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Summary

This is a review of the RHIC sensitivity to closed orbit distortion and of the errors
that are the cause. There are four sections. In the first we review the analytical calculation
of the expectation values of the distortion and we compare the results with those obtained
with numerical calculation. The expected uncorrected closed orbit distortion is so large
to cause some concern for day—one operation of RHIC which is discussed in the second
section where methods are proposed for investigation. A summary of all possible known
correction methods is given in the third section; as one can see there is still work to be
done. Finally the side effects of non—vanishing closed orbit deviations in the sextupole

magnets are reviewed and discussed in the last section.

Estimate of Closed Orbit Distortion

Closed orbit distortions are expected to be caused by random errors of the integrated
dipole field and of the actual direction of the dipole field from the reference medium plane.
Moreover there are installation errors which will introduce random displacement of the
quadrupole axis from the reference orbit, either horizontally or vertically, as well as rotation
of the dipole magnets around their longitudinal axis. The analysis of the consequences of
these errors has been done assuming a gaussian distribution of the random errors with

standard deviations given below.

An analysis of the magnet imperfections has shown that the following rms widths of

the errors can be expected:

Axial rotation around the reference orbit
of the dipole field, including both installation
and actual direction of the field in the magnet 1 mrad

Integrated field error in the dipole
magnets A(B¢)/B¢ 0.5 x 1073

Displacement of the axis of the
quadrupoles from the reference orbit
(horizontally and vertically) 0.25 mm



These values have been used in the analysis that follows.

We first give an analytical estimate of the distortion of the closed orbit in the presence
of the errors so specified. We assume that no other magnet imperfections and/or installa-
tion errors are present and that there is no restriction to the physical aperture. Moreover
we assume no momentum spread in the beam; that is all the particles have the same mo-
mentum value which corresponds to the reference orbit and that the lattice is otherwise
perfect. We also neglect initially the presence of the sextupole magnets. We shall consider
them later. This analysis is standard procedure and is used to determine the sensitivity of

the lattice chosen to the installation and magnet errors.

Though in principle not required, but to simplify the calculations, we assume also that
the errors are lumped as “kicks” in the center of dipole and quadrupole magnets. This is a
good approximation for the errors in the quadrupoles, but it is somewhat weaker for those
in the dipoles, since these magnets have a considerable length when compared to the cell
length.

If we denote with z either the horizontal (z) or the vertical (y) displacement of the
closed orbit distortion we have, at a location where the curvilinear coordinate is s, the

amplitude lattice function 3(s) and the phase advance ¢(s), (increasing by 27 every turn)

Y-/ B(8)B; icosv($ — i + )
z(s) = =

(1)

2sin v

where the sum is over all the errors, the i~th of which is at the location where the
amplitude-lattice function is f; and the phase advance is ¢;. The amplitude 6; of the
error represents the amount of the effective “kick”. In Eq. (1) the origin of the phase ad-
vance ought to be chosen so that ¢ — @¢; > 0 for any :. The same equation also shows that
one can expect the closed orbit distortion at one location to be proportional to the squared
root of the local f—function. Similarly, the errors which give the largest contribution are
those located in places with the largest f—values. Finally, the choice of the betatron tune
determines the overall magnitude of the distortion which increases as the tune approaches
integral values. For the RHIC case v = 28.82 and sinwv = 0.54, so that the distortion
is expected to be two times larger when compared to the case the tune is closer to the

half-integer value. -

We estimate the expectation value of the closed orbit on the horizontal plane in the
middle of the QF quadrupoles, and that on the vertical plane in the middle of the QD
quadrupoles. In both of these locations f = 50 m.
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If we ignore the contribution of the few special dipoles, BS1, BS2, BC1 and BC2, all
dipole magnets are located in locations where §; ~ 30 m, so that their contribution to the

distortion of the closed orbit is
z = (36m) 20,- cosv(¢ — ¢; + ) (2)

where §; = o B('A‘BBT[)i is the “kick” due to the error on the integrated field, or 8; = apa;

is the “kick” due to the axial rotation a; of the dipole field. The bending angle per dipole
is ap = 38.8 mrad. Assuming random errors, uncorrelated to each other, we can estimate

the expectation value of the closed orbit distortion as

92
(=) = (36m)y %) ®)
where M = 162 is the number of dipole magnets (increased to include also BS1 and
BS2). We obtain in particular a closed orbit distortion in the horizontal plane, due to the
integrated dipole field errors, of (z) = 6.3 mm and one in the vertical plane, due to the

dipole rotation errors, of (y) = 12.6 mm.

