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The RHIC Low - Level RF Feedback Loop Design

E. Onillon, J. M. Brennan

Introduction

A state space representation can be used for the design of the RHIC Beam Control System,
providing good stability. This note describes a model for the phase and radial loop, as well as for the
synchronization loops between the two RHIC rings. Feedbacks, based on pole placement and linear
quadratic regulator, are calculated trying to take into account the variations of the RF voltage and
energy during the acceleration cycle.

1. Description of the system

1.1 Variables

The main variables used to describe the system are:

~ @y the phase of the beam with respect to the RF

- @ the instantaneous phase deviation of the bunch from the synchronous phase
- Sy the variations of the beam frequency

- OR the variations of the beam radius
- g the synchronous phase

- E the total energy
- Virthe accelerating voltage

- @the RF phase
- o the RF frequency
- & the beam damping coefficient (all the calculations have been performed with £ = 0.01).

The cavity, around which an RF feedback is closed, can be described by its pole Sc-

1.2 Beam transfer functions

Three transfer functions, B(P, By, B, are used to describe the beam [1]. They relate the
changes in beam phase, frequency, and radius to the changes in frequency of the accelerating voltage:

¢ =Bgdo s
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1.3 Schematic of the system
The system can be represented as follows:
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Fig.1 Model of the system

2. The phase and radial loop

2.1 State space representation

In a first approximation, we presume that the cavity transfer function is one, the beam damping
term £ is zero, and the delays of the system are neglected.

The subsystem to be represented is drawn in Fig. 2.
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Fig. 2 Phase and radius subsystem
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Two state variables are defined to describe the system:; ﬁ[ =% §2 +og2

X2 =5(1=(p

: C X1 =X
Their evolution is given by: { . 2.
Xy =—04“%; +U

. . . X 1 0 1Yx 1 0
These equations lead to the matrix formalism: | . = |= 5 + U
X2 —Wg OAx 2 ko

_ (o) (0 1Yx 1]
Both the phase and the radius are observed: (RJ = (b OIX2

As we want the radius to follow the radial steering, the difference between the radius and its
reference R, is integrated. A third state variable corresponding to this integral is introduced:
1

x3=2=[(R-Ro)dt [2]. As aresult, k3 =R ~R, = Tx1-Ry.

We get the final state space representation:
(xq ( 0 onl\l fo\' (o
0

T 0ok Tl

As the rank of the matrix [Bch AgrBgr A(PRzB(pR] is 3, it is possible to determine a
feedback using pole placement [2].
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Calculations are done using Matlab™,

An analytical expression has been found for the feedback gains. If 1, 1 and I3 are the desired

ij = (4ly +1il3 +1l3-05%) / (bko)
poles, the three state gains are:\kq, =-(1; +15 +13)/kg
kj =-(3 +15 +13)/(bko)

The command is a linear combination of the three state variables: U =-kgrx; —koxy —k| x3.

A closed loop schematic used for simulations is given on Fig. 3. As the opposite of the feedback gain
calculation, simulations are performed with the cavity delay, the damping term and the cavity pole.
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Fig. 3 Phase and radial loop

The radius path is replaced by a path on the integral of the phase, which is proportional to the
R
radius: @ = 5 ko ki o = DkR, k| respectively represent the gain on the phase, on the phase integral

and on the integral of the difference between the radius and its reference. These gains are a function of
the energy E and the RF voltage V¢ They will be programmed as a function of @g. The integral of the
phase is used instead of the radius to avoid transient at transition and to give the system a good
damping of the phase jump.

2.2 Simulations
The following results have been obtained with the three following desired poles:

-139+j*139, -139—j*139, -28283.
The reference is a 1 mm radius step.
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Fig. 4 Radius step response

The radius reaches its final value and the phase goes back to zero in roughly 40 ms in all three
cases. The corresponding Bode plots are given in Fig.5.
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Fig. 5 Open loop Bode plots

In all cases, the phase margin is 70°, the amplitude margin 15 dB and the cut off frequency
approximately 3.2 kHz.

2.3 Transition

The response of the loop, as shown in Fig. 6a, stays the same at transition where g is equal to
zero (raise time = 40 ms). The Bode plot is modified, since mg = 0 (phase margin 80°, amplitude
margin 10 dB, cut off frequency 3 kHz).
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Fig. 6a Loop behavior at transition (step response and Bode plot)
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The transition jump can be simulated by adding a 180° phase perturbation on the phase. The
transfer function between o, and R has to be made equal to zero, the transition jump having no effect
on the radius (Fig. 6b). Afier jumping to 7, the phase comes back to zero in less than 100us.
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Fig. 6b Transition phase jump
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3. The synchronization loop

3.1 Description of the system

This feedback system is used to synchronize the two RHIC rings. A new variable is introduced:
the phase of the beam ¢y, (Fig. 7).
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Fig. 7 Schematic of the system

3.2 State space representation

As previously indicated, to establish this representation, we suppose that the cavity transfer
function is one, the beam damping term and the system delay zero.
The subsystem to be represented is then the following:

