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1. Introduction

Detectors placed at interaction points of various colliders contain solenoids producing
longitudinal magnetic fields which linearly couple the horizontal and the vertical betatron
motions, (z-y coupling). Compensation the linear coupling is usually required! 3 in order
to avoid a loss of luminosity. In the previous note* the compensating schemes using
antisolenoids were described, and subsequently applied to the decoupling of the STAR
detector which will be placed in RHIC. In this note I shall describe a complementary
scheme of compensating the linear coupling by employing skew-quadrupoles. As before, 1
will illustrate a general method on the case of STAR detector. Significantly new features
are introduced by the antisymmetric insertions of the 1991 RHIC lattice, for which the

calculations are performed.



2 Description of the Decoupling Method

2. Description of the Decoupling Method

We start with a ring which is globally decoupled, and has 4 x4 transfer matrix Ty (s”, s')
which is of the block-diagonal form

e | M | 0| 2 (21)

/ -
0 Toy // ///2

This form ensures that the horizontal (z,p;), and the vertical (y,py) variables transform

independently among themselves (are decoupled) when Ty acts on the state- vector

T

z= ZZ : (2.2)

by
An installment of a detector, containing the solenoid magnetic field, produces the linear
coupling which destroys the block-diagonal structure of the total transfer matrix. To com-
pensate for, the additional couplers (solenoids, skew-quadrupoles) are needed. Together
they form an insertion, which needs to be properly balanced so the resulting full-turn
transfer matrix will be of the block-diagonal form again. To be specific, let us consider an

insertion (AB) consisting of even number 2N of skew-quadrupoles placed symmetrically

around a solenoid, as shown in Fig. 1.

T Center

%9 5@, %8 sose  sa sy E
"‘SN - Sy -S, 0 5, Sy SN %B

Fig. 1. Schematic layout of a (AB) insertion.

The coordinates sy, k = =1,...,%N are attached to the centers of the k-th skew-
quadrupoles of length £z, as shown in Fig. 2. The solenoid has the sp = 0 coordinate,

placed at its center
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Fig. 2.: Coordinates associated with the k-th skew-quadrupole, (a), and with the
solenoid at so = 0, (b).

The transfer matrix Ty p through the insertion is given by the expression

Tap =To (s8,5%) Tn (s, siv) To (sl sv—1) Tt (slr_1, sy_y) - . Tsoz, (0", 0')....
N (5'2,3'1') T_n (3'1',3’1) To (55, s4).

(2.3)
Using so called the “projection on the coupler” concept®—6

Py (1,0) = To (0, s3) Tk (s, s%) To (s}, 0),k==1,...,£N, (2.4)
for the skew-quadrupoles, and

Ps01.(0,0) = Tp (0,0") Tsoz (0",0) Ty (¢, 0), (2.5)

for the solenoid, it is possible to rewrite the transfer matrix as follows
TaB =Ty (s8,0) Py (sn,0)--- P1 (s1,0) Psor (0,0) P_y (~s1,0) - Py (—s,0) Th (0,5.,).

(2.6)
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As it was stated earlier, the (AB) insertion is exactly decoupled when its transfer matrix

T4p has the block-diagonal form

.~
TABZ/@//.

It 1s clear that the full-turn transfer matrix will also be of this form since the structure

(2.7)

is preserved upon a matrix multiplication. The basic formula (2.6) shows that the neces-
sary and sufficient condition for the insertion to be decoupled is that the product of the

projections itself will also be of the block-diagonal form

7z

Py---Py Psop Py---P_y= (2.8)

Zh

It will now be demonstrated that for small skew-quads strengths ¢z, similarly as for a

small solenoid’s strength 8, (comp (3.15) in ref. [4]) the following asymptotic expansions
hold ‘
Py (s,0) = 14 + 1Ry (5,0) +0(g}) , b = £1,...,£N,

and
Psor(s,0) = 14 + 65 (s,0) + 0 (6%) (2.9)

(6 = %,E — length, (Bp) — magnetic rigidity), where, what is remarkable, both R}, and