Let us turn now to the contribution from the quadrupoles. These magnets are of two
types: those in the regular arcs (QF and QD) and those in the insertions (Q1 to Q9).
There are 23 quadrupoles in each arc and 18 in each insertion. We shall consider first the
contribution to the closed orbit distortion of the arc quadrupoles, those in the insertion
are expected to give at most a similar contribution. In the arcs the quadrupoles are also
divided in two groups: QF and QD. In each group the value of the - function is the same,

either 50 m or 10 m, so that we can write

(1)
z = (46m) Z O;cos (¢ — i +m) +
’ @)
(2)
+ (21m) Z O;icos (p— i+ m) .

This expression is valid for both horizontal and vertical plane; the first sum is over all the

quadrupoles at large f—value (50 m), the second sum is over those at small value (10 m).

B¢
b= (37 ),.
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where B' is the quadrupole gradient and d the lateral displacement of the magnet axis.
Independently of the low—f insertion

|B'¢/Bp| = 0.097 m™?

for both QF and QD. Using statistical arguments again, we can estimate the expectation
value of the closed orbit distortion. From Eq. (4), this is (z) = 10.2 mm in either horizontal
or vertical plane. We can add to this the contribution from the quadrupoles in the insertion
which we assume to be of the same amount. Since to obtain the expectation value is done
adding quadratically all the contributions, one can expect a total (z) = 14.4 mm, for either
plane.

In conclusion, adding quadratically all the contributions, the expectation value of
the closed orbit distortion on the horizontal plane estimated in the center of the QF
quadrupoles is () ~ 16 mm, and the value of the same on the vertical plane in the center

of the QD quadrupoles is (y) ~ 19 mm.

The computer code PATRIS has been used! to estimate the closed orbit distortion
using the same approximations we have used in the analytical calculation. The only dif-
ference, and a fundamental one, is that the errors for each type of magnet are generated
randomly at the computer (with cuts at £2.50) and the actual closed orbit estimated at
every quadrupole location directly, without recurring to the statistical manipulation for
one given set of random errors. The operation is then repeated a large number of times,
and all cases are then statistically compared. The results of the local expectation value of
the closed orbit in each plane are given in Figure 1, when 21 cases have been generated
on the computer and statistically compared. It is obvious that the distortion varies with
the local value of the S—function, and that in the arcs it peaks in correspondence of the
large B—value. We see that the computer results are in agreement with those we have
derived analytically. The difference, (if there is any), can be explained by the fact that the
phase advance per cell in the arcs is about 90°, for which value there is actually a partial
cancellation of the errors that we have neglected in our analysis. This can be seen very
easily when all the errors have the same magnitude (systematic errors). For instance in
the case of the dipole magnets in one arc, all their contributions cancel exactly with each
other since there are 24 dipoles in one arc separated by about 45° from each other. The

same is true for the quadrupoles (QF or QD) in one arc because, again, there are 12 of one

1 J. Milutinovic and A.G. Ruggiero,“Closed Orbit Correction for RHIC,” AD/RHIC-
AP-78, February 1989.



type in one arc all separated by each other by 90°. Thus it results that the fortunate com-
binations of a 90° phase advance cell and a number of cells per arc (12) which is multiple
of four cancel automatically the average errors and reduces somewhat the magnitudes of

the purely random errors.

Nevertheless the results shown in Fig. 1 are still significantly large, essentially as a
consequence of the magnitude of the distribution of errors assumed. To observe that the
contribution to the closed orbit distortion is larger for the dipole rotation. Though the
number of quadrupoles in the ring almost double that of the dipole, nevertheless, each
quadrupole magnet can produce a “kick” of smaller magnitude of that of a dipole. Also to
observe that the contribution from the integral field errors is the smallest one. This result
is in agreement with those obtained with the computer exercise. Actually PATRIS is also
capable to perform “realistic” closed orbit calculations, by using 7 x 7 matrix notation
(like SYNCH), and physically rotating or displacing magnets. The results, also with this

more refined method of calculation, are still in agreement! with those shown in Fig. 1.

Injection and Day—One Operation

In absence of the actual list of errors we can only estimate, as we have done, the
expectation values of the closed orbit distortions. These are shown in Fig. 1, to which, by
definition, we can associate a confidence level of about 63% that the actual distortion will
be less or at most equal to. A higher confidence level can be obtained by multiplying the
values of Fig. 1 by a safety factor. A factor of 3 will increase the confidence to 95% that

the actual closed orbit will be smaller than the value so determined.

