42	0.1
$\varphi_{c 2}$									0.30	0.02
$\varphi_{c 1}$									0.21	0.01
$\beta^{*}=2 \mathrm{~m}$	y_{5}	y_{5}^{\prime}	y_{3}	y_{3}^{\prime}	y_{2}	y_{2}^{\prime}	y_{1}	y_{1}^{\prime}	$y_{I P}$	$y_{I P}^{\prime}$
y_{9}	-1.1	0	2.5	0.1	4.7	0.3	3	-0.5	-1.5	-0.2
y_{9}^{\prime}	9.4	-0.8	-40.8	-1.1	-73.1	-4.3	-45.5	7.5	31.8	3.1
Δ_{8}	-3.21	0.03	9.31	0.31	17.05	1.04	10.72	-1.72	-6.34	-0.69
Δ_{7}	1.77	0.01	-4.52	-0.16	-8.36	-0.52	-5.27	0.84	2.91	0.33
φ	0.51	0.02	-0.95	-0.04	-1.8	-0.11	-1.15	0.18	0.5	0.07
Δ_{6}	-0.64	-0.06	0.42	0.04	0.94	0.07	0.64	-0.08	0.14	-0.02
φ_{s}	0.07	0.01	0.11	0	0.15	0.01	0.09	-0.02	-0.17	-0.01
Δ_{5}			2.07	0.03	3.54	0.2	2.16	-0.38	-2.02	-0.17
Δ_{4}			-5.76	-0.12	-10.0	-0.58	-6.2	1.05	5.04	0.45
Δ_{3}					0.59	0.08	0.53	-0.02	1.39	0.03
Δ_{2}							-0.6	-0.16	-6.01	-0.22
Δ_{1}									2.37	0.1
$\varphi_{c 2}$									0.30	0.02
$\varphi_{c 1}$									0.21	0.01

Table 2 - continued

$\beta^{*}=3 \mathrm{~m}$	y_{5}	y_{5}^{\prime}	y_{3}	y_{3}^{\prime}	y_{2}	y_{2}^{\prime}	y_{1}	y_{1}^{\prime}	$y_{I P}$	$y_{I P}^{\prime}$
x_{9}	-0.9	0	1.4	0.1	2.7	0.2	1.7	-0.3	-0.5	-0.1
y_{9}^{\prime}	6.2	-1.1	-34.4	-0.8	-60.6	-3.5	-37.8	6.2	25.4	2.6
Δ_{8}	-2.55	0.1	6.34	0.22	11.62	0.71	7.38	-1.15	-3.57	-0.44
Δ_{7}	1.49	-0.02	-2.82	-0.11	-5.28	-0.33	-3.38	0.52	1.31	0.19
φ	0.44	0.01	-0.37	-0.03	-0.78	-0.05	-0.52	0.07	-0.02	0.02
Δ_{6}	-0.85	-0.08	-0.58	0.03	-0.72	-0.02	-0.36	0.1	1.18	0.06
φ_{s}	0.07	0.01	0.22	0	0.35	0.02	0.21	-0.04	-0.25	-0.02
Δ_{5}			2.84	0.05	4.83	0.27	2.96	-0.51	-2.5	-0.22
Δ_{4}			-5.38	-0.12	-9.36	-0.54	-5.81	0.97	4.25	0.41
Δ_{3}					0.58	0.08	0.52	-0.01	1.4	0.04
Δ_{2}							-0.59	-0.16	-5.95	-0.22
Δ_{1}									2.38	0.1
$\varphi_{c 2}$									0.30	0.02
$\varphi_{c 1}$									0.21	0.01
$\beta^{*}=6 \mathrm{~m}$	y_{5}	y_{5}^{\prime}	y_{3}	y_{3}^{\prime}	y_{2}	y_{2}^{\prime}	y_{1}	y_{1}^{\prime}	$y_{I P}$	$y_{I P}^{\prime}$
y_{9}	-0.9	0	-0.2	0	-0.1	0	0	0	0.8	0
y_{9}^{\prime}	6.5	-1.1	-26.6	-0.7	-46.8	-2.7	-29.1	4.8	17.3	1.9
Δ_{8}	-2.59	0.1	2.15	0.14	4.38	0.3	2.89	-0.41	0.09	-0.11
\triangle_{7}	1.52	-0.02	-0.27	-0.06	-0.89	-0.08	-0.67	0.06	-0.88	-0.01
φ	0.44	0.01	0.45	-0.01	0.63	0.02	0.34	-0.08	-0.69	-0.04
Δ_{6}	-0.85	-0.08	-2.32	-0.01	-3.67	-0.18	-2.17	0.41	2.53	0.19
φ_{s}	0.07	0.01	0.39	0	0.64	0.03	0.39	-0.07	-0.38	-0.03
Δ_{5}			4.03	0.07	6.8	0.37	4.14	-0.72	-3.34	-0.3
Δ_{4}			-4.82	-0.1	-8.29	-0.47	-5.1	0.87	3.59	0.35
Δ_{3}					0.56	0.08	0.51	-0.01	1.4	0.04
Δ_{2}							-0.59	-0.16	-6.05	-0.22
Δ_{1}									2.5	0.1
$\varphi_{c 2}$									0.30	0.02
$\varphi_{c 1}$									0.21	0.01

Expanded Layout of Half-Insertion.

Figure 2

Figure 3

Figure 4

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