S matrices are block-anti-diagonal

%
Rp= > /5 s=|2 1y k==1,...,£N. (2.10)
// —14 0

Therefore, to the first-order in the strength parameters,

Py---Py Psop P-1---P_y =(la+gvRy +---)---(la+ @R+ ) (1a+60 S+ --)
(l4+g-1Ra+--) - (la+¢NRy+---) = (2.11)

N
:14-|—0S-l-Z(QkRk‘I'Q—kR—k)‘I“"'-
k=1 '

This expression is of the block-diagonal form only if contributions to block-anti-diagonal

part cancel between themselves

N

6 S+ (qRy+q-pR_t) =0. (2.12)
k=1
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These are the decoupling conditions, to the first-order, of the (AB) insertion. Notice, that
when the above decoupling conditions hold, one has, to the second-order (according to the
formula (2.11)),

Py---Py Psor P_y-+- Py =14+0(6%¢}), (2.13)

and the basic formula (2.6) yields
Tap =To(5B,0) Ty (0,54) = To (Sp,Sa) +0 (6%, ¢7) - (2.14)

This means that the (AB) insertion becomes transparent for a beam, to the second-order

in the strength parameters, when it is decoupled.
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3. The R-Matrice for a Skew-Quadrupole

In order to be able to solve the decoupling conditions (2.12) for the g;’s one needs to

know the Ry matrices. The S-matrix is known and its derivation was presented in the

previous note.*

The transfer matrix of a thin skew-quadrupole of length £ is obtained from the transfer

matrix of (vertically focusing) quadrupole by a rotation on 7 /4

Tsq(£) = R™' (n/4) To(£) R(r/4), (3.1)
where for the vertically focusing quadrupole we have
1 0 0 0
1 0 0
To () = ; (3.2)
0 0 1 0
o | o | st o1
where
¢ OB
l=___ o = (B, -2, 3.3
Taking into account the rotation matrices
[ 1 0 1 0- -1 -1 0
R(r/4) = 5 | o ——f—f— | R (a/4) = 5 | L e
-1 0 1 0 1 1 0
| 0 -1 0 1] 0 0 1 |
we get for the transfer matrix of a thin skew-quadrupole
1 0 0 0
0 1 -1l 1 ¢
Tsq (6) = ! = |12 , (3.5)
0 0 1 0 t 1
L f7H )0 0 1
where the 2 x 2 matrix ¢ is
1|0 0 - 0
t=f! = (B:8,)""* ¢ (3.6)

1 0 1

(o)}
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According to the formula (2.4) we have now for the projection on the k-th skew-

quadrupole
Py (s1,0) =T (0,5%) Tsq (%) To (s,0),k=1,...,N, (3.7)

where, in the thin lens approximation

1
To (O,Sllé) =Ty (O)Sk + §£k) =T (Oask) + .-,

1 (3.8)
To (53,0) = Ty (k - §ek,0) = Tp (5,0) + - .
As the result, the projection has the expansion
Py (Sk’ O) = T()—l ('Slm 0) TSQ (ﬁk) T (Sk, 0) + o=
1+ 0 T b0t T (0)| ()
To_yl (s,0) % (sg) Toz (1, 0) ‘ 0

Comparing with the asymptotic expansion (2.9) we obtain for the Rj-matrice the expres-

sion

Ry, (3k70): [ _0 l Q(Sk,()):l ’ (310)
_Q (3k7 0) ‘ 0
were we have denoted

Q (s1,0) = g7 (s1) Tg," (8,0) t(s) Toy(s1,0) = Qp,

(3.11)

= (B (s1) By (Sk)]*llz T(]_;:l (sk,0) l:o Ojl Toy (sx,0),

1 0

and @ is a symplectic conjugate® of Q,

Q(s5,0) = — [8: (o1) By ()] T [0 0} Too(s1,0) = Qp (312

1 0

Denoting, for the sake of brevity

Bz (8) = Bey Bz (0) =B, 05 () = 0y, @ (0) = o,

(3.13a)
By (8) = By, By(0) = ;, ay (8) = ay, ay(0) = C“Z’
* A . . . a b|l. — _|d —b
symplectic conjugate of a 2 X 2 matrix 4 = c 4l A= e al For A