The physical aperture, due the vacuum chamber, at QF and QD in the arcs is 36 mm.
Thus, there is also about a 85% confidence level that on day one of the RHIC operation, the
actual closed orbit distortion, before correction, is contained with the physical aperture.
To increase the probability, to say 98%, to establish an original and uncorrected closed
orbit within the vacuum chamber we need to reduce the magnitude of the magnet and
installation errors by a factor of 2. The situation is made worse by the presence of the
nonlinear magnet imperfections which reduce the available aperture. Thus, there is a good
chance that the orbit will hit the aperture available somewhere with consequent loss of the
beam itself. To observe that the design procedure adopted for RHIC is not consistent with
the traditional methods used for other conventional accelerators, like the AGS-Booster,
where the magnitude of the magnet and installation errors are determined as tolerances
to provide a high confidence level (close to unit) that the uncorrected closed orbit already

from start will be entirely within the available aperture.
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It is important for the RHIC project, to determine a strategy to achieve operationally
a “first—turn” around. The beam is injected, observed with beam position monitors as far
as it goes, and determined where it is lost. In this mode of operation low intensity and small
dimensions are required. Also, the beam position monitors are to be capable to observe
a single beam pass, though absolute sensitivity and linearity are of lesser importance.
According to the observed orbit displacements, the beam is steered past the point where
the lost is observed by acting on the steering dipoles. This procedure, which still requires
a verification by computer simulation, will be repeated until the beam completes one full
turn around, and then eventually few more. The orbit will not necessarily close turn after
turn but likely will oscillate around a new closed orbit, partially corrected, which will now

be entirely contained within the available aperture.

Before proceeding with the correction of the residual distortion of the closed orbit,
it is important to damp the free betatron oscillations with an active feedback system. If
there is a spread Av of betatron tunes, the beam emittance can dilute considerably over
a number of turns roughly given by 1/Av which we expect to be as low as a hundred.
The free betatron oscillations are to be damped also over the same period of time to avoid
the emittance dilution. The initial amplitude of the betatron oscillations are to be kept
to a reasonable small value to avoid exceedingly large rf power for the feedback system.
Similarly, injection errors, position and angle, are also to be kept to a minimum since they
also contribute to the initial amplitude of the betatron oscillations. Furthermore there
will be a momentum error at injection that will cause beam bunches to oscillate in their
buckets. Since the amount of error may vary from bunch to bunch a large bandwidth

longitudinal phase damper will be required to act on and damp the oscillations of each

bunch.

For the time being all these considerations remains as such, that is “considerations”. It
is important to note that the injection method, the establishment of the first-turn, and the
damping of the coherent oscillations, both transverse and longitudinal, are to be studied in
more details and followed with a computer simulation. This phase is very important and
it has to precede the final correction of the closed orbit. At the end of this phase indeed we
can still expect a considerable closed orbit distortion, because of the large errors involved;
but the method will have ensured that now the orbit is entirely within the stable available

aperture.

Correction of the Closed Orbit

The closed orbit correction system for RHIC is made of steering dipoles and beam
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position monitors located next to each quadrupole, in the arcs and in the insertions. The
correctors are divided in two families: the one acting on the horizontal plane next to
quadrupoles horizontally focusing (QF'), and the one acting on the vertical plane next to
quadrupoles vertically focusing (QD). The beam position monitors are made of pairs of
striplines, 20 cm long, terminated at one end to 50 ohm, which is also the characteristic
impedance of each plate to ground, and shorted to the other end. The sensitivity is 0.1
mm and the linearity over several millimeters. The steering elements are superconducting

dipole correctors, 51 cm long, with a maximum integrated field of 0.3 T-m.
There are several methods to correct a closed orbit distortions, notably:

— Fourier analysis

— Quadrupole movement

— Least square method

— Sequence of local bumps.

