

BNL-101502-2014-TECH AD/AP 12;BNL-101502-2013-IR

Multipole expansion for the eddy current correction coils

S. Y. Lee

September 1989

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Accelerator Development Department Accelerator Physics Division BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, NY 11973

Accelerator Physics Technical Note No. 12

Multipole Expansion for the Eddy Current Correction Coils

S.Y. Lee

September 1989

MULTIPOLE EXPANSION FOR THE EDDY CURRENT CORRECTION COILS

S.Y. Lee

Abstract

A closed form for the multipoles is derived for the eddy current correction coils and its images. These multipole coefficients are about the same as that obtained from the coils and their nearest images.

1. Introduction

Magnet field due to current filament in two parallel iron plates appears often in the particle accelerators, for example, the eddy current on the vacuum chamber in the low energy fast cycling synchrotron and the multipole correction coils in the magnet. In this note, we shall derive simple expression for the multipole coefficients for a single coil and apply the method to the eddy current correction coil in AGS Booster.

2. Field Due to a Single Current Filament in Two Sheets of Parallel Plates

The magnetic field due to a single filamet at (x_m, y_m) shown on Fig. 1 in two sheets of infinite permeability iron can be expressed as the linear combination of fields due to the currents and its images. Using the complex variable formulation of Beth, $H = H_y + iH_x$, the field at the observation point z = x + iy is

$$H = \frac{I}{2\pi} \left\{ \frac{1}{z - z_m} + \sum_{\substack{k=1 \ odd}}^{\infty} \left(\frac{1}{z - z_m^* - ikg} + \frac{1}{z - z_m^* + ikg} \right) + \sum_{\substack{k=2 \ even}}^{\infty} \left(\frac{1}{z - z_m - ikg} + \frac{1}{z - z_m + ikg} \right) \right\}$$
(1)

where $z_m = x_m + iy_m$ is the location of current filament and $z_m^* = x_m - iy_m$, g is the gap of the iron. Eq. (1) can be summed to give

$$H=rac{I}{4g}igg(anhrac{\pi(z-z_m^*)}{2g}+\cothrac{\pi(z-z_m)}{2g}igg)$$

The analytic form can be expanded onto the multipole as

$$H = \frac{I}{4g} \sum_{n} \frac{1}{n1} (\alpha_n + \beta_n) \left(\frac{\pi}{2g}\right)^n z^n$$
 (3)

where

$$\alpha_n = \frac{\partial^n \tanh(s - \frac{\pi z_n^*}{2g})}{\partial s^n} \bigg|_{s=0}$$
 (4)

$$\beta_n = \frac{\partial^n \coth(s - \frac{\pi z_n}{2g})}{\partial s} \bigg|_{s=0}$$
 (5)

are listed in Table 1.