Psync —» ko CDS2 b, (pb
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Fig. 8 Simplified schematic
The command of the synchronization loop is Qsync- Three state variables are sufficient to

describe this system: the phase and the frequency of the beam, and the bunch to bucket phase. The

I—X4 =%
state vector is therefore X :tx5= 0y, J Both of these variables are observed. As a result, the
X6 =0

observation vector is therefore Y = X5 =0y |.
By
j)’q =Xg
From this model, it comes out: Y%5 = X
X¢ = —®s2X6 +KoQgsync
Finally, we derive the following state space representation:

[ o1 o) (o)
X =LO 0 o X, +{0Jq>sync

0 -1 0 ko
—_—
A, By
(10@
Yo={0 1 0[X,
k b01J

As the rank of the matrix [BS A B ASZBS] is 3, we can again determine a feedback using
pole placement.

Calculations are done using Matlab™. The command U of the system will be the difference
between the reference signal and a linear combination of the three state variables. A simulation
schematic is given on Fig. 9. The reference is introduced at the level of ¢y, to force @y, to follow it.
Simulations, contrary to the feedback gain calculations, are run with the cavity delay, the cavity
transfer function and the beam damping term.

( Iil,l5

k —_——— 2

?b _—kOC‘)sZ
Ly +113 +151
If1y, 1, 15 are the desired poles, the thrree state gains are given by: Jk(ﬂb =12 " L 32 23
095
Iy +15 +1
K —-1Tla+l3

P 'kO

.



X Psync [
». _ L Ixk
- v > ko % o TdS Sorf 0352 B 1% Psyne
- 5¥5 Delay Sz '*'2§(DSS"‘®S2 S| +
VCO Cavity
Bo
"xKey
5 0
s% + 2A0S+Dg
B
xk(p
Fig. 9 Synchronization loop
3.3 Simulations
The feedback coefficients of the synchronization loop have been calculated with the following
desired poles: — 99638, -1202+j*1047, -1202-j*1047 during acceleration and
—2203, —1469, -9442 during storage.
The command is one radian step.
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Fig. 10 Step response of the synchronization loop

In all cases, the raise time is roughly 20ms. The corresponding open loop Bode plots (loop
opened at the level of the command U) are given in Fig. 11.
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In the three cases, the phase margin is 80°, the amplitude margin 20 dB and the cut off
frequency 1.5 kHz.

1
The feedback can not be calculated at transition. Since 0s=0, B, is equal to 0 and B(p to =

The beam frequency is not defined and the bunch to bucket phase integrates the RF frequency.

4.  Phase error for a given frequency error

4.1 Phase Measurement Errors

The system is excited by a white noise on the phase detector output to simulate phase
measurement errors. Its amplitude is 90 and its bandwidth 5000 Hz.
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Noise
e

100 : 1 ) — !
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Fig. 12 System excited by a white noise

The feedback tries to keep the phase and the radius at zero. The noise is attenuated by a factor
of 40. This can be seen in Fig. 13, where the power spectrums of the white noise and of the phase are
plotted.
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Fig. 13 Noise and phase power spectrums

4.2 Effects of the tuner on the phase and radial loop.

The tuner effect can be seen as rf phase steps. These can be simulated by adding the derivative
of a series of steps on the 1f frequency, as shown in Fig. 14. —
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Fig. 14 Simulation method of the tuner effects on the phase and radial loop

The same simulation has been performed by using a real RF phase measurements. Both results are
shown in Fig. 15.
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Fig. 15 Effects of the tuner

When a step occurs on the tf phase, the feedback tries first to bring the phase to zero. The
radius integers the step, making the phase deviates. If the closed loop transfer function between the
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radius and the rf phase @y is F(s), the closed loop transfer function between the phase ¢ and Opr is

F t
s%s). That means that the area a(t) under the phase curve,a(t) = | ¢(u)du, is proportional to the
0

radius. The perturbations due to the tuner can be seen as radius steps on the radius. The system will
then answer with the dynamic of the phase and radial loop.

5. Discrete Realization of the loops

Given the analog state space representation of the subsystems described previously, it is
possible to obtain a discrete state space representation which includes the delay 14 assuming a zero-

order hold on the inputs and a sampling period 74 corresponding to the revolution period. The

continuous time state space system % =Ax+BU is converted to the discrete-time system
x(n+1) = agx(n)+byU(n) supposing the control inputs are piecewise constant over the sample time
[3]. This calculation is done numerically using Matlab™,

5.1 The phase and radial loop

If we exclude the analog integral action, the order of the obtained discrete state matrix is three.
A fourth state variable, corresponding to the discrete integral of the difference between the radius and
its reference Ry, is added.

If the original state space-representation obtained previously is

( R(n) )
{x(n +1)=agx(n)+byU(n) i ) _ { b | "
Y(n+1) = cgx(n)+d dU(n)SUCh that R(n+1) = Cqpx(n) with x(n) = LUZEIi)l) , the complete state
f x(n+1)) (aq 0 x(n)) bg 0
] (z(n+ 1)] } (Cdz 1L(n> +( 0 )U(“) +(—Ro]
Space representation is m ?(,5/

Y+ =(cq 0)X(n)

A pole placement feedback can be determined. The poles are derived from the continuous
case, using the transformation discret pole = ¢®°ntinuous pole*zq [3]. Again, the command U of the
system will be a linear combination of the four state variables, as shown in Fig. 16.