(i) The first method is based on the fact that we can represent exactly the closed orbit

distortions with a Fourier expansion

ing
xory—uz\/_z f" (5)

where

=1 fane(BBY ins
f"—27ru h (Bp ¢ ds

is the Fourier harmonic of the error distribution around the ring. Since we expect the
errors are not correlated to each other, the spectrum given by f, is more or less flat
with a cut-off for |n| ~ 400, the total number of magnets (M). For larger values of
|n|, fr drops quickly to zero. Statistically, we can make an estimate of the expectation
value of f, -~

(fa) ~ 5 261/2

where the summation is over the four different types of errors. It is seen then from

Eq. (5) that the harmonics n ~ %v give the largest contribution so that

ing —ing
T ory~ Vz\/ﬁ fae™" + fone

b2 = ]



with the expectation value

(:vory)N%[g%J;n—l)—

~ E MM(GS)

2nv|v? — n?|

(6)
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which is indeed about the expectation value we can obtain from Eq. (1). Thus the
correction of the harmonic n = 29 already should give a considerable reduction of the
closed orbit distortion and we recommend to leave the correction of this harmonic in
place during the injection process to help establish the first—turn around. We leave to
another time the exercise to find the arrangement of the steering magnets to provide
the required harmonic correction with the amplitude as given by Eq. (6) and with a

tunable phase.

(ii) The method by quadrupole movement is less effective than the method of Fourier
analysis. In the past it was usually used to correct an unusually large closed orbit
distortion in one particular location due mostly to bad quadrupole misalignments that
were causing also a physical aperture reduction. The method was used for the Main
Ring at Fermilab during the early years, and also for the SPS in CERN. Computer
programs are available which make a selection of the quadrupoles that ought to be
moved, once their number has been assigned, in order to minimize the peak—to—peak

variation of the closed orbit distortion.

We believe that this method is rather difficult to be used with superconducting mag-

nets and therefore we do not recommend it for RHIC.

(iii)&(iv) The last two methods to correct the closed orbit distortions are based on the same
principle. RHIC will be provided with one set of N,, beam position monitors
and one set of N, steering dipoles for each of the planes of oscillations. The two
methods rely on the observation of the closed orbit at the location of the beam
position monitors and act with the steering dipoles to obtain desired values of
displacement at the PU locations. From the operation point of view the two
methods will otherwise ignore the displacement in other places, like for instance

inside magnets.

The correctors are of short length (75 cm) and thus the thin lens approximation is
valid. The algorithm used for determining the strength of the correctors is the same as

specified above: that is the lattice is assumed otherwise ideal, with no momentum spread

8



in the beam, and without sextupoles and nonlinear imperfections in magnets. Once the

steering elements are turned on, the new closed orbit distortion is given by

Y-V B(3)Bibi cosv(¢ — ¢ + ) + ; V/B(8)Bebgcosv(p — ¢ + )
z(s) = = -

(7)

where again z stands for either z and y. The first sum is over the errors proper and

2sin 7wy

the second sum is over all the steering elements. Since we are allowed to determine the

displacements only at the PU locations we can re-write Eq. (7) for the j—th PU

Zel \/BiBebecosv(p; — ¢e + )

2sin v

(8)

zj=2z;+

zj is the desired displacement and Z; is the distortion due to the errors alone. Eq. (8)
is written for j = 1,2,... Np, and thus represents a linear system of Np, equation in N,
variables (0y,62,...,0n,). Z; is a vector of observed displacements and z; is a vector of

desired values.

In the special case the number N,, of beam position monitors equal the number N, of
steering dipoles there is always one solution. In particular it is possible to choose z; = 0.
In the case N, = Npy this always works. The method is very simple and requires only a
matrix inversion. Years ago, when computer techniques were still limited and the inversion
of a matrix of large order was difficult, the problem was avoided by showing the equivalence
of the system (8) with the sequence of local bumps which grouped the steering dipoles 3
at a time in a chained fashion. The method is also described in Ref. 1 and called the
Fermilab method because extensively used at Fermilab, though the method was probably
originated at Cornell. This method has been fully investigated for the RHIC project and it
works according to expectation,’ though it is essential that the number of pick-ups equals
the number of correctors, which is indeed the case for RHIC where actually, to simplify
the methods, beam position monitors and steering elements are located in neighboring
positions. The method once applied indeed provides zero closed orbit distortion at any
observed location with a maximum required strength of the correctors about half of what

is available.1

There is nevertheless one observation to be made. Consider, for instance, the horizon-
tal plane. In the arcs, steering magnets and position monitors are located next to QF at
90° apart. At these location the resulting closed orbit is indeed zero, but this is not true
at the locations of the QD quads which are half-way. Here the orbit is also corrected but

only partially; there is still a residual error that could be as large as half a millimeter, but
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the corresponding (-value is also lower. The same is true for the QF quads when the orbit
is corrected on the vertical plane. In particular, this residual displacement is also signifi-
cant at the location of the sextupole magnets. This problem can be made to disappear by

inserting correctors and position monitors also in the alternate lattice locations.