Table 1. Multipole Coefficients of a Single Wire

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	$lpha_n$	$t= anh(-rac{\pi z_m^*}{2g})$	$c\pm\cosh(-rac{\pi z_m^*}{2g})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	t		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	c^{-2}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-2tc ⁻²		
$\begin{array}{lll} 5 & 16 \ \mathrm{c}^{-6} - 88 \mathrm{t}^2 \mathrm{c}^{-4} + 16 \mathrm{t}^4 \mathrm{c}^{-2} \\ 6 & -272 \mathrm{tc}^{-6} + 416 \mathrm{t}^3 \mathrm{c}^{-4} - 32 \mathrm{t}^5 \mathrm{c}^{-2} \\ 7 & -272 \mathrm{c}^{-8} + 2880 \mathrm{t}^2 \mathrm{c}^{-6} - 1824 \mathrm{t}^4 \mathrm{c}^{-4} + 64 \mathrm{t}^6 \mathrm{c}^{-2} \\ 8 & 7936 \mathrm{tc}^{-8} - 24576 \mathrm{t}^3 \mathrm{c}^{-6} + 7680 \mathrm{t}^5 \mathrm{c}^{-4} - 128 \mathrm{t}^7 \mathrm{c}^{-2} \\ \hline n & \beta_n & \tilde{t} \equiv \coth\left(-\frac{\pi z_m}{2g}\right) & s \equiv \sinh\left(-\frac{\pi z_m}{2g}\right) \\ 0 & \tilde{t} \\ 1 & -\mathrm{s}^{-2} \\ 2 & 2\tilde{t}\mathrm{s}^{-2} \\ 3 & -2\mathrm{s}^{-4} - 4\tilde{t}^2 \mathrm{s}^{-2} \\ 4 & 16\tilde{t}\mathrm{s}^{-4} + 8\tilde{t}^3 \mathrm{s}^{-2} \\ 5 & -16\mathrm{s}^{-6} - 88\tilde{t}^2 \mathrm{s}^{-4} - 16\tilde{t}^4 \mathrm{s}^{-2} \end{array}$	3	$-2c^{-4}+4t^2c^{-2}$		
$\begin{array}{lll} 6 & -272\text{tc}^{-6} + 416\text{t}^3\text{c}^{-4} - 32\text{t}^5\text{c}^{-2} \\ 7 & -272\text{c}^{-8} + 2880\text{t}^2\text{c}^{-6} - 1824\text{t}^4\text{c}^{-4} + 64\text{t}^6\text{c}^{-2} \\ 8 & 7936\text{tc}^{-8} - 24576\text{t}^3\text{c}^{-6} + 7680\text{t}^5\text{c}^{-4} - 128\text{t}^7\text{c}^{-2} \\ \hline n & \beta_n & \tilde{t} \equiv \coth\left(-\frac{\pi z_m}{2g}\right) & s \equiv \sinh\left(-\frac{\pi z_m}{2g}\right) \\ 0 & \tilde{t} \\ 1 & -\text{s}^{-2} \\ 2 & 2\tilde{t}\text{s}^{-2} \\ 3 & -2\text{s}^{-4} - 4\tilde{t}^2\text{s}^{-2} \\ 4 & 16\tilde{t}\text{s}^{-4} + 8\tilde{t}^3\text{s}^{-2} \\ 5 & -16\text{s}^{-6} - 88\tilde{t}^2\text{s}^{-4} - 16\tilde{t}^4\text{s}^{-2} \\ \end{array}$	4	$16 \text{ tc}^{-4}\text{-}8t^3\text{c}^{-2}$		
