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EQUIVALENT CIRCUIT ANALYSIS OF THE RHIC INJECTION KICKER

H. Hahn and A. Ratti

INTRODUCTION

The RHIC injection kicker was conceived as a transmission line magnet in order to
achieve the required rise time of <95 nsec. Using a CERN-type “plate-kicker” is the quasi-
standard solution to achieve fast rise times."! However, following concepts contemplated at
SLAC,>® a kicker configuration in which the lumped capacitors are replaced by high-
permittivity ceramic blocks was adopted since it promised to be simpler, more compact, and more
economical . The original design for the RHIC injection kicker was generated by Forsyth, et al,*
and a kicker R&D program was started in 1993. After implementing minor engineering changes
to improve the high-voltage performance and to suppress coupling impedance resonances, four
production kicker units, each with 1.12 m effective length, were fabricated in 1996 and
successfully operated at ~32 kV and 1.6 kA in the “Sextant Test” to deflect the gold beam.

The kicker is configured from ferrite and dielectric blocks as a “C” type magnet with its
geometry shown in Fig. 1. The deflecting properties of the kicker are dominated by the magnetic
field and thus by the geometry and properties of the ferrite blocks. The nickel-zinc ferrite (CMD-
5005 by Ceramic Magnetics) has a high permeability and resistivity for use at frequencies up to
~100 MHz. Although in principle continuous at the side, the ferrite must by subdivided to limit
eddy current effects. The capacity required to achieve the transmission line behavior is
predominantly provided by the dielectric ceramic blocks, a sintered mixture of magnesium and
calcium titanate (MCT-100 or MCT-125 by Trans-Tech) with high dielectric constant. The four
production kickers have dielectric blocks with € = 100, but subsequent magnets have been built
with € = 125 to achieve the characteristic impedance of 25 Q. The contribution to the capacity
from the ceramic beam tube is negligible, and for convenience sake, all kicker measurements were
made without it.

The electrical properties of a transmission line kicker are in zeroth order established by its
inductance, <L>, and capacity,<C>, per unit length. At sufficiently high permeability of the ferrite,
the inductance is fully determined by the aperture requirements. The capacity must then be
chosen to obtain the design characteristic impedance, in the case of the RHIC kicker 25 Q. In
zeroth order, the characteristic impedance also determines the propagation velocity, v/¢ =~ 0.066
and the propagation time through the 1.12 m long kicker, t ~ 56 nsec. The rise time of the
effective deflecting strength is obtained by folding the current rise time and the propagation time.
The current rise time cannot be estimated from the model of an ideal transmission line, but

D, Fiander, Proc. 1971 Part. Acc. Conf,, Chicago, IEEE Trans. NS-18, p.1022 (1971).
2F. Bulos and A. Odian, Report SLAC-PUB-3453, CN-279 (1984).

3R. Cassel, (private communication).

‘E. B. Forsyth, G. C. Pappas, J. E. Tuozzolo, and W. (Arlene) Zhang, Proc. Particle
Accelerator Conf,, Dallas, TX p. 1921 (1996).



requires the information about the cell structure of the kicker. A convenient, and in practice the
only way, to estimate the effective rise time is by means of equivalent circuit analysis.

The original kicker design by Forsyth was based on an equivalent circuit analysis of a low
pass filter with lumped L and C elements. In a subsequent paper by Hahn and Forsyth,® the kicker
was treated as a transmission line with uniform, albeit anisotropic properties in order to establish a
better correlation of geometrical with electrical parameters. In an attempt to estimate the current
rise time from the low pass band width, the kicker was treated as a cascaded chain of
transmission lines with different characteristic impedances and propagation velocities.®

Although useful, the simple equivalent circuits presented so far are limited and do not
allow a reliable prediction of the kicker performance resulting from engineering changes or under
varied operational conditions, such as the mismatched 20 Q termination used in the Sextant test.
In this paper, an equivalent circuit for a generalized low-pass filter with lumped Z, C, and R
elements is presented, which was obtained from direct measurements of the kicker in the
frequency range up to ~100 MHz. The P-Spice program was then used to simulate the kicker
performance and the comparison with experimental data showed fully satisfactory agreement.
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Fig. 1. RHIC Injection Kicker Configuration (dimensions in mm).
Only the end blocks are slotted
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THE EQUIVALENT CIRCUIT

The RHIC injection kicker is constructed as a low pass filter with 14 cells, each 7.5 cm
long, with alternating ferrite and high-permittivity dielectric sections, thereby approximating a
transmission line magnet. The cell structure permits an analysis of the electrical properties of the
kicker using an equivalent circuit with lumped L, C, and R elements. Their values are obtained
directly from input impedance measurements of the full-size kicker. Discussed here in detail is the
production kicker #5, in which the MCT-125 dielectric blocks are used.

