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The Effec ts  of RF Noise i n  the RT3IC 

Due t o  i n t r a  beam sca t t e r ing  the momentum spread of the bunch is  increased 

and hence the bunch length.  

l i m i t  the boundaries a re  exceeded. 

Thus the r f  bucket becomes qu i t e  f u l l  and i n  the 

RF noise a l s o  causes a blow up of the bunch area.  Thus i f  not control led 

it too can reduce the luminosity l i fe t ime.  

due t o  the f i r s t  e f f e c t  only,  then one must examine the  e f f e c t s  of noise .  

i s  pa r t i cu la r ly  of i n t e r e s t  for  the RHIC since as w i l l  be pointed out below a 

large spread i n  synchrotron frequencies which w i l l  be the  case f o r  near ly  f u l l  

buckets contr ibutes  s ign i f i can t ly  t o  the d i lu t ion .  

When we propose a ten hour l i f e t ime  

This 

The growth of the beam has been shown t o  be governed by a d i f fus ion  equa- 

t i on  (P(x,t)dX i s  probabi l i ty  of f inding a p a r t i c l e  between X&(X+dX) a t  time t )  

e. A 2 2 
where X = r ( 4 h )  B(r 

being the peak o r  maximum bunch halfwidth.  

J of the motion. 

fo r  a s inusoida l  RF voltage and r2 = s in2  @/2 with @ 

Here X i s  J ' t o  the ac t ion  va r i ab le  

One a l so  has the quan t i t i e s  ( <  > ind ica te  ensemble averages a l l  noises  

having the same power densi ty  spectrum) 

n 

7T - -  (1) = w  A2 2 - XG1 + S G 2  
S so 2 K ( r 2 )  

with 
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Here B,  K, K' a r e  e l l i p t i c  functions and a contains e l l i p t i c  functions. 

S (w) i s  the spec t r a l  power densi ty  of the random var iab le  @ ( t )  and S 

for  the va r i ab le  a ( t )  where the r f  voltage i s  represented by 

the same $ a 

V = Vo(l+a)sinQ, 

V = Vo sin(@+$) 

pure amplitude noise 

pure phase noise  

Now phase noise i s  much more harmful than amplitude noise  so  we w i l l  assume 

G2 = 0 from here on. 

Then we can wri te  

where X i s  a measure of the area occupied by the beam and G1 i s  some function of 

X. 
n 

We have calculated G for  two values of r2 or @ namely @ = 60' and Q, = 

The l a t t e r  is the value one obtains  for  a Ap/p = 2 x loe3 i n  an RHLC 
1 

116'. 

bucket a f t e r  two hours, for  Vrf = 1MV and assuming the design i n t e n s i t i e s  fo r  Au 

a t  100 GeV/A. The former represents  a bucket t ha t  i s  1/3 f u l l  ( i n  bunch length) 
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and is  normally considered to  be the maximum unperturbed area tha t  can be s tored 

fo r  very long periods. 

For given values of S (hS) one could then ca lcu la te  growth r a t e s  for  X for  
4 

these i n i t i a l  conditions. I f  one had e x p l i c i t  expressions for  G as  a function 

of X he could i n  pr inc ipa l  solve the  d i f fus ion  equation with the  boundary condi- 

t i on  tha t  p (1 , t )  = 0 and ca lcu la te  a beam l i fe t ime.  This has been done fo r  spe- 

c i a l  cases none of which can be applied t o  the RHIC. Now the ac tua l  frequency 

noise seen by the beam a r i s e s  from, and i s  a f fec ted  by the  low l eve l  r f  system 

almost exclusively.  

loops and ind ica te  the sources of noise. Here P represents  phase detector  

noise ,  F VCO noise ,  R frequency reference noise,  A(w) and G(w) the  phase and fre-  

quency loop t r ans fe r  functions.  (M i s  magnetic f i e l d  e r ror . )  B(w) i s  the  beam 

t r ans fe r  function for  r f  frequency er rors .  I n  the  absence of frequency spread 

it i s  given by 

1 

Figures 1 & 2 taken from an SPS repor t  show the  feedback 

i.e. it has a pole a t  CIJ = us. 

For f i n i t e  synchrotron frequency spread one must evaluate the  dispers ion 

in t eg ra l .  

frequency. 

One then f inds t h a t  B-'(cIJ) d2 S where S i s  the spread i n  synchrotron 

I f  we  ignore magnetic f i e l d  noise and solve the loop equations for  

y ,  and u where y i s  the  frequency e r ro r  seen by the beam and u i s  the output of 

the phase detector  we can w r i t e  

B(F+AGR) + P + AGP u =  
1 + A(B+G) 
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We are interested in the region around W 3 W s  etc., where B>>G AB>>1 so 
S’ 

that we can write y as 

GR P 
B 

+ -  

If one can choose A, G and wS along with finding a frequency reference & VCO so 

that F & R are quite small in the critical frequency range then the phase 

discriminator noise will dominate (see diagram below for the SPS) i.e., phase 

loop gain independent; only S & P determine lifetime 

Rad 
SPS Low Level rf 
Noise Levels 

R contribution 
10-4 z 
lC, -i I-’”” 
“4 F, contribution 

I .  