Let us investigate now the case the number of beam position monitors is different
from that of steering elements. Let us assume first that there are fewer position monitors
as in the case when few PU’s in RHIC are not working. In this case the system (8) is made
of fewer equations than variables. Since we have fewer beam position readings we have
a redundance in the number of correctors. We can intentionally disregard few correctors,
for example those next to the beam position monitors that happened to be off, and one
can still solve the system (8) requiring that the closed orbit distortion is fully corrected
at the location of all the active position monitors. This has been indeed verified on the
computer. Unfortunately the method cannot perform any correction at the location of the
malfunctioning monitors. Actually because these locations are exactly at +90° from the
neighboring active element, they are by—passed by the system and the distortion is not
corrected at all. At these locations the distortion retains the original uncorrected value
and could be large. This is a point of utter importance. It is very important that all

position monitors are functioning in RHIC at the same time.

The opposite case, when there are fewer correctors than position monitors, can be
resolved with the last method of “least square”. In this case, the system (8) gives more
equations than variables and thus it is not possible in general to find a solution with
z; = 0 at every monitor position. Acting on all the available correctors, the method tries
to minimize the magnitude of the distortion globally. We introduce the sum of the error

squares
2;, \/ BiBefecosv(¢ — dg + )

2sin v

S = Z Zj+
J
which is the function we want to minimize. We obtain

'gei=2z \/mcosv(‘ﬁj"‘fﬁk-l-ﬂ') _ szx/ﬂj_ﬂiagcos,,(%_me)
£ J

2sin Ty J

=0

2sinwv

which is a system of N, linear equations (k = 1,2,...,N,) in N, variables 6,(£ = 1,2,..., N,)
which can again be solved with the usual method of matrix inversion. Once the solution
has been found, this is inserted back in the original equation (8) to determine the new,

partially corrected, closed orbit distortion.
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There are several computer codes that perform the operations described here. One is
known as MIKADO which is included in the SYNCH program. If this method is applied
to the case N, = N4, then the obvious result is that the last two methods give the same
identical answer with the closed orbit distortion vanishing exactly at all position monitor

locations.

The “least square method” would be very useful for RHIC in those instances when
several correctors are not functioning at the same time. This method deserves good consid-

eration and it is still waiting to be investigated more in details for the RHIC application.

Closed Orbit and Sextupoles

A major complication in dealing with the closed orbit distortion and its correction
arises from the presence of sextupole magnets for the chromaticity correction. If the
beam is displaced from the axis of the sextupoles, the equivalent of quadrupole gradient
errors are introduced. If the displacement is horizontal a type by—error is generated; if the
displacement is vertical, one has an equivalent a,~type error. These errors can be of very

large magnitude as it is shown in the following table.

Length _a by J number
xlO_Tcm_1 per arc

arc dipole (B) 9.45 m 1.6 0.8 24
arc quadrupole (QF,QD) 1.13 2.0 4.0 2x 12
quadr. axial rotation 1.13 4.2 e 2x 12
(1 mrad rms)
SF sextupoles 0.75 6.8 6.8 12
SD sextupoles 0.75 13.3 13.3 12

We compared several error sources. The values shown are the expectation rms widths
of the random errors. The contribution of the sextupoles has been determined as
BII

(@1 orh) = — (ycor z.)

B
for the case of 8* = 2m and a local rms displacement of 1 mm, either horizontal or vertical.

The effects of the sextupoles on the uncorrected closed orbit have already been assessed
earlier’ (with the use of PATRIS). The lattice functions are distorted, betatron tune—
shifts and half-integral stopbands are introduced and often the lattice is unstable, that
is the working point is shifted directly inside one of the stopbands. Typically out of 21
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simulations with different random number seeds for the closed orbit determination, 10 runs
have produced an unstable lattice. For the remaining 11, the tune—shift can be as large as
0.12 in the horizontal plane and 0.08 in the vertical one. If one estimates the distortion of
the f—function in the middle of the RHIC lattice, one finds a AB/f as large as 150% in
the horizontal plane and 120% in the vertical plane. All this is also indicative of a large
enhancement of the neighboring half-integral stopbands.

In the following we give an analytical estimate of the tune-shift due to these types
of errors. The tune-shift in one plane (z or y) is given by the contributions of all the

sextupoles, which are short enough so that their effects can be represented as “kicks”,
1
Av=— 9
V= % BeSeze (9)

where z; stays for either the horizontal z,¢ or vertical y; beam displacement from the axis
of the ¢-th sextupole, and Sy = (B"£/Bp); is the strength of the {—th sextupole located
in a place where the f—function takes the value ;.