The inductance is obtained from the input impedance at 1 MHz with the output port
shorted, as seen in Fig. 2. The total inductance was measured to be 1.59 uH, resulting in 106 nH
for each of the 15 series inductors. The capacitance is obtained from the input impedance at
1 MHz with the output port open, as seen in Fig. 3. The total capacitance was 1.99 nF, resulting
in ~140 pF for each of the 14 MCT-125 dielectric blocks. The MCT-100 block is represented by
~115 pF. The pronounced resonance at 64 MHz can be represented by a lossy series resonance.
This resonance is associated with eddy currents in the ferrite side blocks, as established by a series
of measurements with side blocks of different lengths (see Appendix). The circuit elements, and
in particular the damping resistors, were adjusted to render the strength of the resonances in the
open and shorted condition.

At frequencies below the A/4 resonance at 4.757 MHz, the input impedance of the shorted
kicker is given by Z,, = Z tan (f/f,,). From the values at 9° and 18° follows the characteristic
impedance of the kicker as Z ~ 26 Q. The measured input impedance of the kicker terminated
with the nominal 25 Q is shown in Fig. 4.

Using the equivalent circuit shown in Fig. 5, the P-Spice computed input impedances for
the output port shorted, open, and terminated in the design 25 Q are compared with the measured
results in Figs. 2, 3 and 4 respectively. As seen, the agreement is quite satisfactory and establishes
the confidence, that dependable predictions of the kicker performance can be made based on the
equivalent circuit diagram. Of interest are for example the kicker response to a step function
voltage, the operation of the kicker with a 20 Q termination to reduce the voltage requirement,
and the use of the MCT-100 dielectric blocks.

In a recent report, Claus’ studied the theoretical kicker properties using the cascaded
transmission line model of ref. 6 and recommended geometrical changes, the merits of which must
be evaluated.

His analysis predicts 14 mini-stop bands, the lowest appearing at 12.012 MHz, stemming
from “the mismatch generated by the added half length inductive sections at the ends.” In
contrast to his predictions, the kicker measurements show no indication of such resonances even
though at the lowest frequencies the losses are minimal as seen from the quarter and half wave

77.Claus, Report AD/RHIC-140 (BNL-63953, 1996)

3



length resonances in Fig 2 and 3. In fact, this result is in agreement with theory, since an
examination of the expression for the wave propagation in a periodic structure with uniform cells
proves that its characteristic impedance is fully determined by one cell, and remains unchanged
by mismatched terminations. Also, P-Spice computations with and without the half-length end
ferrite blocks gave essentially identical results and showed no stop bands. Stop bands would
result only if a cell within the kicker has a different geometry. Construction errors can in principle
cause stop bands but are in practice sufficiently small and smeared out by the losses.

Furthermore, Claus suggested to increase the number of ceramic strips from 14 to ~100 in
order to achieve a frequency independent characteristic impedance. In the absence of losses, this
would be correct, but given the properties of the ferrite used no gain can be expected from shorter
dielectric blocks. Increasing the number of cells increases the length required by the epoxy-filled
gaps, each 0.75 mm wide, amounting to a loss of ~20% in capacity. Finally, the cost of the blocks
is significantly increased by the machining time over the weight-dependent cost of the material,
and economical considerations as well as the satisfactory performance of the RHIC kickers
strongly favor the present design.
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COMPUTED AND MEASURED KICKER PERFORMANCE

Having established the equivalent circuit based on measurements in the frequency domain,
it is now possible to predict the kicker performance in the time domain by means of P-Spice
computations. Measurement of the performance of the kicker without beam is effectively limited
to the current in the output load. The charging voltage on the Blumlein pulser can also be
measured, but its value is not rigorously equal to the input voltage at the kicker.

The kicker load current in production unit #5 as measured with a current transformer is
shown in Fig. 6 for a 25 Q load for a ~40 kV pulser voltage, which satisfies the nominal design
requirement of 1.6 kA. The measured current is in good agreement with the P-Spice computation.
Also shown is the “effective kicker current,” which renders the rise time of the deflecting force
and, neglecting the 3 nsec ion transit time, is obtained by averaging the instantaneous current in
the 15 series inductors. The computed rise time of the effective current is < 100 nsec in full
agreement with the Sextant Test beam measurements®

In the Sextant Test, the kicker magnets were terminated with 20 instead of the nominal 25
Q resistors in order to gain safety margin against voltage breakdown. The measured load current
for the two cases is shown in Fig. 7. The mismatch causes an “after-pulse,” about 850 nsec after
the peak of the deflection, due to a reflected signal returning to the pulser and there being
reflected again. The after-pulse, by serendipity, falls between the 4th and Sth beam pulse after the
injected bunch, if the design 60-bunch injection is attempted. In any case, the after-pulse falls
within the ~1 psec beam dump gap. Also shown in Fig. 7 is the P-Spice computed effective
current in the two cases (the dashed lines are from Fig. 6). One finds that in order to achieve the
same peak deflection, or 1.6 kA effective, in the case of a mismatched 20 () load, the pulser
voltage is reduced from 40 kV to only ~36.6 kV, even though the voltage on the load is lowered
to 32.6 kV. A mismatched termination makes the effective current pulse less flat, which is,
however, in the single-bunch transfer mode at RHIC of no consequence. In retrospect, one must
conclude that mismatched operation is possible, but of marginal advantage.