symplectic one has that 4 = A~
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and
ds .
TO:I: (370) = Tﬂz, 'ﬁbz (37 0) = 'ﬁ__ = ¢.’L‘) Cy = COS'lb:,;, SE = S11’l’l,[)$,
T
g (3.13b)
ds .
Toy (5,0) = Toy, ¥y (s,0) = 7 = 1)y, Cy = COSty, Sy = sinty,
y
0
and taking into account that, for RHIC,
oy =0y, =0,
and
By =By =5, (3.14)
we get for the transfer matrices of the globally decoupled lattice
1/2
(8" | s
TOz,y = —1/2 ’B* 1/2 5 (315)
e | () ).,
and for the inverse
172
L) emas | s
Tl = . (3.16)
e et | (£) e
s z,y
From this using the formula (3.11) we get the Q;-matrix
—s; (k) ey (k —B*s5 (k) sy (K
Q(sk,0)=[1”()”() IR R )]sz, (3.17)
Lo (e (k) | es(k)sy (k)

and its symplectic conjugate

¢z (k) sy (k) \ B*sa (k) sy (k)
——ﬂl—*c,; (k) ey (k) ‘ —sz (k) ¢y (F)

For the symmetrically placed skew-quadrupoles the Q) z-matrices will be different since the

Q (s1,0) = [ ] =Q,k=1,---,N. (3.18)

1991 RHIC lattice is taken as to be anti-symmetric one. Taking into account that

Q_1 = Q(—s;,0), (3.19)
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and

T i ds
%(—k):%.(—-Sk,O) ﬂz() / moam @ 6

and similarly
hy (—k) = =5 (K), | (3.21)
as the result of the anti-symmetric condition which is adopted in the 1991 RHIC lattice
Bz (—s) = By (s). (3.22)
As the consequence, we have the relations

ez (—k) = ¢y (k), ¢y (—k) = ¢ (K),

(3.23)
s2(=k) = —sy (k), sy(—k)=—ss(k),
which lead to the following formula for the Q_j
Qur= |2 (k) ez (k) ’ e IOLTON BN N. (3.24)
Free®)ey (B) | ey (£)2 (1)

Knowing this we can analyze the decoupling conditions in details.
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4. The Decoupling Schemes Using Skew-Quadrupoles

Using (2.10) and (3.10) and (3.17), (3.18) and (3.24) the decoupling conditions (2.12)

become
N N
0o |1 0 0 ] _
0 2+ @ | — Qs +> g | — Q-r | _o (1)
—12 0 k=1 —Qk 0 k=1 —-Q_k ’ 0
They are equivalent to the following conditions in terms of the 2 x 2 submatrices
N
613+ (01Qk + 9-£Q—) = 0. (4.2)
k=1

The lower-left submatrices lead to the condition which is just symplectic conjugate of the
last one, and thus may be ignored as not independent.
Using again the formulae (3.17) and (3.24) we may write the decoupling condition (4.2)

in components

N N
60— arss (B)ey (k) + > qsy (k) g (k) =0, (4.3)
k=1 k=1
N N i
0+ Z grcz (k) sy (k) — Z qg_rcy (k) 55 (k) =0, (4.4)
Z(qk +q-1) sz (k) sy (k) = 0, (4.5)
N
> (g + 9-k) ¢ (k) ¢y (k) = 0. (4.6)
k=1

Let us notice, at first, that the standard scheme with oppositely powered skew-quadrupole

pairs is not possible here since the assumptions
g = —gq-r,k=1,...,N, (4.7)
contradict the first two equations, when 6 # 0
N
6= qrsin [ (k) + by (k)] = 0,

= (4.8)

N
0+ > ausin s (k) + 1y (K)] = 0

k=1
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This is a consequence of the antisymmetry of the 1991 lattice which we use here.
It is possible, however, to find a symmetric solution for which symmetrically placed

skew-quadrupoles are powered in the same way,
9 =q_t, k=1,...,N. (4.9)

In this case the first two equations (4.3) and (4.4) coincide and we get the conditions

.
3" grsinfiba (F) — y (F)] =6, (4.10)
k=1
N
> i cos [ (k) — by ()] = 0, (4.11)
k=1 .
N

gt c05 i () by (R)] = 0. (£12)
k=1

The last two equations follow by adding and by subtracting, respectively, the conditions
(4.5) and (4.6).
Various decoupling schemes correspond to various choices of the number N, of the

skew quadrupole pairs. We shall examine closely the lowest possibilities: N = 1,2 and 3.
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5. Symmetrically Placed & Equally Powered Pairs of Skew-Quads

