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Abstract 

While i t  is understood that the main limitation of beam life- 
time in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven 
is the emittance growth due to intra-beam scattering, it is important 
to evaluate and understand both the emittance growth and nature of 
the tune shift due to multiple beam-beam crossings of the bunched- 
beams of heavy ions. We note within RHIC, fully stripped lg7Au 
ions (charge 79eC) will survive up to ten hours in the collider, with 
six beam crossings per revolution. With this motivation, we have 
developed a fully relativistic theory of both the averaged emittance 
growth and the averaged tune shift for the bunched-beam, bunched- 
beam interaction that is based on a convolution integral over the 
densities of the two interpenetrating bunches. In order to calculate 
this integral, we choose to work in a frame where one bunch of the 
collider is stationary, and the other is highly relativistic. This frame 
has the additional advantage that the microscopic heavy ion interac- 
tion becomes perpendicular in nature. In this frame the convolution 
integral acquires many simplifying and physically interesting fea- 
tures. 

Introduction 

1.1 Motivation 

The overall problem of studying the beam-beam interaction in 
colliders continues to be of great interest. Over the years, many 
models have been proposed for the well known tune shift due to 
beam crossing of infinitely long beams [l-31, or bunched beams 
[4,5]. Of particular current interest is the beam-beam instability 
problem due to many beam crossings [3]. 

In this paper we present the foundations of a microscopic 
model [6] of the bunched-beam, bunched-beam interaction, where 
this model compliments many of the results derived earlier. Prelim- 
inary results from this model will be presented here, where these 
include both the emittance growth and the tune-shift due to 
bunched-beam, bunched-beam crossing. The preliminary results 
outlined here indicale the usefulness of the microscopic approach. 
and suggest that our more general approach to the beam-beam 
interaction could be quite useful in tackling the more complicated 
beam-beam instability problems. 

1.2 Microscopic Interaction 

Our model respects the form of the relativistic Lienard- 
Wiechert potential [7] between two charged particles during beam 
crossing. In general, this interaction is quite awkward to work with 
because both the velocity and acceleration of a single particle are 
required to find the fields between the two particles of interest. TO 
overcome this problem, we transform to a frame where one of the 
bunches is at rest and the other bunch is highly relativistic. The 
particles in the highly relativistic bunch are weakly deflected by the 
fields of particles in the bunch at rest, and thus the electric field 
obtained from the Lienard-Wiechert potentials can be reduced to a 
more transparent and constant velocity form [6] .  In this new frame 
the highly relativistic electric field is mainly perpendicular in 
nature, and is given by 

g = { l + [  (2.i - 1)pct 4 
*Work performed under the auspices of the U.S. Department of Energy 

where Ze is the charge of the particles (identical particle scattering), 
R is the distance between the particles, y is the Lorentz factor and fi 
is the velocity of the beams, t is the time and g gives the time 
dependence of the interaction. The perpendicular component of the 
momentum transfer felt by a particle in the rest bunch can be 
readily calculated from Eqs. (1) and (2). In this way the scattering 
angle between the two particles is calculated to be: 

(3)  

where A is the atomic number of the charged nucleus, ro is the 
classical radius of the proton and n and n' labels the individual 
particles in the fixed and moving bunches respectively. 

1.3 Macroscopic Quantities of Interest 

In our approach, we first relate the macroscopic quantity of 
interest to the two body microscopic interactions that give rise to an 
average emittance growth or the average tune shift. Our model 
assumes that the two-body scattering angle e,,,,, in Eq.(3) can be 
directly equated with a change in the particles x', y' momenta. 
Without loss of generality. we restrict ourselves to the x-direction 
only. Utilizing the definition of emittance given by the Courant- 
Snyder invariant [SI. the change in normalized emittance due to a 
two particle interaction can be written as, 

where PI is the beta function where the two beams cross (taken to 
be a constant), 'px is the angle variable of the particle, Ax' is the 
projection of em, in the collider frame to the x-direction, and E, is 
the normalized emittance. The averaged macroscopic emittance 
growth is found to be a double summation over all the two body 
scattering angles projected in the x (or y) direction, and is given by, 

( 5 )  

where NB is the number of particles per bunch and cos &,,, gives the 
projection of the scattering angle onto the x axis. 

Additionally, the two-body tune-shift in the x (or y) direction 
is 

where v, is the x component of the particles position in the 
stationary bunch. In a similar manner, after a double summation, 
we find the average macroscopic tune-shift after beam crossing to 
be given by the expression, 

Evaluation of Macroscopic Quantities 

2.1 Coordinate Definition 

Figure 1 shows the coordinate diagram used for the calcula- 
tions of the macroscopic quantities defined above. For the reasons 
outlined above, we prefer to transform our colliding bunches from 
the collider frame to a frame where one of the bunches is at rest. In 
this frame (shown in Fig. 1). the moving bunch has an effective 
Lorentz factor given by yrrf = 2.j - 1. In Fig. 1, 3 is a vector 
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Fig. 1 Coordinate diagram. 

extending from the center of the moving bunch to the center of the 
fixed bunch,<. and< are single particle coordinates in the moving 
bunch or the bunch at rest respectively. The coordinated given in 
Eq.(3), is now seen to be the distance between the two particles 
from each bunch. 