The pulse propagation time in the 1.12 m long kicker was directly measured by means of
uncalibrated capacitive probes at the input and output ends. The two signals are shown in Fig. 8;
by using a single trigger, the propagation time was directly measured to be ~50 nsec, in excellent
agreement with the theoretical prediction based on a propagation velocity of ¢/v = 15. The
measured value is also in agreement with the computed P-Spice predictions as seen in Fig. 8.

®W. Fischer, H. Hahn, W. MacKay, D. Trbojevic, Proc. 1997 Particle . Acc. Conf,,
Vancouver, BC (to be published).



-164.00 ns -64.00 ns 00
20.0 ns/div repetitive

BuBKA == === mm o m m oo e e e e m oo

: ":
! Effective Current !
; 1.6 kA Hi Eps :
§ 1
' 25 Ohm !
1 i
) 1
1.5KA ~ I
4 ]
1 1
t 1
1 1
] 1
] 1
1 1
. toad Current !
1 1
1-0KA - / '
1 1
] 1
! 1
3 1
1 1
1 1
1 ¥
1 1
1 1
0.5KA - !
1 i
3 1
t ]
1 i
i H
i i
] 1
1 1
t 1
~0.0KA . :
i \/ |
1 ]
1 1
1 1
1 1
1 1
¥ 1
1] 1
i 1
~0eSKA +-----mmmm e e = m e Qoo m mmmmm e — e ——m R -
gs S0ns 100ns 150ns 20ans 250ns
o ~i(rl44) o eff + 0
Time

Fig. 6. Measured load current at 500 A/division and comﬁaﬁson with P-spice computed curve.
The computed “effective” current represents the average of currents in the 15 series
inductors and is an estimate of the time-dependent kicker deflecting strength.

10



640.00 ns 1.64000 us
200 ns/div repetitive

-480.00 ns 520.00 ns
’ 200 ns/div

Effective Current
1.6 kA

1. 5KA

1.0KA

0:.5KA

=0.0KA -

B ettt | Sy U S U |

)
Os S0ns 100ns 150ns 200ns 250ns
o eff o -I(ri4Yy) - Q0
Time

Fig. 7. Comparison of the measured load current in the case of a matched, 25 Q, and
mismatched, 20 Q, load. Note the small after-pulse, ~850 nsec after the main pulse, in
the mismatched case. Also shown are the P-Spice computed load currents for the
matched (dashed line) and mismatched (solid line) terminations.

‘ 11



* e 6 0 s a0 80

900.00 ns .
50.0 ns/div : repetitive.

2.0KA SR T Ebe bttt ol el it =
1 1
1 1
H Load Current Hi Eps '
1 1
' 25 ohm !
14 1
i t
3.5KA 1 !
1 1
1 1
1 )
) 1
1 t
1 1
1 1
1] 1
3 §
1
1 OKA 4 Load Voltage / 40 ;
; :
1 i
([} ]
1 +
1 1
1] 1
[} +
[} 1
0.5KA ~ !
[} ]
! .
1
]
1
:
4
~0-ak A \)4% N Al P ]
' -
| )
1 t
! ]
1 t
1 1
1 Ll
1 1
] 1
~D.8KA +-------mmm oy jm e o - ——m—— - - B R el T mmm s s o mm e Fr—mmmmmmmmm e -
gs 50ns 100ns 150ns 200ns 250ns
o ~i{rity) o O v v(ri45:2)/40 & v(cB:1I/40 o v{rlhHy:2)/40
Time

Fig. 8. Measured voltage of pulse at input and output end of the kicker. The measured transit
time of ~50 nsec is confirmed by the P-Spice computations.

12



APPENDIX.

In an attempt to identify the origin of the “ferrite” resonance at ~64 MHz, a short, 12 inch
long kicker model was assembled as erector set keeping the top fixed and varying the ferrite
blocks in the sides. The top was formed from 4 x 1 in. dielectric blocks and 3 x 2 in. plus 2 x 1
in. ferrite blocks. The sides were to begin with formed in the standard 4 x (2 + 1) in.
arrangement. The input impedance of the shorted model was measured and stored in memory of
the instrument as base for the subsequent changes. As seen in Fig. 9, the A/4 - resonance at
4.76 MHz in the full size kicker has moved to ~21.2 MHz due to the reduced length of the
model, but it is to be noted that the “ferrite” resonance remained almost unchanged at ~ 65 MHz.

The input impedance measured on the four models with changed length of the side ferrite
blocks is shown in Fig. 9 for the case of 6 x 2 in. (top) plus 4 x 3 in. (bottom) and in Fig. 10 for
the case of 6 x 2 in. (top) plus 1 x 12 in. (bottom). It is evident that the “ferrite” resonance
depends strongly on the configuration of the side ferrites and that the use of “long” ferrite blocks,
which would be more economical, is precluded by the increased losses and the lowered
bandwidth.
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