$7 -272c^{-8} + 2880t^{2}c^{-6} - 1824t^{4}c^{-4} + 64t^{6}c^{-2}$ $8 7936tc^{-8} - 24576t^{3}c^{-6} + 7680t^{5}c^{-4} - 128t^{7}c^{-2}$ $n \beta_{n} \tilde{t} \equiv \coth(-\frac{\pi z_{m}}{2g}) s \equiv \sinh(-\frac{\pi z_{m}}{2g})$ $0 \tilde{t}$ $1 -s^{-2}$ $2 2\tilde{t}s^{-2}$ $3 -2s^{-4} - 4\tilde{t}^{2}s^{-2}$ $4 16\tilde{t}s^{-4} + 8\tilde{t}^{3}s^{-2}$ $5 -16s^{-6} - 88\tilde{t}^{2}s^{-4} - 16\tilde{t}^{4}s^{-2}$	5	$16 c^{-6} - 88t^2c^{-4} + 16t^4c^{-2}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$-272 \text{tc}^{-6} + 416 \text{t}^3 \text{c}^{-4} - 32 \text{t}^5 \text{c}^{-2}$		
n β_n $\tilde{t} \equiv \coth(-\frac{\pi z_m}{2g})$ $s \equiv \sinh(-\frac{\pi z_m}{2g})$ 0 \tilde{t} 1 $-s^{-2}$ 2 $2\tilde{t}s^{-2}$ 3 $-2s^{-4}-4\tilde{t}^2s^{-2}$ 4 $16\tilde{t}s^{-4}+8\tilde{t}^3s^{-2}$ 5 $-16s^{-6}-88\tilde{t}^2s^{-4}-16\tilde{t}^4s^{-2}$	7	·		
0 \tilde{t} 1 $-s^{-2}$ 2 $2\tilde{t}s^{-2}$ 3 $-2s^{-4}-4\tilde{t}^{2}s^{-2}$ 4 $16\tilde{t}s^{-4}+8\tilde{t}^{3}s^{-2}$ 5 $-16s^{-6}-88\tilde{t}^{2}s^{-4}-16\tilde{t}^{4}s^{-2}$	8	$7936 \text{tc}^{-8} - 24576 \text{t}^3 \text{c}^{-6} + 7680 \text{t}$	$^{5}c^{-4}$ -128 $t^{7}c^{-2}$	
1 $-s^{-2}$ 2 $2\tilde{t}s^{-2}$ 3 $-2s^{-4}-4\tilde{t}^{2}s^{-2}$ 4 $16\tilde{t}s^{-4}+8\tilde{t}^{3}s^{-2}$ 5 $-16s^{-6}-88\tilde{t}^{2}s^{-4}-16\tilde{t}^{4}s^{-2}$	n	eta_n	$ ilde{t} \equiv \coth(-rac{\pi z_m}{2g})$	$s \equiv \sinh(-rac{\pi z_m}{2g})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$ ilde{ ilde{t}}$		
$ \begin{array}{lll} 3 & -2s^{-4} - 4\tilde{t}^{2}s^{-2} \\ 4 & 16\tilde{t}s^{-4} + 8\tilde{t}^{3}s^{-2} \\ 5 & -16s^{-6} - 88\tilde{t}^{2}s^{-4} - 16\tilde{t}^{4}s^{-2} \end{array} $	1	-s ⁻²		
4 $16\tilde{t}s^{-4} + 8\tilde{t}^{3}s^{-2}$ 5 $-16s^{-6} - 88\tilde{t}^{2}s^{-4} - 16\tilde{t}^{4}s^{-2}$	2	$2 ilde{t}\mathrm{s}^{-2}$		
5 $-16s^{-6}-88\tilde{t}^2s^{-4}-16\tilde{t}^4s^{-2}$	3	$-2s^{-4}$ - $4\tilde{t}^2s^{-2}$		
	4	$16\tilde{t}$ s ⁻⁴ $+8\tilde{t}^3$ s ⁻²		
6 272 \tilde{t} s ⁻⁶ +416 \tilde{t} ³ s ⁻⁴ +32 \tilde{t} 5s ⁻²	5	$-16s^{-6}-88\tilde{t}^2s^{-4}-16\tilde{t}^4s^{-2}$		
	6	$272 \ \tilde{t}\text{s}^{-6} + 416 \tilde{t}^{3}\text{s}^{-4} + 32 \tilde{t}^{5}\text{s}^{-2}$		
7 $-272s^{-8}-2880\tilde{t}^2s^{-6}-1824\tilde{t}^4s^{-4}-64\tilde{t}^6s^{-2}$	7	$-272 \mathrm{s}^{-8} -2880 \tilde{t}^2 \mathrm{s}^{-6} -1824 \tilde{t}^4 \mathrm{s}^{-4} -64 \tilde{t}^6 \mathrm{s}^{-2}$		
8 $7936\tilde{t}s^{-8} + 24576\tilde{t}^3s^{-6} + 7680\tilde{t}^5s^{-4} + 128\tilde{t}^7s^{-2}$	8	$7936\tilde{t}$ s ⁻⁸ $+24576\tilde{t}^3$ s ⁻⁶ $+7680\tilde{t}^5$ s ⁻⁴ $+128\tilde{t}^7$ s ⁻²		