2.2 Integral Formulation 

In order to evaluate the macroscopic quantities defined in Eqs. 
( 5 )  and (7). we replace the double summation by a double integral 
over the number densities p, and pm for the two bunches. In this 
way, the averaged emittance growth is given by, 

and the averaged tune shift in the x-direction is given by, 

P: A k f f  
(Av~)  = -7- 

4x 22 NBrO 

Assuming for simplicity a Gaussian form for the normalized num- 
ber density, the Lorentz transformed bunch at rest in Fig. 1 has the 
form, 

where s is the longitudinal coordinate, Q = 0, = o,, is the average 
transverse normalized emittance of the beam, os is related to the 
longitudinal extent of the bunch, and P' = fi: = P i .  Similarly, the 
Gaussian number density of the moving bunch is given by the 
Lorentz transformed expression, 

where S,, gives the longitudinal positions of the bunch centers. 
In order to deal with Eqs. (8) and (9). we express the density 

functions and the scattering angle in terms of their corresponding 
Fourier transform functions. Through convolution theory of Fourier 
integrals, the total number of integrations required in Eqs. (8) and 
(9) are halved leaving [6] 

and 

where 

2.3 Emittance Growth 

The final expression for the emittance growth can be evaluated 
by substituting the results of the Fourier transforms (Eqs. (14-16)) 
into Eq. (12). Separating between longitudinal and transverse coor- 
dinates, the emittance growth is given by, 

At this point, another advantage of working in the frame defined in 
Fig. (1) can be seen. For large y, the Gaussian representing the 
longitudinal coordinate can be approximated by the expression. 

This has the advantage that the Fourier integral in Eq. (12) for the 
emittance growth, is separable and readily evaluated. In this way 
the final expression for the emittance growth is given by, 

2.4 Tune Shift 

The quadrupole nature of the tune-shift interaction due to 
beam-crossing may be seen from Eq. (17). The projection acting on 
the scatterin. angle, 1 - 2 cos2 5,. , leaves only the quadrupole 
term, / K- = sin2 0, cos2 'p, , in its Fourier function G2@. The 
simple trigonometric expression, sin' 8, cos2 , can be expressed 
as a linear combination of spherical harmonics of order two. AS 
expected, the monopole contribution to the tune shift doesn't ap- 
pear in Eq. (17). The final expression for the Fourier Transform of 
the tune-shift is now given as, 



Once again, using the delta-function approximation for the 
longitudinal component of the Gaussian number density (Eq. (19)). 
the integral may be cleanly separated into its longitudinal and 
transverse components. Hence, on evaluation, the average tune- 
shift for the bunched-beam, bunched-beam interaction is given by 
the expression, 

This expression differs from the well known formula for tune- 
shift of two coasting beams [l] in two distinct ways: the presence 
of the longitudinal term, os, which is not unexpected for a bunched- 
beam of finite extent; and the energy dependence given by y - 5/2. 
In the near future. a careful study of the experimental evidence will 
be undertaken to better understand these results and their conse- 
quences. Also, since we are calculating the averaged tune-shift of 
all the particles in the beam rather than the tune-shift of a single 
particle, we expect some of the differences noted above. 

, 

Discussion and Plans for the Future 

In this paper we have outlined the main ideas behind our 
microscopic approach to the bunched-beam, bunched-beam interac- 
tion. We have calculated two quantities of interest for bunched- 
beams, namely the average emittance growth and average tune shift 
due to beam-crossing. 

We prefer to work in a frame where one of the colliding 
bunches is at rest. and the other highly relativistic. In this frame 
several mathematical simplifications and physical insights are pos- 
sible. In particular, the awkward microscopic Lienard-Wiechert 
potential reduces to a manageable form, and the Lorentz contracted 
nature of the highly relativistic bunch allows the Gaussian nature of 
the longitudinal component to be replaced by a weighted delta- 
function. In this way the final Fourier transform is separable, and 
readily evaluated. This simplification is not possible for an infi- 
nitely long line charge. 

Our result for the emittance growth due to multiple beam 
crossing shows that for top RHIC energies this effect is not of 
concern over a ten hour beam lifetime (six crossing points per 
revolution). This is true even with the factor of 1000 coming from 
the Z2 / A factor for fully stripped 147Au ions. More importantly, 
our result for the average tune-shift for bunched-beam. bunched- 
beam interactions contains two factors not present in the standard 
formula [l]. These are the longitudinal bunch size parameter, and 
the unexpected energy dependence. Further work is in progress to 
understand our result and the relation to available data. 
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