A. For N =1 one gets the condition on the skew-quadrupole strength

qusin [ty (1) — by (1)] = 6, (5.1)
and restrictions on the locations and the phase advances between 0 and s
sin [iha (51, 0] sin [y (51, 0)] = 0, (52)
and
cos [1hz (s1,0)] cos [y (s1,0)] = 0, (magic phases!). (5.3)

They appear to be restrictive and rather rigid. A good deal of luck is needed to find
these magic phases, if they exist at all.

B. For N = 2 we get the conditions

g1 sin [1hg (1) — by (1)] + g2 sin [1h5 (2) — 9y (2)] = 6, (5.4)
G52 (1) 3y (1) + 252 (2) 39 (2) = 0, (55)
qiez (1) ¢y (1) 4+ gac5 (2) ¢y (2) = 0. (5.6)

The last two equations require that their determinant vanishes otherwise they yield
the trivial solution: ¢; = 0,¢g2 = 0. Hence, again we obtain the same restriction on

phase advances and the locations sy, s as previously found in (4.19)

55 (1) sy (1) €z (2) ¢y (2) — 55 (2) 8y (2) €5 (1) ¢y (1) = 0, (magic phases!). (5.7)
Once the rather special locations s1, s2 in a ring are known, the decoupling strengths
g1, g2 can be found from the first two equations (5.4) and (5.5).
A minimal scheme in which the skew-quadrupole locations are not restricted requires

at least three pairs of them, since then the number of unknowns ¢, g2, g3 agrees with the

number of equations.
C. For N = 3 the decoupling condition yields

qisin[th (1) — by (1)] + gz sin [ (2) — 9y (2)] + gs sin [9hs (3) — ¢y (3)] =0,  (5.8)

g1 cos [z (1) — 9y (1)] + g2 cos [z (2) — by (2)] + gz cos [ (3) — 94 (3)] = 0,  (5.9)

g1 cos [ty (1) + Py (1)] + g2 cos [, (2) + Py (2)] + g3 cos [ty (3) + Py (3)] = 0. (5-10)
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Denoting, for the sake of brevity

6k = P (k) — by (K),

and
or =g (k) + vy (), £=1,2,3

we may write the solution as follows

c(b2) c(o2)
c(b3) c(o3)
c(61) c(o1)
c(83) c(o3)
c(81) c(o1)
c(62) c(o2)

g1 = A"t

)

92 = _A—l 97

g3 = A1

where the determinant A is
s(61) c(61) c(o1)
A= 3(62) 6(62) C(O’z)
S (53) 6(53) C(O’3)

# 0, (assumed!).

13

(5.11)

(5.12)
(5.13)

(5.14)

(5.15)

The position s1, s, s3 are the skew-quadrupoles and, correspondingly, phase advances are

not restricted here, cf. Fig. 3., unless the determinant A vanishes for some unlucky choice.

PR 1 SoL 1 % qa
° I

I , 1|
0

=S, "S-S5 8, Sy 53

Fig. 3.: Decoupling scheme with three pairs of symmetrically placed, and equally

powered skew-quadrupoles.

We shall apply this scheme for the decoupling of the STAR detector solenoid in RHIC.
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6. Two Triplets of Skew-Quads (YELLOW RING at 6 o’clock)

Let us assume that the STAR detector is placed at 6 o’clock in RHIC rings. We will
consider first the YELLOW RING, and later we will decouple the BLUE one, as well.
The phase advances and the f-functions are shown in Figures 4 and 5. It is tempting

to choose the following locations for the right triplet of skew-quadrupoles

81 =34.66 m, at Qs,
$2 =281.942 m, at Qq, (6.1)

s3 =120.514 m, at Qs,
The corresponding left triplet is symmetrically located

—s1, at @3,
—39, at Qy, (6.2)
—33', at Qs.
The phases advances are
T, (1) = —-0.242 x 2 , T, (1) = —0.241 x 2r,
T, (2) =—0.321 x 27 , ¥, (2) = —0.665 x 2, (6.3)
T, (3) =—0.699 x 27 , ¥, (3) = —0.857 x 2,
Using the formula (5.15) we get for the determinant