The expansion coefficients in Eq. (3) involves $(\pi z/2g)^2$, one may expect that the multipole expansion would require $|\pi z/2g| < 1$. In reality, the above statement is not necessary true. As an example, we assume two current sheets fill the gap. Let $\lambda = I/g$ be the current per unit length. The result is the same as two infinite parallel current sheets in the free space. The resulting field is given by

$$H=\lambda$$
.

All multipole coefficients vanishes except n = 0. The multipole expansion is valid irrespect of the height of the gap.

The radius of convergence for the multipole expansion depends on the pole of Eq. (2). At the location of the current filament, the magnetic field has a simple pole singularity shown in Eq. (2). The radius of convergence is the distance to the nearest current filament. In the following, we shall see realistic examples on the radius of convergence for the multipole expansion.

3. Application to AGS Booster

The eddy current correction coil is shown in Fig. 2, i.e., the current I at z_m and z_m^* and -I at $-z_m$ and $-z_m^*$. The total field is a linear combination of these filaments and their multipole images. The multipole expansion can be expressed at sums of the coefficients of section 2.

$$H = \frac{1}{4g} \sum_{n} \frac{I_{m}}{n!} \left(\alpha_{n}(z_{m}) + \alpha_{n}(z_{m}^{*}) - \alpha_{n}(-z_{n}) - \alpha_{n}(-z_{m}^{*}) + \beta_{n}(z_{m}) + \beta_{n}(z_{m}^{*}) - \beta_{n}(-z_{m}) - \beta_{n}(-z_{m}^{*}) \right) \left(\frac{\pi}{2g} \right)^{n} z^{n}$$

$$(6)$$

The perturbation to the main dipole magnetic flux density is then given by

$$\frac{\Delta B}{B} = \frac{\mu_0 H}{B} = \sum_{n=0}^{\infty} b_n z^n \tag{7}$$

with

$$b_n = \frac{\mu_0}{4gB} \frac{1}{n!} \sum_m 2\Big(\alpha_n(z_m) + \alpha_n(z_m^*) + \beta_n(z_m) + \beta_n(z_m^*)\Big) \Big(\frac{\pi}{2g}\Big)^n I_m$$
 (8)

$$b_{n=odd}=0$$

where I_m is the current at the m-th filament position. For the configuration of Fig. 2, the summation is m = 1 and 2 and $I_m = m \cdot I$. The left-right and up-down symmetries are already included in obtaining Eq. (8).

Table 2. The Multipole Coefficient for Obtaining the Sextupole Component $B_2 = -0.785 \text{ m}^{-2}$ to Compensate the Eddy Current Sextupoles

n	$b_n(m^{-n})$
0	6.2728×10^{-3}
2	-0.785
4	-314.8
6	9.911×10^{4}
8	8.9017×10^7
10	-2.0831×10^{11}

Table 2 shows the result of multipole coefficients. It is worthwhile to point out that these b_n coefficients do not differ appreciably from the calculation with only nearby images.² It is thus concluded that nearby image approximation is not bad to obtain simple approximation.

Figure 3 shows the B/B_0 seen by the particle in a perfect dipole, where the dipole and sextupole components in the flux density of the correction coil has been removed due to perfect compensation. At the distance of 1 inch, the decapole component b_4 contributes about 4×10^{-4} . The effect would be more important at the tune of 4.8, which is a systematic 5th order resonance for the AGS Booster.

Figure 4 compares exact B/B_0 , where b_0 and b_2 are compensated, the multipole expansion,

$$\frac{\Delta B}{B} = \sum_{n=4}^{N} b_n x^n .$$

Note that multipole expansion is indeed valid only up to about 1.5". The exact field is well behaved within 3×10^{-4} , while the multipole becomes unrealistically large.

On the other hand, when the first coil is moved to 2.5'' and the second coils to 5'', the multipole expansion gives good field description up to 2.5'' from n=4 to n=10. The multipole expansion is indeed a good approximation to the exact expression up to the coil location.

4. Conclusion

We have derived analytic expression for the multipole coefficients due to current coils in the parallel iron plates. The radius of convergent for the multipole expansion depends on the location of the coils but not on the gap of the iron. The method is then applied to the eddy current correction coils on the vacuum chamber. The results indicate that the multipole obtained from the current carrying filaments and their nearby images is a good approximation up to the location of the nearest filament.

The multipole expression obtained in this study can however be used in the calculation of multipole coefficients due to the eddy current as well.

References

- 1. R.A. Beth, J. Appl. Phys. 39, 2568 (1966).
- 2. K. Halbach, Nucl. Inst. Methods, 74, 147 (1969); 107, 529 (1973); 119, 327 (1974).
- 3. S.Y. Lee, Booster Tech Note
- 4. S.Y. Lee, G. Morgan, S. Kahn, "Eddy Current Multipoles of Some Vacuum Chamber Geometries", to be published.