10 100 fso 

A s A2 Then since B-l $ S where S = (wS0/16) @ for @ < 1 one can estimate y by 

as suming 

P f us0 A2 
Y = g - x  @ P =  

us0 x P 
4 

and one can write 

2 For r2 = sin2 3/2 << 1, G becomes just wSo2 S4(w)/4. However we have <y > 

so finally for this simplified example 
= s4 
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2 
Us0 2 2 dX=- x <P > 

d t  64 

Now for  Xo = 0.27 i .e . ,  fo r  @ = 60' fo  = 180 Hz(SPS) and P = 1.75 x 

r .m. s  one obtains  a doubling time for  X of 

rad 

4 = 65x10 sec - 64 - - 64 x l o l o  - 
T2 2<P2(us)> Xo 4n2.25 1.752 1802 

o r  180 hrs!! for  the SPS and 2700 h r s  for  RHLC i f  fso = 46.4 Hz. Really for  
A 

Q0 = 60' we must use the complete expression for  Gl. W e  f ind 

Next we assume 

W e  a l s o  assume P(ws) = P(3ws) and have for  $/2 = 30°, B-'fws) = .068 wso while 

2 B-l(3us) = 8w /3; remembering t h a t  Cy (3ws)> = 9s (3ws) we obtain 
so d, 

2 - so 2 64 2 @so 2 w 2  
GI - 4 (.806x. 068 + ~ . 0 2 1 8 ) < P ( w s )  > = 4 ' P  > ( 3 . 7 2 ~ 1 0 - ~ + 1 7 . 2 ~ 1 0 - ~ )  

That i s  the noise a t  3ws i s  almost f i ve  t i m e s  as  e f f ec t ive  as  t ha t  a t  us!! 

Again we 

- 
T2 - 

- - 

compute the doubling t i m e  f o r  the RHIC case where now 

6 = 1.98 x 10 sec 4 x .27 X 

G1 us: l.752x10-10 x 20.9~10 

0 -  - -  
-3 

550 H r s  
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Next we  consider the  case where 8 = 116O o r  Xo 0.82 which corresponds 

t o  the expected conditions a f t e r  two hours f o r  the  Au bunches 

W e  f ind  

This t i m e  B-'(wS> = .256 wso and again B-l(3wS) = 8ws0/3. The t e r m  fo r  

= 5 i s  s t i l l  neg l ig ib l e  here.  

We obta in  

2 
- %o 2 

G1 - I.0269 + .1897)<P > 

where now the  3w term i s  $7 t i m e s  l a rge r  than the  w term. Note a l s o  t h a t  the  

individual  t e r m s  here  are 7 and 11 t i m e s  l a r g e r  than f o r  (3 = 60°. 

cu la t e  z 

S S 

Again we  cal- 

2 

3 = 580x10 sec = 161 H r s .  - 4x. 8 2 ~ 1 0 ' ~  
2 

1.75 x.217 
T2 - 

%o 

A 2 Now as a l imi t ing  case we consider (3/2 = 80° ,  r 

t h a t  P(Rws) i s  f l a t  f o r  la rge  R and t h a t  it i s  the  only noise  present .  

can remove it from the c ' s  which then give unity.  

= .97 Xo = 1.203 and assume 

Then w e  

2 W e  have K(r ) = 3.15 and a 

8/15 which along with P(Rws) = 1.75 x rad/& enable us t o  ca l cu la t e  

G and hence t o  obta in  z2 (note  tha t  ws(.97) = oso/2) 1 

4 = 19 .1~10  sec = 53 H r s .  - - 4 x 1.203 
2 2 -10 wo x.9652xl.75 x10 

z2 

Hence even with t h i s  l a rge  a bunch one would need $5 hrs .  f o r  10% addi t iona l  

growth. This however would r e s u l t  i n  some beam loss .  It i s  of course a 
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l imi t ing  case where w e  have assumed an order of magnitude la rger  value fo r  P(w) 

than now claimed by the SPS group. 

I n  the  above l i m i t  by removing S from the  summation and assuming.P(kw ) i s  @ S 

f l a t  we  have ignored any e f f e c t s  of the beam t r ans fe r  function. 

merely serves t o  keep the  VCO noise  below the  phase de tec tor  noise  while the  fre-  

quency loop must not cont r ibu te  noise  over the incoherent frequency band. 

The phase loop 

Now we have not considered the e f f e c t s  of amplitude noise  fo r  such la rge  

bunches. Also we must consider the e f f e c t s  of noise  a t  f 

other  bunches i n  the r ing  i.e.,  not a l l  the  bunches see the same noise.  Hence 

the phase lock loop which i s  closed on one bunch only takes care  of noise  around 

f r f  

loops. 

could be eliminated fo r  n = 1 by put t ing  ha l f  the c a v i t i e s  on opposite s ides  of 

the r ing.  

k nfo on a l l  the r f  

. This e f f e c t  can be corrected by addi t iona l  lower gain but wider bandwidth 

It can be reduced by using high Q c a v i t i e s  whose bandwidth i s  <fo and 
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frequency loop  
ampl i f i e r  G(w) 

Fig .  1 - Schematics of RF loops  

Fig.  2 - Equivalent c i r c u i t  of RF loops 
Noise sources: F, M, P ,  R. 
T e s t  po in ts :  x, u ,  v 

8.  