A =0.698, (6.4)
and for the decoupling strengths
g1 = —0.036 6,,
g = 2.204 4,, (6.5)
g3 = 0.633 6.,

where the STAR solenoid parameter 6, is given by
B4,

Taking into account the formula (3.3), and the facts
B,=05T,
(6.7)

£*=4m,
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Two Triplets of Skew-Quads (YELLOW RING at 6 o’clock)
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and that, for * = 2 m, 1991 RHIC lattice, one has
Bs(s1) = 586.617Tm, B, (s1) =247.214 m,
Bz (s2) = 18.027 m, By (s2) = 40.584 m, (6.8)
Bz (s3) = 12.589 m, By (s3) = 77.764 m,

we find the skew-quadrupole gradients multiplied by their lengths

(1)
4 agx = —0.945 Gauss,
z
y=0,51
(2)
2 8?; = 814.84 Gauss, (6.9)
y=0,52
(3)
l3 8gz = 202.31 Gauss.
z
y:O,s3

The symmetrically placed skew-quadrupoles have equal strengths.
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7. Decoupling of the STAR Detector (BLUE RING at 6 o’clock)

The phase advances in the BLUE RING, around 6 o’clock, are the same as shown in
Fig. 4. Only the direction of the s variable is reversed as shown in Fig. 6. This means
that the decoupling proceeds exactly in the same way as for the YELLOW RING, and the

decoupling strengths are the same as previously found.

Center

6 o¢'clock

Fig. 6.: Schematic layout of the decoupling triplets, their positions and strengths,
in both rings around 6 o’clock IP.
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8. Decoupling of the STAR Detector Placed at 8 o’clock, (YELLOW
RING)

If the STAR detector would be placed at 8 o’clock in RHIC rings instead of 6 o’clock,
the decoupling scheme would need to be changed because of the anti-symmetric lattice.

Namely, one has the relations between the f-functions at the neighboring locations

A (50 +5) = B (s), (8.1)
B (sa+3) = B9 (s), (8.2)
and
B (~s) = B (s), (8.3)
B () =89 (s), (8.4)

where s is a distance between the 8 o’clock and 6 o’clock Interaction Points. One derives

from it the relations (for s-small),

v (—s) = — 2V (s), (8.5)
T (=5) = -0 (5), a = 86,8, (8.6)
T® (54 5) = AT, + T (5), (8.7)
U (s + 5) = AT, + TP (s), (.8)
T® (59— 5) = AT, + T (s), (8.9)
T (59— 8) = AT, + 0O (s), (8.10)
where, following the YELLOW RING, we have
56 50
AY,, / : 53(8) 0/ 53(3) (8.11)

This means that the plot of the phase—advances at 6 o’clock is as that at 8 o’clock with =
and y labels interchanged. As the result the determinant A changes its sign

A® = _A®) = _0.698, (8.12)
and so the decoupling strengths as it is seen from the formula (5.12) - (5.14)
i = o,
¢® = —g® (8.13)
(8) _ _ 6

43" = —4q3
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So they should be powered in opposite to those at 6 o’clock. This situation repeats when
moving to the next IPs. For instance, for a hypothetical solenoid placed in every six

Interaction Points of RHIC, the decoupling strengths would be
q](cw) _ _91(38) _ ql(f) _ _ql(;l) - ql(cz) _ _ngO), k=123, (q(o) = q(12)) _ (8.14)

Below, we list examples of the decoupling schemes used in various electron accelerators.?

Number of
Name skew-quad Comments
pairs
BERC 1 1/4 way round ring, with magic phases
CESR 4 2 partially rotated quad pairs, & 2 purely skew pairs
DORIS 0 antisolenoids inside experiment
LEP 4 complete correction
PETRA 0 ~ global compensation between 3 experimental solenoids
TRISTAN 3 some difficulties at injection

High energy proton accelerators are not listed here since the X-Y linear coupling due
to experimental solenoids is perhaps less significant than the non-linear coupling due to
other sources like dipoles, for example. A global decoupling scheme is designed to reduce

the X-Y coupling present in a machine, experimental solenoids including.
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