We shall consider only the case with two sextupole families: SF and SD, located

respectively next to QF and QD in the arcs. We have
Sp=02lm™ and Sp=-041m™

for * = 2m. Then Eq. (9) can be written also as follows

Av=M

where Zr and Zp is the average of the closed orbit deviations at the sextupole locations,

respectively SF and SD. The number of sextupoles per family is M=72.

If the beam displacements at the various locations are not correlated with each other,
but have a random distribution of rms width (z), then the rms expectation value of the

averages is

s= 2
z—m (10)

and the rms expectation value of the resulting tune—shifts is

(6) = VITPEL (o) 4 VBP2OR (o)

For the case of uncorrected closed orbit, using the results obtained in the previous sections,

we have

(6v)g =0.13 and (6v)y =0.27
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which are large values indeed. Nevertheless one might argue that the beam position errors
are not random and that therefore the effect could be considerably smaller. Indeed we
have seen that the closed orbit distortion can be represented with a Fourier expansion as
given by Eq. (5). Nevertheless, it is not easy to determine analytically what fraction of
the value (10) can be really considered random. This can certainly be determined with

the computer.

The same analysis can be applied to determine the width of the stopbands at 2v = 57
or 58. The rms expectation value of the full width is just equal to that of the tune—shift.
Since the unperturbed tune v = 28.82, and because the shift can be of either sign, there
is a 50% chance of the motion being unstable if év > 0.09 by landing on the 2v = 58
stopband, and a 50% chance of the motion being unstable by landing on the 2v = 57
stopband if 6v > 0.16. Thus there is a 100% chance of instability in any case if §v > 0.16.

In order to provide a 95% confidence level that either stopband is avoided during the
early operation of RHIC the rms expectation value of the tune shift should not exceed 0.03
in either plane. If this is caused by the closed orbit displacement in the sextupoles then
the closed orbit is to be corrected by an order of magnitude, down to about 2 mm rms

before the sextupole magnets can be safely turned on.

A more severe effect encountered when correcting the initial closed orbit with sex-
tupoles on, is the introduction of linear coupling and a large contribution being added to
the v; — vy = 0 resonance. This effect can be enhanced by the random contribution of
the closed orbit and it is not easily treatable analytically but with computer tracking. In
conclusion, the suggestion is to correct initially the closed orbit with the sextupoles turned
off. It was indeed proven that after the initial correction, a converging and fast iteration

method & la Fermilab can be adopted turning the sextupoles on subsequently.

Finally we have examined the question: what happens if one beam position monitor
is not working? Clearly then we cannot infer what is the beam position at that location.
All the methods of correcting closed orbit described above unfortunately will not be able
to correct the deviation at the blind spot. To complicate matters, the neighboring PU’s
are at +£90°, so that requiring that the closed orbit deviation vanishes at both of these
locations would still leave the deviation unchecked and uncorrected in the middle. Since
now sextupoles cannot be turned off, if even only one location exists where a PU does
not work, the unchecked closed orbit in the neighboring sextupole can cause a tune shift
with an rms expectation value of 0.03. This is too large and one should find operational
methods to correct blindly the error (probably by faking the actual error) until the beam

stability is recovered.
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During the operation of RHIC, a very useful method to explore the actual physical
or dynamic aperture in one particular location of the ring is to move locally the beam
laterally as far as it can go measuring at the same time beam parameters like betatron
tunes. To do this the beam can be moved with the help of 3-magnet bumps, which the
closed orbit correction system is capable to do effectively at least over a range of I 20
mm at locations where f = 50 m in either plane. This type of experiment is useful to
determine also the effects on non-linear magnet imperfections and the chromatic behavior
of the collider in which case sextupoles are to be left on. Unfortunately RHIC cannot
withstand a large orbit distortion, even if only locally, and the sextupoles being on at the
same time. Actually, the 3-magnet bump operation has been common practice at Fermilab
and CERN and no problems were encountered with sextupoles and closed orbit distortions.
The dipole packing factor in RHIC is only 40% against 75% in Tevatron and SppS. Each
straight section is longer than an arc and there are fewer and stronger sextupoles to correct

chromaticity.
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Fig. 1 Horizontal and vertical rms closed orbit distortion based on 21 random error distri-

bution.
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