-12-

I_{ ko S e~ TdS Sorf > b R n 7
5+ 5S¢ s2+2&m S+02 S
VCO  Cavity Delay - S s R, ] 1

R

e—'r.ds S () 1

Delay s? +2E0g 5 +02 z—-1

X 1(delay B
¢
xk Eki‘ xkjf

A

Fig. 16 Discrete realization of the phase and radial loop

A path with a delay of 74 has been added to build the third state variable U(n-1). The radius, to
avoid transition problems, is again built from the phase.

Results of simulations are given in Fig. 17. The radius reference is a step.
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Fig.17 Radius step response
Results are similar to the continuous results.

The corresponding Bode plots are given in Fig. 18.
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Fig. 18 Open loop Bode plots

As for the continuous case, in all situations, the phase margin is 70°, the amplitude margin
15 dB and the cut off frequency approximately 3.2 kHz,

The response of the loop, as shown in Fig. 19a, stays the same at transition where ®g is equal
to zero (raise time = 20 ms). The Bode plot is modified, since 0g = 0 (phase margin 80°, amplitude
margin 10 dB, cut off frequency 3 kHz).
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Fig. 19a Loop behavior at transition (step response and Bode plot)

The transition jump is, as in the continuous case, simulated by adding a 180° phase
perturbation on the phase. The transfer function between o and R has to be made equal to zero, the
transition jump having no effect on the radius (Fig. 19b). After jumping to , the phase comes back to
zero in less than 100ms. The effect of sampling at 4 is visible on the plots.
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5.2 The synchronization loop

The discrete state vector is X(n)= ((Pb o, ¢ Um- 1))T. A feedback using pole
placement can be found using the same method as for the phase and radial loop. The schematic of the

loop is given in Fig. 20.

QPsync |
| Zero - Order U ko S¢ gs O0xf R o 00 119p | +
Hold S+5, © 2 2
: s +28ass+0g $
VCO  Cavity
v BCO
o—tds| Delay <Koy,
xK delay §? +2E0 S+ 0 g2
B
Xk<P

xk

Psync

Again, a path with a delay has been added to build U(n-1). Results of simulations are given in

Fig. 20 Discrete realization of the synchronization loop

Fig. 21 (step excitation) and Fig. 22 (ramp excitation).

-
o

o
-

-

>

L
0

Phass ofthe Beam

i

o

® Phase of the bunch
(=3
o 8

&
3

)

0.02
tins

-
=]
=1

o

g

fog
8 ool
g ® N g 500
E 1] 17
) .500 0.02 0.04 00 0.02
tins tins
V=170 kV, v=12.6

0.04

Phase ofthe Beam

Beam Frequency

-
@
-

-

Phase of the bunch
el
=] 3

0s / \;
00 0.62 0.04 -050 0.02 0.04
tins ting
100 10000
AN
50 \ @ 5600
1] —-]E ]
.500 0.02 0.04 -50000 0.02 0.04
tins tins
V=300 kV, y=108.4

o
8

1
§ g 0.04
205 £
s 0. Z 0.02
g ol
£ &
OD 0.02 0.04 -0'020 0.02
tins tins
200 800
E‘150 600
2= 2
£100 \ F400
§ 50 w200
<]
00 0.02 0.04 00 0.02
tins tins
V#6000 kV, =108 4

Fig. 21 Step response of the discrete synchronization loop

In all three cases, the rise time is 20 ms.
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Fig. 22 Response to a ramp of the discrete synchronization loop

The phase of the beam is lagging. The ramp reaches its final value in 40 ms and the phase of
the beam in 60 ms. This could be overpassed by adding a double integration on Op — Psync - The

corresponding open loop Bode plots (loop opened at the level of the command U) are given in Fig. 23.
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Fig. 23 Open loop Bode plots

As in the continuous case, in all three situations, the phase margin is 80°, the amplitude margin
20 dB and the cut off frequency 1.5 kHz. ‘

Conclusion

The use of a state space representation leads to the design of two feedback loops. These loops
provide us with good stability, a good robustness and performance, despite the system delays, whether
the analog or the discrete approaches are used. The practical realization only requires gains and ,
summations. The analog feedback loop will be tested on the AGS.
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Appendix: Parameter definitions and values [4]

Constant parameters

c Speed of light 3 108 m/s
Yir Value of y at transition 228
Circ Machine circumference 3833 m
T4 Cavity delay 12 us
fo | c/circ 7.8268 10* Hz
Variable parameters
Injection High energy Storage
o Synchronous phase 0 0 0
B Speed of the particle/c 1 1 1
¥ Total energy/Rest energy 12.6 108.4 108.4
n 1/y2-1/11y2;
h Harmonic number 366 366 7*366
eV | RF Voltage*charge of theion | 170 kV*79 300 kV*79 6000 kV*79
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