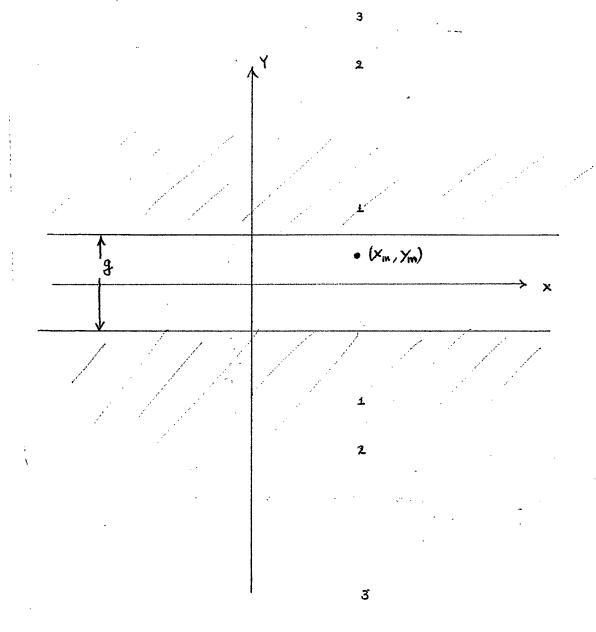
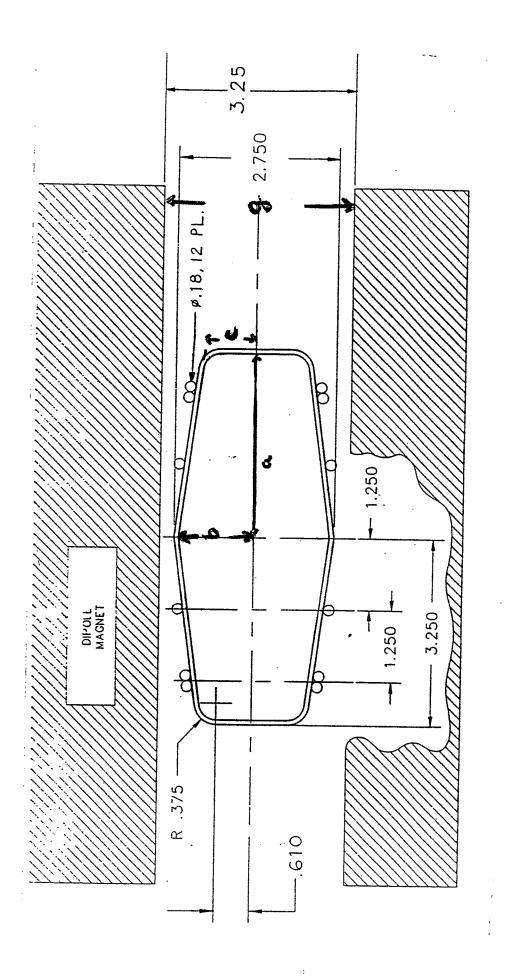



Figure 1. The current filament location (x_m, y_m) and its images marked 1,2,3,...etc. These images are summed in Eq. (1) to obtain the field H.

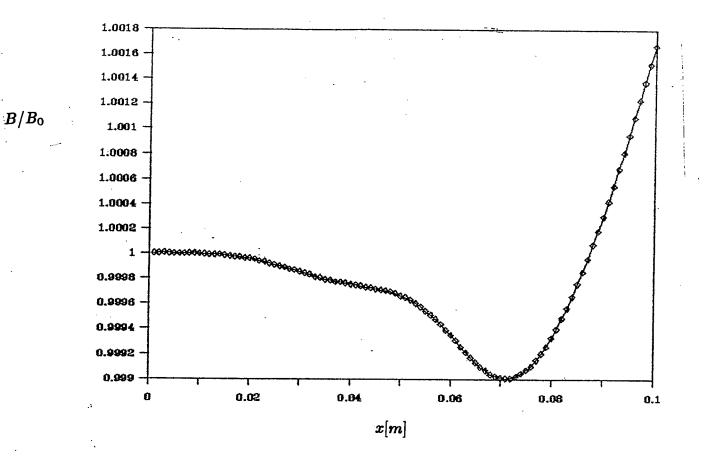


Figure 3. B/B_0 of a perfect dipole, B_0 and the flux density due to eddy current correction coils are plotted as a function of x.

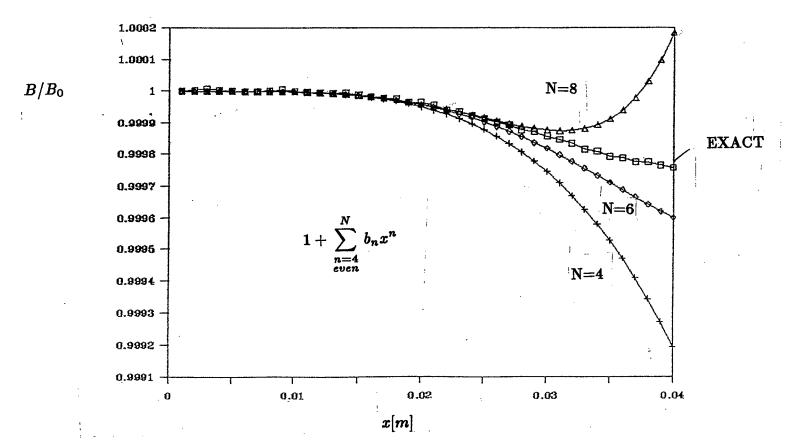


Figure 4. The multipole expansion would deviate from the exact B seen by the particle at x > 30 mm.